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Abstract - The Multi-Threshold CMOS (MTCMOS) 
technology has become a popular technique for standby 
power reduction. This technology utilizes high-Vth sleep 
transistors to reduce subthreshold leakage currents during 
the standby mode of CMOS VLSI Circuits.  The performance 
of MTCMOS circuits strongly depends on the size of the sleep 
transistors and the parasitics on the virtual ground network. 
Given a placed net list of a row-based MTCMOS design and 
the number of sleep transistor cells on each standard cell row, 
this paper introduces an optimal algorithm for linearly 
placing the allocated sleep transistors on each standard cell 
row so as to minimize the performance degradation of the 
MTCMOS circuit, which is in part due to unwanted voltage 
drops on its virtual ground network. Experimental results 
show that, compared to existing methods of placing the sleep 
transistors on cell rows, the proposed technique results in up 
to 11% reduction in the critical path delay of the circuit. 

1. INTRODUCTION 
Leakage power in modern CMOS VLSI circuits has become a 
component comparable to dynamic power dissipation. 
Typically, the subthreshold leakage current dominates the 
device off-state leakage due to low Vth transistors employed 
in logic cell blocks in order to maintain the circuit switching 
speed in spite of decreasing VDD levels  [1]. The Multi-
Threshold CMOS (MTCMOS) technique can significantly 
reduce the subthreshold leakage currents during the circuit 
sleep (standby) mode by adding high-Vth power switches 
(sleep transistors) to low-Vth logic cell blocks  [2] [3]. This is 
because the stacked high-Vth sleep transistor connected to the 
bottom of the pull-down network of all logic cells in the 
circuit acts as a high-resistance element during the sleep 
mode, which limits the leakage current from Vdd to ground 
lines. At the same time, because of the stack effect, the 
subthreshold leakage of the low-Vth transistors in the logic 
block itself goes down. This leakage reduction is preferably 
achieved with small performance degradation because, during 
the active mode of the circuit, the sleep transistor is fully on 
(i.e., it operates in the linear mode), and thus, all low-Vth 
logic cells in the MTCMOS logic block can switch very fast. 
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    Unfortunately, the situation is different in real designs. 
More precisely, during the active mode of the circuit 
operation, the high-Vth sleep transistor acts as a small linear 
resistance placed at the bottom of the transistor stack to 
ground, causing the propagation delay of the cells in the logic 
block to increase. In addition, the virtual ground network 
itself acts as a distributed RC network, which causes the 
voltage of the virtual ground node to rise even further, 
thereby degrading the switching speed of the logic cells even 
more (cf. Fig.1.) The former effect is a function of the size of 
the sleep transistor whereas the latter effect is a function of 
the physical distance of the logic cell from the sleep 
transistor. 
 

 

Figure 1.   (a) MTCMOS circuit structure, (b) The 
circuit model with virtual ground interconnect and sleep 
transistor modeled as resistors, Ri and Rs, respectively 

    Figure 1(a) depicts a logic block, LB, in which a group of 
low-Vth logic cells are first connected to the virtual ground 
node and then through a high-Vth sleep transistor, S, to the 
actual ground, GND  [2]. Figure 1(b) models the virtual 
ground interconnection and the high-Vth sleep transistor, 
which behaves like a linear resistor in the active mode of the 
circuit operation  [4], as resistors Ri and Rs, respectively.  The 
virtual ground is at voltage Vx above the actual ground, i.e., 

( )
X

s iV I R R= ⋅ +  where I is the current flowing through the 

virtual ground sub-network and the sleep transistor. The 
voltage drop across Rs + Ri reduces the gate over-drive 
voltage of MTCMOS logic cells (i.e., their Vgs value) from 

ddV  to 
dd xV V− .  

    In this paper, we present an optimal algorithm for placing 
sleep transistors for the standard cell-based layout design, 
which minimizes the performance degradation of MTCMOS 
circuits due to the interconnect resistance of the virtual 
ground network. We discuss previous works in section 2, 
introduce the problem formulation and the proposed method 



in section 3 and 4, respectively. Then, we present experiment 
results in section 5 and conclude in section 6. 

2. PRIOR WORK 
Optimal sizing of the sleep transistors (STs) has been actively 
researched since the MTCMOS technology was introduced. 
One of the most conservative approaches is the dedication of 
one ST to each logic cell and the optimization of individual 
STs, which is known as “fine-grained” leakage control  [5] [6]. 
This approach makes it easier to do RT-level sign off by 
using standard static timing analysis techniques whereas it 
tends to incur large area overhead  [7]. Other approaches 
 [8] [9] group logic gates based on their current discharge 
patterns in a given switching cycle so that sleep transistors of 
gates with mutually exclusive current discharge patterns are 
merged together, thereby, reducing the area overhead. In  [8], 
the authors first size the sleep transistor of each logic cell so 
as to impose an upper bound on the performance degradation 
of the cell during the active mode of the circuit operation. 
Next, they calculate the discharge current patterns of all logic 
cells in the circuit based on a unit delay model, and finally, 
merge the sleep transistors of cells with non-overlapping 
discharge current waveforms. In  [9], the authors use a more 
precise delay model to do the same steps, presenting several 
heuristic techniques for efficient gate clustering. In  [10], the 
authors use average current consumption values of logic gates 
to determine the sleep transistor width needed to satisfy a 
required circuit speed based on the assumption that the circuit 
speed depends only weakly on the circuit operating pattern 
for sufficiently large sleep transistor sizes. In other 
approaches  [11] [12], the authors selectively apply the 
MTCMOS technology for gates belonging to timing-critical 
paths of a circuit, where low-Vth gates are only used in the 
timing-critical paths. Recently, a number of approaches have 
begun to consider the interconnect resistance of the virtual 
ground line as one of the crucial factors that affect the 
performance of MTCMOS circuits. In  [13], the authors model 
both sleep transistors and virtual ground interconnects as 
resistors, and thereby, consider a resistive-only network when 
computing sizes of the distributed sleep transistors. In 
 [14] [15], the authors show that the delay and output slew of a 
gate with the MTCMOS technology increase linearly with 
virtual ground length, and then take this parameter into 
account when modeling the delay of MTCMOS gates.  
    This paper addresses the automatic placement of sleep 
transistors considering the interconnect resistance of the 
virtual ground in standard cell-based layout design. In  [7] [16], 
the authors provide design methodologies that treat a ST as a 
standalone library cell and then calculate and allocate a 
number of sleep transistor cells (STCs) on each cell row. The 
STCs are then placed at one or the other corner of each row 
on a row-by-row basis. In these methods, all cells in a row 
share all of the STCs and the virtual ground line in the same 
row. The main advantages of these approaches are that (a) 
they are fully compatible with the existing standard-cell 
physical design flow and (2) they result in a shorter re-
activation time when exiting the sleep state  [16]. However, 
these approaches do not consider the voltage drop due to the 

virtual ground interconnect in deciding the location of STCs. 
In practice, they tend to over-estimate the size of sleep 
transistors needed on each cell row so as to compensate for 
the voltage drop due to virtual ground interconnect resistance. 
With continued process scaling, the wire segments in the 
ground network become more resistive, causing more area 
overhead. In addition, the performance degradation of a logic 
cell that is far away from the STCs may greatly affect the 
overall circuit performance if the logic cell happens to lie on 
a timing-critical path of the circuit. Therefore, in this paper, 
we shall address the question of how to place STCs for the 
standard cell-based layout design so that the performance 
degradation of MTCMOS circuits due to the interconnect 
resistance of the virtual ground line is minimized. 

3. PROBLEM FORMULATION 
The problem of sleep transistor distribution can be described 
as follows. Given a placement of MTCMOS design in the 
row-based layout and the distribution of sleep transistor cells 
on each row, the objective is to determine an optimal 
placement of sleep transistor cells such that the performance 
degradation of the MTCMOS circuit due to the voltage drop 
of the virtual ground line is minimized. 
    Let’s focus on the sleep transistor distribution in row y. Let 
C={ci, i=1,2,…,n} denote the set of logic cells in row y, and 
S={sj, j=1,2,…,m} denote the set of STCs to be placed on the 
row. n and m denote the cell and STC counts, respectively. 
We define the performance loss of a logic cell ci∈C in the 
active mode as follows: 

   ( ) ( ) ( )i i iPL c T c SL c= Δ −                         (1) 

where ∆T(ci) denotes the additional propagation delay of cell 
ci that results from the resistance of the virtual ground. SL(ci) 
is the slack available for cell ci before inserting the STCs. The 
slack times are calculated by doing static timing analysis 
(STA) on the circuit. 
    Using the well-known alpha-power delay model  [17], the 
cell propagation delay in the presence of a sleep transistor 
and virtual ground interconnects is given by 

,( )
( ( ) )

load i dd
i

dd STC STC i tL

C V
T c

V I R R V α

⋅
∝

− ⋅ + −
           (2) 

where Cload,i and VtL denote the capacitive loading seen by 
cell I and the threshold voltage of the low Vth transistors in 
the cell, respectively. RSTC denotes the STC resistance, Ri 
denotes the interconnect resistance, and ISTC⋅(RSTC+Ri) is the 
source voltage at the bottom of the NMOS-section of the 
logic cell. Thus, we may calculate ∆T(ci) as 

0( ) ( ) ( ) |
ii i i RT c T c T c =Δ = −                      (3) 

Ri is dependent on the distances between ci and STCs on this 
cell row, sj∈S. Accordingly, ∆T(ci) is a function f of these 
distances: 

1 2
( ) (| |,| |,...,| |)

i i m ii s c s c s cT c f x x x x x xΔ = − − −     (4) 

where xci and xsj denote the horizontal coordinates of logic 
cell ci and STC sj, respectively. Furthermore, to a first order, 
∆T(ci) is dominated by the position of the sleep transistor that 



is closest to ci. Let di denote the minimal distance between ci 
and any of the sleep transistors, i.e.,  

1 2
min(| |,| |,...,| |)

i i m ii s c s c s cd x x x x x x= − − −      (5) 

We may approximate equation (4) by  
( ) ( )i iT c g dΔ                                  (6) 

Now, in equation (2), Ri may be replaced with r⋅di, where r is 
the wire resistance per unit length of the virtual ground 
network. By using Taylor Series Expansion of the right-hand 
side of equation (2), we can obtain function g in equation (6): 

0
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That is, 
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                         ( )
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 is a proportionality coefficient
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+
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               (8) 

Thus the performance loss can be written as 
( ) ( )i i i iPL c w d SL c= ⋅ −                           (9) 

    We next define a cost figure, Φ, for the STC placement:  

1
max ( )i

i n
PL c

≤ ≤
Φ =                             (10) 

It is important to balance the current flowing through each 
sleep transistor in the active mode. Otherwise, a sleep 
transistor that carries too much current will significantly 
increase the virtual ground voltage in its physical 
neighborhood, hence, it will decrease the performance of the 
cells in the region. Thus, the optimization problem for STC 
distribution may be formulated as 

ΦMinimize                              (11) 

subject to  

max
, 1,2,...,

js sI I j m≤ =                    (12) 

where Isj denotes the total current passing through STC sj and 
Ismax is an upper bound on the current flowing through the 
STC. (The rationale is that when it was decided that cell row 
R should have m sleep transistors on it, that decision was in 
part based on the assumption that no sleep transistor will 
have to carry more than Ismax.) The minimum Φ value will be 
denoted by Φmin. 

4. PROPOSED APPROACH 
In this section, we present an optimal solution to the STC 
distribution problem where m<n. For m≥n, it is easy to see 
that Φmin can be achieved trivially by enforcing xsi=xci, 
i=1,2,…,n. Let P={pj, j=1,2,…,m} denote a partition of the 
set of cells C in row R. Let xpj denote coordinate of the 
rightmost cell in pj. 
Definition 1: A valid partition is a partition that satisfies the 
following two constraints: 1) xp1<xp2<…<xpm; 2) any cell ci 
belonging to section pj satisfies the condition that xpj-1<xci≤xpj. 
All valid partitions compose the valid partition space, Ω. 

Definition 2: A true solution to the STC placement is a valid 
partition that additionally satisfies the following: 1) there is 
exactly one sleep transistor sj in each section pj; 2) within 
each section 

max { (| |) ( )}
j i

i j
pj s c i

c p
g x x SL c

∈
Φ − −         (13) 

is minimum. All true solutions compose true solution space, 
Σ. 
Lemma 1: Consider a true solution σ on the valid partition 
P={pj, j=1,2,…,m}. Define 

1
max pj

j m≤ ≤
Ψ = Φ , where Φpj is 

defined in equation (13). We have: Φ≤Ψ. 

Proof: Assume (| |) ( )
j is c ig x x SL cΦ = − −  , where ci is a  

cell and sj is the sleep transistor associated with section pj. 
There are two cases to consider. First, if ci∈pj, then 

,p jΦ ≤ Φ ≤ Ψ , and the proof is complete. Second, if ci∉pj, 

assume ci∈pk (with sleep transistor sk), then from equation 
(5): 

 (| |) ( )
k is c i pkg x x SL cΦ ≤ − − ≤ Φ ≤ Ψ .  

Lemma 2: Let Σm denote the true solution space for m sleep 
transistors and Ψ*m denote the minimal Ψ value on space Σm. 
The following monotone property holds: ∀m1<m2, there 
exists Ψ*m2≤Ψ*m1. 
Proof:  Given m<n, assume σm∈Σm is a true solution on a 
valid partition P. There must exist a section pj that contains 
more than one cell. The corresponding sleep transistor is 
denoted by sj. Divide pj into two new sections p’j

 and p’j+1, 
where p’j+1

 contains only cell ci, the rightmost one in pj, i.e., 
xci=xpj. Obviously, the new partition P’ after this division is 
also a valid partition. Now add a new sleep transistor for 
partition P’ and assign it to location xci. Thus Φp’j+1=−SL(ci), 
which is less than Φpj based on definition (13). A new true 
solution σm+1∈Σm+1 on the valid partition P’ can be obtained 
by shifting sj so that Φp’j is minimized while keeping other 
sleep transistors unaffected. From Definition 2, there exists 
Φp’j≤Φpj, which leads to Ψσm+1≤Ψσm. Since σm is arbitrarily 
selected, the proof is complete.  
Theorem 1: The solution with a minimal Ψ value in space Σ 
is an optimal solution to the STC distribution problem 
defined by equations (11) and (12).  
Proof:  Let σ* denote the solution in space Σm that has the 
minimal Ψ value. Assume σopt is an optimal solution to the 
problem defined by equations (11) and (12). Based on σopt, 
we can construct a valid partition P of set C as follows. First, 
we sort sleep transistors in an increasing order of their 
coordinates. Next, each cell is assigned to the section 
corresponding to its closest sleep transistor. Let m’ denote the 
number of sections in P, where m’≤m. Notice that m’ may be 
less than m because it is possible that a sleep transistor is not 
the closest one to any cell. Similar to the proof of Lemma 1, 
we can easily show that 

opt optσ σΦ ≤ Ψ . Conversely, from 

the construction procedure for partition P, we know 



∀ci∈pj, ( ) (| |) ( )
j ii s c iPL c g x x SL c= − − , thus 

max ( )
opt

i j
pj i

c p
PL c σ

∈
Φ = ≤ Φ , which is followed by 

,
1
max

opt optp j
j m

σ σ′≤ ≤
Ψ = Φ ≤ Φ . So we have

opt optσ σΦ = Ψ . 

Since P is a valid partition for m’ sleep transistors, according 
to Lemmas 1 and 2 and because m’≤m, it follows that 

* *
* *

' opt optm m σ σσ σΦ ≤ Ψ = Ψ ≤ Ψ ≤ Ψ = Φ . So σ* must 

also be an optimal solution to the STC distribution 
optimization problem and *min σΦ = Ψ .  

    Based on Theorem 1, a simple approach for solving the 
STC distribution problem is to examine all possible valid 
partitions and select the true solution with the minimal Ψ 
value. However, for n cells and m sleep transistors in a row, 

the number of valid partitions is 1
1

n
mC −

− . In the case that 

m=n/2, 1
1

2

2

n
n
mC

π
−
− ≈ . So if n and m are large, the brute-

force approach will be impractical.  
    We present an efficient dynamic programming approach to 
search for the optimal solution. Before describing the 
approach, we first re-formulate the current balance constraint 
on STCs to facilitate its incorporation into the proposed 
approach. By assuming a uniform current distribution in the 
row, the maximal current constraint can be described as a 
limit on the number of cells that any section in a valid 
partition can include. Let pnj denote the number of cells in 
section j and pnmax denote the preset upper bound of pnj.  
Constraint (12) can be restated as 

max

max

, 1,2,...,

/

jpn pn j m

pn n m

≤ =

≥
                (14) 

    Assume the cell set C in row R is already sorted from left 
to right. Define function Γ(i, j, k) to represent the minimal Φ 
value for k sleep transistors on a subset of cells in C from ci to 
cj, where 1≤i≤j≤n, 1≤k≤m. Thus Φmin=Γ(1, n, m). From 
Theorem 1, we have 

max

max

max( ( 1) ,1)
min( , )

(1, , ) min max( (1, , 1), ( 1, ,1))
j k pn l

l pn j

j k j l k j l j
− − ⋅ ≤

≤

Γ = Γ − − Γ − +

      (15) 

and     ( , ,1) min max (| |) ( )
l

s
l s c l

x i l j
i j g x x SL c

≤ ≤
Γ = − −    

(16) 

    In equation (15), l denotes the number of cells in the 
rightmost section between c1 and cj. According to constraint 
(14), l should be no greater than pnmax; on the other hand, l 
has to be large enough so that the remaining cells can be put 
into the remaining k−1 sections. 

        The pseudo-code for the optimal STC distribution 
algorithm is presented in Figure 2. First, Equation (16) is 
solved for all  Γ(i, j,1) values, 1≤i≤j≤n, which are stored in a 
table with a dimension of n×n. The proposed dynamic 
programming approach utilizes a table Γ(j), 1≤j≤n, where 

each entry holds the computed value of Γ(1, j, k) during the 
kth iteration; and table I(j, k), where each entry stores the l 
value in equation (15)  which leads to the minimal Γ(1, j, k). 
Lines 3 to 9 embody the dynamic programming iterations of 
updating values in tables Γ(j) and I(j, k). The decrement of j 
from n to i ensures that the updated entries of table Γ(j) will 
not be used in the same k iterations, and thus, enables an in-
place operation. The procedure in Line 11 traces back 
through pointers held in table I(j, k) and works as follows. 
Read the value in the I(j, k) entry. Assume I(j, k)=l, then 
assign cells from ci−l+1 to cj to section pk. Next, go to entry 
I(j−l, k−1) and section pk−1. This process continues until k=1. 
Finally, after partition P is constructed, the coordinates of 
sleep transistors are obtained by solving Equation (16) over 
each corresponding section in P.  
 

STC Distribution Algorithm 

INPUT: xci, i=1,2,…,n, coordinates of n  cells in a row R; 
m, number of sleep transistor cells to be placed in R 

OUTPUT: Φmin and xsj, j=1,2,…,m, coordinates of m sleep 
transistor cells 

1. Γ(i,j,1) ← solution to equation (16), ∀i,j, 1≤i≤j≤n 
2. Γ(j) ← Γ(1, j,1), ∀j, 1≤j≤n 
3. for k = 2:m 
4.    for j=n:1   // j decrement 
5.       t ← ∞ 
6.       for l = max(j−(k−1)pnmax,1):min(pnmax, j−k) 
7.          t ← min (t, max(Γ(i, j−l), Γ1(j−l+1, j))) 
8.          I(k, j) ← l 
9.       Γ(j) ← t 
10. Φmin = Γ(n) 
11. Trace back from I(m,n), and construct partition P of  

cells 
12. xsj ← solution to equation (16) for each section pj in 

partition P, j=1,2,…,m 
Figure 2. Optimal STC distribution algorithm in a row 

    It takes only O(n⋅pnmax) iterations to calculate table Γ(i, j,1); 
and in each iteration equation (16) is solved once, which in 
turn requires O(pnmax) multiplications and additions. 
Dynamic programming embodied between line 3 to 9 takes 
O(nm⋅pnmax) iterations to obtain Φmin, and finally the trace-
back procedure in line 11 takes m steps. Thus, the total timing 
complexity is O(nm⋅pnmax+ n⋅pnmax

2), since m<n. Similarly, 
table Γ(1, j, k) occupies O(n⋅pnmax) memory space, and table 
I(j, k) O(nm). Thus the spatial complexity of this algorithm is 
O(n⋅pnmax+ nm). 

5. EXPERIMENTAL RESULTS 
We used ISCAS benchmark circuits and SIS to generate 
optimized gate level netlists; all benchmarks were first 
optimized by using the SIS “script.rugged” and doing timing-
driven technology mapping based on an industrial-strength 
90nm ASIC design library. All benchmarks were run on SUN 
Ultra Spark II machine. We set the high Vth values for PMOS 



and NMOS as –303mV and 260mV, and the low Vth values 
for PMOS and NMOS as –250mV and 200mV, respectively. 
    In our experiments, we first generated detailed row-based 
cell placements for the generated benchmark circuits by using 
the timing-driven placer of  [18]. We then calculated the 
number of sleep transistor cells to be placed at each row 
based on the Average Current Method (ACM) of  [10], where 
the size of every sleep transistor cell is determined so that its 
“on” resistance, Rs, comes out to be about 300Ω. Next we 
applied the proposed Optimal ST distribution technique 
(from here we call it OSTD) for each placement row, which 
is followed by a layout adjustment to remove overlaps 
between logic cells and sleep transistor cells. 
    We compare OSTD with the other sleep transistor cell 
placement methods used in  [9], where all sleep transistor cells 
are located at the corners of each row so that they do not 
disturb the existing placement (from here we call this method 
CSTD for Corner-based ST distribution), in terms of the total 
wire length and critical path delay. In addition, we implement 
another sleep transistor cell placement method, which 
distributes the sleep transistor cells uniformly on the row, 
thereby, spacing equally between sleep transistors on the 
same row (from here we call this method USTD for Uniform 
ST distribution.) We also compare OSTD with USTD in 
terms of the critical path delay. To obtain these results, we 
perform global routing after the placement of sleep transistor 
cells so that the wiring loads of all nets may be accurately 
calculated. Next, we extract cell locations and interconnect 
parasitics and input the whole extracted netlist to HSPICE so 
that we measure the critical path delay for the benchmark 
circuits. To minimize the simulation time, we run STA before 
HSPICE simulation to identify the set of PI-PO critical paths 
and then apply input vectors that cause the propagation of an 
event along these paths. We therefore run HSPICE simulation 
only for the input vectors producing the transitions along the 
STA-identified timing-critical paths. 
    Figure 3 presents transient simulations of the virtual 
ground line of the first row in the layout of circuit C7552, 
operating at a supply voltage of 1V. Compared to CSTD, 
OSTD reduces the virtual ground bounce by about 50%, from 
250mV to 180mV. This reduction of virtual ground bounce 
tends to improve the performance of the circuit. 
 

 
(a) CSTD 

 
(b) OSTD 

Figure 3. Simulation results for virtual ground bounce 
    Table 1 shows comparison results between OSTD and 
CSTD in terms of critical path delay and wire length. For each 
circuit benchmark, we generated 10 different placement 
solutions (corresponding to different random seeds for the 
timing-driven placer.) Therefore, we also generated 10 
different sets of wire lengths and critical path delays, and 
reported in Table 1 only the mean values of each figure of 
merit.) Based on these results, we conclude that OSTD reduces 
the critical path delay by an average of 11% at the cost of an 
average of 0.7% increase in the total wire length for the 
benchmark circuits. The increased total wire length is caused 
by pushing or pulling some logic cell during the layout 
adjustment step needed to remove the overlaps between the 
sleep transistors and logic cells. The last column in Table 1 
shows the runtime of OSTD algorithm for the benchmark 
circuits. 
    Table 2 shows comparison results between OSTD and 
USTD in terms of the critical path delay. OSTD reduces the 
critical path delay by an average 3.8% compared to USTD. 
Notice that we limited ourselves to small circuit benchmarks 
due to the lack of capacity by Hspice to simulate large circuits. 
We expect that the advantage of our proposed method (OSTD) 
over CSTD and USTD becomes more pronounced as the 
number of logic cells in the circuit increases.  

Table 2 Comparisons of Circuit Performance between 
USTD and OSTD 

Critical Path Delay (ns) 
Circuit 

USTI OSTI 
Reduction 

C432 2.01 1.96 2.25% 

C499 1.53 1.49 2.50% 

C880 1.71 1.68 2.17% 

C1355 1.95 1.86 4.53% 

C1908 2.25 2.18 3.20% 

C3540 4.33 4.11 5.08% 

C5315 4.26 4.03 5.40% 

C6288 7.47 7.15 4.31% 

C7552 4.11 3.90 5.09% 

Avg.     3.84% 



6. CONCLUSION 
An optimal sleep transistor cells placement methodology for 
MTCMOS circuits was presented. The presented algorithm 
provides optimal locations of sleep transistor cells for the 
standard cell-based layout design so that the performance 
degradation of MTCMOS circuit due to the interconnect 
resistance of the virtual ground network is minimized.  
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Table 1 Comparisons of Circuit Performance between CSTD and OSTD 

Wire length Critical Path Delay (ns) 
Circuit 

CSTI OSTI 
Increase 

CSTI OSTI 
Reduction CPU (sec) 

C432 25517.1 25635.1 0.46% 2.11 1.96 6.89% 0.01 

C499 40393.1 40740.5 0.86% 1.60 1.49 6.76% 0.01 

C880 39895.9 40389.2 1.24% 1.84 1.68 9.10% 0.01 

C1355 41055.5 41588.2 1.30% 1.98 1.86 6.23% 0.01 

C1908 38859.9 39324.6 1.20% 2.35 2.18 7.16% 0.01 

C3540 96423.0 96593.5 0.18% 4.92 4.11 16.39% 0.01 

C5315 203559.5 204011.8 0.22% 4.87 4.03 17.13% 0.02 

C6288 83024.1 83465.3 0.53% 8.03 7.15 10.96% 0.02 

C7552 210163.7 210553.9 0.19% 4.90 3.90 20.31% 0.02 

Avg.     0.69%     11.22%   


