

Sleep Transistor Distribution in Row-Based MTCMOS Designs

Chanseok Hwang1, Peng Rong2, Massoud Pedram3
1 Samsung Electronics, Seoul, South Korea

2 LSI Logic Corp, Milpitas, CA, USA
3 University of Southern California, Los Angeles, CA, USA

Abstract - The Multi-Threshold CMOS (MTCMOS)
technology has become a popular technique for standby
power reduction. This technology utilizes high-Vth sleep
transistors to reduce subthreshold leakage currents during
the standby mode of CMOS VLSI Circuits. The performance
of MTCMOS circuits strongly depends on the size of the sleep
transistors and the parasitics on the virtual ground network.
Given a placed net list of a row-based MTCMOS design and
the number of sleep transistor cells on each standard cell row,
this paper introduces an optimal algorithm for linearly
placing the allocated sleep transistors on each standard cell
row so as to minimize the performance degradation of the
MTCMOS circuit, which is in part due to unwanted voltage
drops on its virtual ground network. Experimental results
show that, compared to existing methods of placing the sleep
transistors on cell rows, the proposed technique results in up
to 11% reduction in the critical path delay of the circuit.

1. INTRODUCTION
Leakage power in modern CMOS VLSI circuits has become a
component comparable to dynamic power dissipation.
Typically, the subthreshold leakage current dominates the
device off-state leakage due to low Vth transistors employed
in logic cell blocks in order to maintain the circuit switching
speed in spite of decreasing VDD levels [1]. The Multi-
Threshold CMOS (MTCMOS) technique can significantly
reduce the subthreshold leakage currents during the circuit
sleep (standby) mode by adding high-Vth power switches
(sleep transistors) to low-Vth logic cell blocks [2] [3]. This is
because the stacked high-Vth sleep transistor connected to the
bottom of the pull-down network of all logic cells in the
circuit acts as a high-resistance element during the sleep
mode, which limits the leakage current from Vdd to ground
lines. At the same time, because of the stack effect, the
subthreshold leakage of the low-Vth transistors in the logic
block itself goes down. This leakage reduction is preferably
achieved with small performance degradation because, during
the active mode of the circuit, the sleep transistor is fully on
(i.e., it operates in the linear mode), and thus, all low-Vth
logic cells in the MTCMOS logic block can switch very fast.

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first page.
To copy otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

GLSVLSI’07, March 11–13, 2007, Stresa-Lago Maggiore, Italy.

Copyright 2007 ACM 978-1-59593-605-9/07/0003...$5.00.

 Unfortunately, the situation is different in real designs.
More precisely, during the active mode of the circuit
operation, the high-Vth sleep transistor acts as a small linear
resistance placed at the bottom of the transistor stack to
ground, causing the propagation delay of the cells in the logic
block to increase. In addition, the virtual ground network
itself acts as a distributed RC network, which causes the
voltage of the virtual ground node to rise even further,
thereby degrading the switching speed of the logic cells even
more (cf. Fig.1.) The former effect is a function of the size of
the sleep transistor whereas the latter effect is a function of
the physical distance of the logic cell from the sleep
transistor.

Figure 1. (a) MTCMOS circuit structure, (b) The
circuit model with virtual ground interconnect and sleep
transistor modeled as resistors, Ri and Rs, respectively

 Figure 1(a) depicts a logic block, LB, in which a group of
low-Vth logic cells are first connected to the virtual ground
node and then through a high-Vth sleep transistor, S, to the
actual ground, GND [2]. Figure 1(b) models the virtual
ground interconnection and the high-Vth sleep transistor,
which behaves like a linear resistor in the active mode of the
circuit operation [4], as resistors Ri and Rs, respectively. The
virtual ground is at voltage Vx above the actual ground, i.e.,

()
X

s iV I R R= ⋅ + where I is the current flowing through the

virtual ground sub-network and the sleep transistor. The
voltage drop across Rs + Ri reduces the gate over-drive
voltage of MTCMOS logic cells (i.e., their Vgs value) from

ddV to
dd xV V− .

 In this paper, we present an optimal algorithm for placing
sleep transistors for the standard cell-based layout design,
which minimizes the performance degradation of MTCMOS
circuits due to the interconnect resistance of the virtual
ground network. We discuss previous works in section 2,
introduce the problem formulation and the proposed method

in section 3 and 4, respectively. Then, we present experiment
results in section 5 and conclude in section 6.

2. PRIOR WORK
Optimal sizing of the sleep transistors (STs) has been actively
researched since the MTCMOS technology was introduced.
One of the most conservative approaches is the dedication of
one ST to each logic cell and the optimization of individual
STs, which is known as “fine-grained” leakage control [5] [6].
This approach makes it easier to do RT-level sign off by
using standard static timing analysis techniques whereas it
tends to incur large area overhead [7]. Other approaches
 [8] [9] group logic gates based on their current discharge
patterns in a given switching cycle so that sleep transistors of
gates with mutually exclusive current discharge patterns are
merged together, thereby, reducing the area overhead. In [8],
the authors first size the sleep transistor of each logic cell so
as to impose an upper bound on the performance degradation
of the cell during the active mode of the circuit operation.
Next, they calculate the discharge current patterns of all logic
cells in the circuit based on a unit delay model, and finally,
merge the sleep transistors of cells with non-overlapping
discharge current waveforms. In [9], the authors use a more
precise delay model to do the same steps, presenting several
heuristic techniques for efficient gate clustering. In [10], the
authors use average current consumption values of logic gates
to determine the sleep transistor width needed to satisfy a
required circuit speed based on the assumption that the circuit
speed depends only weakly on the circuit operating pattern
for sufficiently large sleep transistor sizes. In other
approaches [11] [12], the authors selectively apply the
MTCMOS technology for gates belonging to timing-critical
paths of a circuit, where low-Vth gates are only used in the
timing-critical paths. Recently, a number of approaches have
begun to consider the interconnect resistance of the virtual
ground line as one of the crucial factors that affect the
performance of MTCMOS circuits. In [13], the authors model
both sleep transistors and virtual ground interconnects as
resistors, and thereby, consider a resistive-only network when
computing sizes of the distributed sleep transistors. In
 [14] [15], the authors show that the delay and output slew of a
gate with the MTCMOS technology increase linearly with
virtual ground length, and then take this parameter into
account when modeling the delay of MTCMOS gates.
 This paper addresses the automatic placement of sleep
transistors considering the interconnect resistance of the
virtual ground in standard cell-based layout design. In [7] [16],
the authors provide design methodologies that treat a ST as a
standalone library cell and then calculate and allocate a
number of sleep transistor cells (STCs) on each cell row. The
STCs are then placed at one or the other corner of each row
on a row-by-row basis. In these methods, all cells in a row
share all of the STCs and the virtual ground line in the same
row. The main advantages of these approaches are that (a)
they are fully compatible with the existing standard-cell
physical design flow and (2) they result in a shorter re-
activation time when exiting the sleep state [16]. However,
these approaches do not consider the voltage drop due to the

virtual ground interconnect in deciding the location of STCs.
In practice, they tend to over-estimate the size of sleep
transistors needed on each cell row so as to compensate for
the voltage drop due to virtual ground interconnect resistance.
With continued process scaling, the wire segments in the
ground network become more resistive, causing more area
overhead. In addition, the performance degradation of a logic
cell that is far away from the STCs may greatly affect the
overall circuit performance if the logic cell happens to lie on
a timing-critical path of the circuit. Therefore, in this paper,
we shall address the question of how to place STCs for the
standard cell-based layout design so that the performance
degradation of MTCMOS circuits due to the interconnect
resistance of the virtual ground line is minimized.

3. PROBLEM FORMULATION
The problem of sleep transistor distribution can be described
as follows. Given a placement of MTCMOS design in the
row-based layout and the distribution of sleep transistor cells
on each row, the objective is to determine an optimal
placement of sleep transistor cells such that the performance
degradation of the MTCMOS circuit due to the voltage drop
of the virtual ground line is minimized.
 Let’s focus on the sleep transistor distribution in row y. Let
C={ci, i=1,2,…,n} denote the set of logic cells in row y, and
S={sj, j=1,2,…,m} denote the set of STCs to be placed on the
row. n and m denote the cell and STC counts, respectively.
We define the performance loss of a logic cell ci∈C in the
active mode as follows:

 () () ()i i iPL c T c SL c= Δ − (1)

where ∆T(ci) denotes the additional propagation delay of cell
ci that results from the resistance of the virtual ground. SL(ci)
is the slack available for cell ci before inserting the STCs. The
slack times are calculated by doing static timing analysis
(STA) on the circuit.
 Using the well-known alpha-power delay model [17], the
cell propagation delay in the presence of a sleep transistor
and virtual ground interconnects is given by

,()
(())

load i dd
i

dd STC STC i tL

C V
T c

V I R R V α

⋅
∝

− ⋅ + −
 (2)

where Cload,i and VtL denote the capacitive loading seen by
cell I and the threshold voltage of the low Vth transistors in
the cell, respectively. RSTC denotes the STC resistance, Ri
denotes the interconnect resistance, and ISTC⋅(RSTC+Ri) is the
source voltage at the bottom of the NMOS-section of the
logic cell. Thus, we may calculate ∆T(ci) as

0() () () |
ii i i RT c T c T c =Δ = − (3)

Ri is dependent on the distances between ci and STCs on this
cell row, sj∈S. Accordingly, ∆T(ci) is a function f of these
distances:

1 2
() (| |,| |,...,| |)

i i m ii s c s c s cT c f x x x x x xΔ = − − − (4)

where xci and xsj denote the horizontal coordinates of logic
cell ci and STC sj, respectively. Furthermore, to a first order,
∆T(ci) is dominated by the position of the sleep transistor that

is closest to ci. Let di denote the minimal distance between ci
and any of the sleep transistors, i.e.,

1 2
min(| |,| |,...,| |)

i i m ii s c s c s cd x x x x x x= − − − (5)

We may approximate equation (4) by
() ()i iT c g dΔ (6)

Now, in equation (2), Ri may be replaced with r⋅di, where r is
the wire resistance per unit length of the virtual ground
network. By using Taylor Series Expansion of the right-hand
side of equation (2), we can obtain function g in equation (6):

0

()
()

i

i i
i i

i i d

T c R
T c d

R d
=

∂ ∂Δ = ⋅
∂ ∂

 (7)

That is,

,
1

 ()

where
()

 is a proportionality coefficient

i i i

load i STC dd
i i

dd STC s tL

i

T c w d

C I r V
w

V I R V α
α

κ

κ

+

Δ = ⋅
⋅ ⋅ ⋅

=
− ⋅ −

 (8)

Thus the performance loss can be written as
() ()i i i iPL c w d SL c= ⋅ − (9)

 We next define a cost figure, Φ, for the STC placement:

1
max ()i

i n
PL c

≤ ≤
Φ = (10)

It is important to balance the current flowing through each
sleep transistor in the active mode. Otherwise, a sleep
transistor that carries too much current will significantly
increase the virtual ground voltage in its physical
neighborhood, hence, it will decrease the performance of the
cells in the region. Thus, the optimization problem for STC
distribution may be formulated as

ΦMinimize (11)

subject to

max
, 1,2,...,

js sI I j m≤ = (12)

where Isj denotes the total current passing through STC sj and
Ismax is an upper bound on the current flowing through the
STC. (The rationale is that when it was decided that cell row
R should have m sleep transistors on it, that decision was in
part based on the assumption that no sleep transistor will
have to carry more than Ismax.) The minimum Φ value will be
denoted by Φmin.

4. PROPOSED APPROACH
In this section, we present an optimal solution to the STC
distribution problem where m<n. For m≥n, it is easy to see
that Φmin can be achieved trivially by enforcing xsi=xci,
i=1,2,…,n. Let P={pj, j=1,2,…,m} denote a partition of the
set of cells C in row R. Let xpj denote coordinate of the
rightmost cell in pj.
Definition 1: A valid partition is a partition that satisfies the
following two constraints: 1) xp1<xp2<…<xpm; 2) any cell ci
belonging to section pj satisfies the condition that xpj-1<xci≤xpj.
All valid partitions compose the valid partition space, Ω.

Definition 2: A true solution to the STC placement is a valid
partition that additionally satisfies the following: 1) there is
exactly one sleep transistor sj in each section pj; 2) within
each section

max { (| |) ()}
j i

i j
pj s c i

c p
g x x SL c

∈
Φ − − (13)

is minimum. All true solutions compose true solution space,
Σ.
Lemma 1: Consider a true solution σ on the valid partition
P={pj, j=1,2,…,m}. Define

1
max pj

j m≤ ≤
Ψ = Φ , where Φpj is

defined in equation (13). We have: Φ≤Ψ.

Proof: Assume (| |) ()
j is c ig x x SL cΦ = − − , where ci is a

cell and sj is the sleep transistor associated with section pj.
There are two cases to consider. First, if ci∈pj, then

,p jΦ ≤ Φ ≤ Ψ , and the proof is complete. Second, if ci∉pj,

assume ci∈pk (with sleep transistor sk), then from equation
(5):

 (| |) ()
k is c i pkg x x SL cΦ ≤ − − ≤ Φ ≤ Ψ .

Lemma 2: Let Σm denote the true solution space for m sleep
transistors and Ψ*m denote the minimal Ψ value on space Σm.
The following monotone property holds: ∀m1<m2, there
exists Ψ*m2≤Ψ*m1.
Proof: Given m<n, assume σm∈Σm is a true solution on a
valid partition P. There must exist a section pj that contains
more than one cell. The corresponding sleep transistor is
denoted by sj. Divide pj into two new sections p’j

 and p’j+1,
where p’j+1

 contains only cell ci, the rightmost one in pj, i.e.,
xci=xpj. Obviously, the new partition P’ after this division is
also a valid partition. Now add a new sleep transistor for
partition P’ and assign it to location xci. Thus Φp’j+1=−SL(ci),
which is less than Φpj based on definition (13). A new true
solution σm+1∈Σm+1 on the valid partition P’ can be obtained
by shifting sj so that Φp’j is minimized while keeping other
sleep transistors unaffected. From Definition 2, there exists
Φp’j≤Φpj, which leads to Ψσm+1≤Ψσm. Since σm is arbitrarily
selected, the proof is complete.
Theorem 1: The solution with a minimal Ψ value in space Σ
is an optimal solution to the STC distribution problem
defined by equations (11) and (12).
Proof: Let σ* denote the solution in space Σm that has the
minimal Ψ value. Assume σopt is an optimal solution to the
problem defined by equations (11) and (12). Based on σopt,
we can construct a valid partition P of set C as follows. First,
we sort sleep transistors in an increasing order of their
coordinates. Next, each cell is assigned to the section
corresponding to its closest sleep transistor. Let m’ denote the
number of sections in P, where m’≤m. Notice that m’ may be
less than m because it is possible that a sleep transistor is not
the closest one to any cell. Similar to the proof of Lemma 1,
we can easily show that

opt optσ σΦ ≤ Ψ . Conversely, from

the construction procedure for partition P, we know

∀ci∈pj, () (| |) ()
j ii s c iPL c g x x SL c= − − , thus

max ()
opt

i j
pj i

c p
PL c σ

∈
Φ = ≤ Φ , which is followed by

,
1
max

opt optp j
j m

σ σ′≤ ≤
Ψ = Φ ≤ Φ . So we have

opt optσ σΦ = Ψ .

Since P is a valid partition for m’ sleep transistors, according
to Lemmas 1 and 2 and because m’≤m, it follows that

* *
* *

' opt optm m σ σσ σΦ ≤ Ψ = Ψ ≤ Ψ ≤ Ψ = Φ . So σ* must

also be an optimal solution to the STC distribution
optimization problem and *min σΦ = Ψ .

 Based on Theorem 1, a simple approach for solving the
STC distribution problem is to examine all possible valid
partitions and select the true solution with the minimal Ψ
value. However, for n cells and m sleep transistors in a row,

the number of valid partitions is 1
1

n
mC −

− . In the case that

m=n/2, 1
1

2

2

n
n
mC

π
−
− ≈ . So if n and m are large, the brute-

force approach will be impractical.
 We present an efficient dynamic programming approach to
search for the optimal solution. Before describing the
approach, we first re-formulate the current balance constraint
on STCs to facilitate its incorporation into the proposed
approach. By assuming a uniform current distribution in the
row, the maximal current constraint can be described as a
limit on the number of cells that any section in a valid
partition can include. Let pnj denote the number of cells in
section j and pnmax denote the preset upper bound of pnj.
Constraint (12) can be restated as

max

max

, 1,2,...,

/

jpn pn j m

pn n m

≤ =

≥
 (14)

 Assume the cell set C in row R is already sorted from left
to right. Define function Γ(i, j, k) to represent the minimal Φ
value for k sleep transistors on a subset of cells in C from ci to
cj, where 1≤i≤j≤n, 1≤k≤m. Thus Φmin=Γ(1, n, m). From
Theorem 1, we have

max

max

max((1) ,1)
min(,)

(1, ,) min max((1, , 1), (1, ,1))
j k pn l

l pn j

j k j l k j l j
− − ⋅ ≤

≤

Γ = Γ − − Γ − +

 (15)

and (, ,1) min max (| |) ()
l

s
l s c l

x i l j
i j g x x SL c

≤ ≤
Γ = − −

(16)

 In equation (15), l denotes the number of cells in the
rightmost section between c1 and cj. According to constraint
(14), l should be no greater than pnmax; on the other hand, l
has to be large enough so that the remaining cells can be put
into the remaining k−1 sections.

 The pseudo-code for the optimal STC distribution
algorithm is presented in Figure 2. First, Equation (16) is
solved for all Γ(i, j,1) values, 1≤i≤j≤n, which are stored in a
table with a dimension of n×n. The proposed dynamic
programming approach utilizes a table Γ(j), 1≤j≤n, where

each entry holds the computed value of Γ(1, j, k) during the
kth iteration; and table I(j, k), where each entry stores the l
value in equation (15) which leads to the minimal Γ(1, j, k).
Lines 3 to 9 embody the dynamic programming iterations of
updating values in tables Γ(j) and I(j, k). The decrement of j
from n to i ensures that the updated entries of table Γ(j) will
not be used in the same k iterations, and thus, enables an in-
place operation. The procedure in Line 11 traces back
through pointers held in table I(j, k) and works as follows.
Read the value in the I(j, k) entry. Assume I(j, k)=l, then
assign cells from ci−l+1 to cj to section pk. Next, go to entry
I(j−l, k−1) and section pk−1. This process continues until k=1.
Finally, after partition P is constructed, the coordinates of
sleep transistors are obtained by solving Equation (16) over
each corresponding section in P.

STC Distribution Algorithm

INPUT: xci, i=1,2,…,n, coordinates of n cells in a row R;
m, number of sleep transistor cells to be placed in R

OUTPUT: Φmin and xsj, j=1,2,…,m, coordinates of m sleep
transistor cells

1. Γ(i,j,1) ← solution to equation (16), ∀i,j, 1≤i≤j≤n
2. Γ(j) ← Γ(1, j,1), ∀j, 1≤j≤n
3. for k = 2:m
4. for j=n:1 // j decrement
5. t ← ∞
6. for l = max(j−(k−1)pnmax,1):min(pnmax, j−k)
7. t ← min (t, max(Γ(i, j−l), Γ1(j−l+1, j)))
8. I(k, j) ← l
9. Γ(j) ← t
10. Φmin = Γ(n)
11. Trace back from I(m,n), and construct partition P of

cells
12. xsj ← solution to equation (16) for each section pj in

partition P, j=1,2,…,m
Figure 2. Optimal STC distribution algorithm in a row

 It takes only O(n⋅pnmax) iterations to calculate table Γ(i, j,1);
and in each iteration equation (16) is solved once, which in
turn requires O(pnmax) multiplications and additions.
Dynamic programming embodied between line 3 to 9 takes
O(nm⋅pnmax) iterations to obtain Φmin, and finally the trace-
back procedure in line 11 takes m steps. Thus, the total timing
complexity is O(nm⋅pnmax+ n⋅pnmax

2), since m<n. Similarly,
table Γ(1, j, k) occupies O(n⋅pnmax) memory space, and table
I(j, k) O(nm). Thus the spatial complexity of this algorithm is
O(n⋅pnmax+ nm).

5. EXPERIMENTAL RESULTS
We used ISCAS benchmark circuits and SIS to generate
optimized gate level netlists; all benchmarks were first
optimized by using the SIS “script.rugged” and doing timing-
driven technology mapping based on an industrial-strength
90nm ASIC design library. All benchmarks were run on SUN
Ultra Spark II machine. We set the high Vth values for PMOS

and NMOS as –303mV and 260mV, and the low Vth values
for PMOS and NMOS as –250mV and 200mV, respectively.
 In our experiments, we first generated detailed row-based
cell placements for the generated benchmark circuits by using
the timing-driven placer of [18]. We then calculated the
number of sleep transistor cells to be placed at each row
based on the Average Current Method (ACM) of [10], where
the size of every sleep transistor cell is determined so that its
“on” resistance, Rs, comes out to be about 300Ω. Next we
applied the proposed Optimal ST distribution technique
(from here we call it OSTD) for each placement row, which
is followed by a layout adjustment to remove overlaps
between logic cells and sleep transistor cells.
 We compare OSTD with the other sleep transistor cell
placement methods used in [9], where all sleep transistor cells
are located at the corners of each row so that they do not
disturb the existing placement (from here we call this method
CSTD for Corner-based ST distribution), in terms of the total
wire length and critical path delay. In addition, we implement
another sleep transistor cell placement method, which
distributes the sleep transistor cells uniformly on the row,
thereby, spacing equally between sleep transistors on the
same row (from here we call this method USTD for Uniform
ST distribution.) We also compare OSTD with USTD in
terms of the critical path delay. To obtain these results, we
perform global routing after the placement of sleep transistor
cells so that the wiring loads of all nets may be accurately
calculated. Next, we extract cell locations and interconnect
parasitics and input the whole extracted netlist to HSPICE so
that we measure the critical path delay for the benchmark
circuits. To minimize the simulation time, we run STA before
HSPICE simulation to identify the set of PI-PO critical paths
and then apply input vectors that cause the propagation of an
event along these paths. We therefore run HSPICE simulation
only for the input vectors producing the transitions along the
STA-identified timing-critical paths.
 Figure 3 presents transient simulations of the virtual
ground line of the first row in the layout of circuit C7552,
operating at a supply voltage of 1V. Compared to CSTD,
OSTD reduces the virtual ground bounce by about 50%, from
250mV to 180mV. This reduction of virtual ground bounce
tends to improve the performance of the circuit.

(a) CSTD

(b) OSTD

Figure 3. Simulation results for virtual ground bounce
 Table 1 shows comparison results between OSTD and
CSTD in terms of critical path delay and wire length. For each
circuit benchmark, we generated 10 different placement
solutions (corresponding to different random seeds for the
timing-driven placer.) Therefore, we also generated 10
different sets of wire lengths and critical path delays, and
reported in Table 1 only the mean values of each figure of
merit.) Based on these results, we conclude that OSTD reduces
the critical path delay by an average of 11% at the cost of an
average of 0.7% increase in the total wire length for the
benchmark circuits. The increased total wire length is caused
by pushing or pulling some logic cell during the layout
adjustment step needed to remove the overlaps between the
sleep transistors and logic cells. The last column in Table 1
shows the runtime of OSTD algorithm for the benchmark
circuits.
 Table 2 shows comparison results between OSTD and
USTD in terms of the critical path delay. OSTD reduces the
critical path delay by an average 3.8% compared to USTD.
Notice that we limited ourselves to small circuit benchmarks
due to the lack of capacity by Hspice to simulate large circuits.
We expect that the advantage of our proposed method (OSTD)
over CSTD and USTD becomes more pronounced as the
number of logic cells in the circuit increases.

Table 2 Comparisons of Circuit Performance between
USTD and OSTD

Critical Path Delay (ns)
Circuit

USTI OSTI
Reduction

C432 2.01 1.96 2.25%

C499 1.53 1.49 2.50%

C880 1.71 1.68 2.17%

C1355 1.95 1.86 4.53%

C1908 2.25 2.18 3.20%

C3540 4.33 4.11 5.08%

C5315 4.26 4.03 5.40%

C6288 7.47 7.15 4.31%

C7552 4.11 3.90 5.09%

Avg. 3.84%

6. CONCLUSION
An optimal sleep transistor cells placement methodology for
MTCMOS circuits was presented. The presented algorithm
provides optimal locations of sleep transistor cells for the
standard cell-based layout design so that the performance
degradation of MTCMOS circuit due to the interconnect
resistance of the virtual ground network is minimized.

References
[1] F. Fallah and M. Pedram, "Standby and active leakage

current control and minimization in CMOS VLSI
circuits." IEICE Trans. on Electronics, Vol. E88–C,
No. 4, pp. 509-519, Apr. 2005.

[2] S. Mutoh, T. Douseki, Y. Matsuya, T. Aoki, S.
Shigematsu, and J. Yamada, “1-v power supply high-
speed digital circuit technology with multithreshold-
voltage CMOS,” IEEE J. Solid-State Circuits, vol. 30,
pp. 847-854, Aug. 1995.

[3] S. Mutoh, S. Shigematsu, Y. Matsuya, H. Fukuda, and J.
Yamada, “A 1-v multithreshold-voltage CMOS digital
signal processor for mobile phone application,” IEEE J.
Solid-State Circuits, vol. 31, pp. 1795-1802, Nov. 1996.

[4] J. Kao, A. Chandrakasan, and D. Antoniadis,
“Transistor sizing issues and tool for multi-threshold
CMOS technology,” in Proc. IEEE/ACM Design
Automation Conf., 1997, pp. 409-414.

[5] V. Khandelwal and A. Srivastava, “Leakage control
through fine-grained placement and sizing of sleep
transistors,” in Proc. ACM/IEEE Int. Conf. on Computer
Aided Design, 2004, pp. 533-536.

[6] B. H. Calhoun, F A. Honore, and A. Chandrakasan,
“Design methodology for fine-grained leakage control in
MTCMOS,” in Int. Symp. Low Power Electronics and
Design, 2003, pp.104-109.

[7] H. Won, K. Kim, K. Jeong, K. Park, K. Choi, and J.
Kong, “An MTCMOS design methodology and its
application to mobile computing,” in Int. Symp. Low
Power Electronics and Design, 2003, pp.110-115.

[8] J. Kao, S. Narenda, and A. Chandrakasan, “MTCMOS
hierarchical sizing based on mutual exclusive discharge
patterns,” in Proc. ACM/IEEE Design Automation Conf,
1988, pp. 495-500.

[9] M. Anis, S. Areibi, and M. Elmasry, “Design and
optimization of Multi-threshold CMOS circuit,” IEEE
Trans. Computer-Aided Design of Integrated Circuits
Systems, vol. 22, pp. 1324-1342, Oct. 2003.

[10] S. Mutoh, S. Shigematsu, Y. Gotoh, and S. Konaka,
“Design method of MTCMOS power switch for low-
voltage high-speed LSIs,” in Proc. Asian and South
Pacific Design Automation Conf, 1999, pp. 113-116.

[11] K. Usami, N. Kawabe, M. Koizumi, K. Seta, and T.
Furusawa, “Automated selective multi-threshold design
for ultra-low standby applications,” in Int. Symp. Low
Power Electronics and Design, 2002, pp.202-206.

[12] T. Kitahara, N. Kawabe, F. Minami, K. Seta, and T.
Furusawa, “Area-efficient selective multi-threshold
CMOS design methodology for standby leakage power
reduction,” in Proc. Design Automation and Test in
Europe, 2005, pp.646-647.

[13] C. Long and L. He, “Distributed sleep transistor
network for power reduction,” IEEE Trans. Computer-
Aided Design of Integrated Circuits Systems, vol. 12, pp.
937-946, Sep. 2004.

[14] N. Ohkubo and K, Usami, “Delay modeling and static
timing analysis for MTCMOS circuits,” in Proc. Asian
and South Pacific Design Automation Conf, 2006, pp.
570-575.

[15] C. Hwang, C. Kang, and M. Pedram, “Gate sizing and
replication to minimize the effects of virtual ground
parasitic resistances in MTCMOS designs,” in Int. Symp.
Quality Electronic Design, 2006, pp.172-177.

[16] P. Babighian, L. Benini, A. Macii, and E. Macii, “Post-
layout leakage power minimization based on distributed
sleep transistor insertion,” in Int. Symp. Low Power
Electronics and Design, 2004, pp.138-143.

[17] T. Sakurai and A. Newton, “Alpha-power law MOSFET
model and its applications to CMOS inverter delay and
other formulas,” IEEE J. Solid-State Circuits, vol. 25,
pp. 584-594, Apr. 1990.

[18] C. Hwang and M. Pedram, “Timing-driven placement
based on monotone cell ordering constraints,” in Proc.
Asian and South Pacific Design Automation Conf, 2006,
pp. 201-206.

Table 1 Comparisons of Circuit Performance between CSTD and OSTD

Wire length Critical Path Delay (ns)
Circuit

CSTI OSTI
Increase

CSTI OSTI
Reduction CPU (sec)

C432 25517.1 25635.1 0.46% 2.11 1.96 6.89% 0.01

C499 40393.1 40740.5 0.86% 1.60 1.49 6.76% 0.01

C880 39895.9 40389.2 1.24% 1.84 1.68 9.10% 0.01

C1355 41055.5 41588.2 1.30% 1.98 1.86 6.23% 0.01

C1908 38859.9 39324.6 1.20% 2.35 2.18 7.16% 0.01

C3540 96423.0 96593.5 0.18% 4.92 4.11 16.39% 0.01

C5315 203559.5 204011.8 0.22% 4.87 4.03 17.13% 0.02

C6288 83024.1 83465.3 0.53% 8.03 7.15 10.96% 0.02

C7552 210163.7 210553.9 0.19% 4.90 3.90 20.31% 0.02

Avg. 0.69% 11.22%

