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Abstract 

Sleep can intrude into the awake human brain when sleep deprived or fatigued, even while 

performing cognitive tasks. However, how the brain activity associated with sleep onset 

can co-exist with the activity associated with cognition in the awake humans remains 

unexplored. Here, we used simultaneous fMRI and EEG to generate fMRI activity maps 

associated with EEG theta (4-7 Hz) activity associated with sleep onset. We implemented 

a method to track these fMRI activity maps in individuals performing a cognitive task after 

well-rested and sleep-deprived nights. We found frequent intrusions of the fMRI maps 

associated with sleep-onset in the task-related fMRI data. These sleep events elicited a 

pattern of transient fMRI activity, which was spatially distinct from the task-related activity 

in the frontal and parietal areas of the brain. They were concomitant with reduced arousal 

as indicated by decreased pupil size and increased response time. Graph theoretical 

modelling showed that the activity associated with sleep onset emerges from the basal 

forebrain and spreads anterior-posteriorly via the brain’s structural connectome. We 

replicated the key findings in an independent dataset, which suggests that the approach can 

be reliably used in understanding the neuro-behavioural consequences of sleep and 

circadian disturbances in humans. 
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Brief sleep onsets can intrude into wakefulness when homeostatic sleep drive is 

elevated due to sleep loss, fatigue, or extended monitoring tasks. These transient sleep 

intrusions can be local and restricted to the momentary silencing of a few neurons (Krueger 

JM and G Tononi 2011; Vyazovskiy VV et al. 2011; Nir Y et al. 2017; Quercia A et al. 

2018) or on a global scale; characterised by the slowing of neural activity in widespread 

cortical and sub-cortical regions (Boyle LN et al. 2008; Ong JL et al. 2015; Jonmohamadi 

Y et al. 2016; Toppi J et al. 2016; Wang C et al. 2016; Poudel GR et al. 2018). While some 

extreme sleep episodes are associated with behavioural signs of falling asleep such as 

attentional lapses (Drummond SP et al. 2005; Chee MWL et al. 2008) and slow closing of 

the eyelids (Poudel GR et al. 2014; Poudel GR et al. 2018), sleep onset can also occur 

without overt behavioural signs. Sleep onsets are particularly frequent in individuals who 

are exposed to sleep and circadian disturbances, and can acutely reduce cognitive function 

(Nir Y et al. 2017). Hence, monitoring sleep onsets while awake has major implications 

for understanding human behaviour in shiftwork, safety-critical operations including motor 

vehicle accidents, as well as circadian and sleep disorders.   

Electroencephalography (EEG), pupil sizes, and response behaviour can be used to 

monitor overt signs of reduced arousal in humans. Any brief (3–15 s) intrusions of theta 

waves (4–7 Hz theta) that replace higher-frequency alpha waves (>8 Hz) on EEG 

recordings are considered to be microsleeps (Boyle LN et al. 2008). In drowsy individuals, 

response lapses are associated with these microsleeps (Poudel GR et al. 2014; Poudel GR 

et al. 2018; DiFrancesco MW et al. 2019). Eye monitoring has also been used to identify 

episodes of slow eye-lid closures lasting several seconds, which indicate transition to sleep 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted June 5, 2020. ; https://doi.org/10.1101/2020.06.04.133603doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.04.133603


 

 

 

 

4 

whilst awake (Ong JL et al. 2015). However, these behavioural and neural indicators of 

sleep intrusions do not completely overlap (Brown RE et al. 2012; Tagliazucchi E and H 

Laufs 2014; Chang C et al. 2016). Not all lapses or slow-eye-closures correspond to 

intrusions of theta-activity on EEG, and individuals may still be responsive and report 

being awake even during the intrusions of early EEG-defined non rapid eye movement 

(NREM) sleep (Ogilvie et al. 2001). As such, arousal is an endogenous mental state with 

high interindividual variability in its behavioural/physiological expression, which can limit 

in the use of current techniques in reliably tracking sleep intrusions whilst awake.   

  

Recent neuroimaging findings suggest that stages of arousal can manifest as 

dynamic changes in neural activity and connectivity as measured with blood-oxygen-level-

dependent (BOLD) fMRI signal (Olbrich S et al. 2009; Tagliazucchi E and H Laufs 2014; 

Chang C et al. 2016; McAvoy MP et al. 2019; Teng J et al. 2019). Striking patterns of 

BOLD signal co-activation/deactivation have been associated with spontaneous slow-eye-

closures or behavioural ‘microsleeps’, which can frequently occur when drowsy (Ong JL 

et al. 2015; Jonmohamadi Y et al. 2016; Toppi J et al. 2016; Wang C et al. 2016; Poudel 

GR et al. 2018). The fMRI amplitude fluctuations in specific brain networks can therefore 

be used to track moment-to-moment variations of arousal states in mammals (Chang C et 

al. 2016). Such large-scale co-activation patterns can also intrude into resting-sate BOLD 

fMRI data, reflecting momentary reductions in arousal during the awake  resting state (Liu 

X et al. 2018). Notably, electrophysiological studies indicate that such large scale cortical 

activity during sleep is not a single synchronous event but a ‘travelling wave’, originating 
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in specific brain regions and propagating across the cortex (Massimini M et al. 2004; Nir 

Y et al. 2011). For example, slow waves during NREM sleep originate in anterior cortical 

regions, spreading in an anteroposterior direction, covering large areas of the cortex 

(Massimini M et al. 2004).  Whether the BOLD fMRI activity associated with sleep onset 

can be monitored in the awake brain and modelled as travelling activity, propagating via 

the brain’s structural connectome, has not yet been explored.     

 Here, using data from two studies, we developed a novel fMRI-based framework 

to infer sleep onsets in awake humans performing a cognitive task. First, we used 

simultaneous fMRI and EEG to identify typical fMRI activity patterns associated with 

transitions from wakefulness to early sleep. We then implemented a novel spatial 

regression technique to infer the intrusions of these sleep co-activation maps in awake but 

sleep-deprived humans performing a cognitive task. We then tested whether these sleep 

onsets could be inferred from fMRI alone, and if they are associated with pupillometric 

measures of reduced arousal. Lastly, we implemented a graph theoretical computational 

model to predict whether BOLD activity during inferred sleep onsets can be modelled as 

travelling activity, spreading via the brain’s structural connectome. The key findings were 

also validated using an independent fMRI dataset. 

Materials and methods 

Study 1: Simultaneous fMRI and EEG study of sleep onsets 

Participants and protocol 
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Twelve healthy participants (6 female; Age: 19–27; right handed) were recruited 

for a 40-min daytime nap session inside a 3T MRI scanner (Siemens Skyra). Of these, ten 

completed the full simultaneous fMRI and EEG session. To facilitate stage 1 sleep within 

the MRI environment, the experiment was performed following a substantial lunch. 

The post-lunch circadian dip is the period of lowered arousal that occurs between 13:00 

and 16:00 due to a small reduction in core body temperature, which promotes a tendency 

to sleep (Javierre C et al. 1996). The experiment lasted up to 2 hours, including preparation 

outside the MRI scanner.  

EEG and MRI data collection 

fMRI data was acquired using an echo planar imaging (EPI) acquisition that 

covered most of the brain (excluding cerebellum) (slice thickness = 3.3 x 3.3 x 3.3mm, 

TR=2.5s, TE=40ms, FA=90°, Total Scan Time = 40 mins ). T1-weighted anatomical 

images (TE = 2.07ms; TR = 2.3s; field of view: 256 × 256 mm; slice thickness: 1mm) were 

also collected. Simultaneous EEG data was acquired using a 64-channel MR compatible 

EEG system (BrainProducts, Germany) as per best practice published elsewhere 

(Mullinger KJ et al. 2013). The EEG data were acquired at 5 kHz (Brain Vision Recorder, 

Brain Products, Germany). Hardware filters of 0.016–250Hz were used during the data 

recording (SI Methods). 

EEG data analysis 

We defined sleep onsets as increased power in low frequency theta activity (4–7 

Hz, i.e., similar to NREM sleep stage 1) on EEG recordings. To this end, average power 
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spectral density (PSD) in the theta (4–7 Hz) and alpha (8–13 Hz) bands were estimated for 

9 occipito-parietal EEG electrodes (O1, O2, OZ, P1, P2, PZ, PO3, PO4, POZ), at each MRI 

repetition time (TR) (Fig. 2A). We selected these electrodes as theta waves are highest in 

fronto-parietal electrodes and alpha waves are highest in the occipito-parietal electrodes, 

during drowsiness (Lal SK and A Craig 2002). The PSD distribution at these electrodes 

was within the theta-alpha band (4–12 Hz) (Fig. 2B-D). EEG data were processed to 

remove MRI (gradient artefact) and ballistocardiogram (BCG) artefacts (SI Methods). The 

denoised EEG data were analyzed using a time-frequency analysis implemented in Matlab 

software. EEG channel data was analyzed using a moving window of 2.5s, yielding a 

spectrogram for each electrode via Welch’s periodogram method.  

fMRI data analysis  

fMRI data were preprocessed using FSL (FMRIB's Software 

Library, www.fmrib.ox.ac.uk/fsl), Advanced Normalisation Tools (ANTs) 

(http://stnava.github.io/ANTs/), and custom Linux Shell and Matlab scripts (Matlab 7.6.0, 

R2018a, Mathworks, MA, USA). Data preprocessing steps (SI Methods) included (1) 

motion correction, (2) slice-time correction, (3) spatial smoothing (6-mm Gaussian kernel), 

and (4) high-pass filtering with a cut-off of 256s. The fMRI data was normalized to the 

2 × 2 × 2mm3 Montreal Neurological Institute (MNI) template using linear and non-linear 

registration available in ANTs (SI Methods).      

 To identify the fMRI activity associated with EEG alpha and theta activity, the EEG 

alpha and theta timeseries were used as regressors in a general linear model analysis of the 

fMRI data (SI Methods). For each individual subject, EEG alpha, EEG theta, large motion 
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outliers, and 6 motion parameter regressors were used in a linear regression model, which 

was fitted to the data in a voxel-wise manner.  The regression model was estimated at the 

first level for each participant, generating parameter estimates maps of activity for each 

subject. A group-level one-sample t-test was performed using non-parametric statistics 

(FSL randomize) with 5000 permutations. The main-effects of alpha and theta on fMRI 

activity was considered significant at p<0.05 (family-wise-error corrected using cluster 

thresholding at z>2.3).  

 

Study 2: fMRI activity during logical decision making while well-rested and partially 

sleep deprived 

Participants and protocol 

Twenty healthy right-handed adults (10 females) aged between 20 and 37 years (M=24.9, 

SD=4.2) participated in the study (SI Methods). All participants had no history of 

psychiatric, neurological, or sleep-related disorders. Participants took part in two sessions 

of experiments (repeated measure design; well-rested and sleep-deprived) which occurred 

one week apart. These sessions were counterbalanced across participants (10 participants 

were well-rested in the first session and 10 were sleep-deprived in the first session). All 

participants were directed to maintain normal sleep behaviours during the week prior to the 

experimental sessions, except for the night immediately preceding their sleep-deprived 

testing session. In this case, time-in bed was restricted to 4 hours (3:00am–7:00am). Ethics 

approval for the study was obtained from the New Zealand Upper South Regional Ethics 

Committee.  
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MRI Data Collection 

Participants in this study were imaged using a Signa HD x 3.0 T MRI Scanner (GE 

Medical Systems) with an 8-channel head coil. High-resolution anatomical whole-brain 

images were obtained using T1-weighted anatomical scans (TR = 6.5ms; TE = 2.8ms; 

inversion time: 400ms; field of view: 250 x 250mm; matrix: 256 x 256; slice thickness: 

1mm). Functional images were obtained using EPI (TR = 2.5 s; number of repetitions = 

293 TE = 35ms; field of view: 220 x 220mm; number of slices: 37; slice thickness: 4.5 

mm; matrix: 64 x 64).  

Game of set task  

The participants performed a two-choice logical decision-making task, based on a ‘game-

of-set’, inside the MRI scanner. In this task, the participants were presented with a set of 

cards on a screen and a 2-choice decision to make. The participants had to select whether 

the set cards were part of a set (‘yes’) or not a set (‘no’). The game-of-set rule is such that 

if the two cards were the same for any feature (colour, number, symbol, or shading) and 

one was not, then the three cards were not a set, otherwise they were a set. Participants 

were trained on the rules of game of set by providing detailed instruction (SI Methods). 

The participants had to press left (‘yes’) or right (‘no’) button using an MRI compatible 

button box (Fig.  S5). Experimental stimuli were presented on a screen for 5.0s, followed 

by a fixation cross for 2.5–10 s (Mean = 4.0, jittered). Each participant completed three 

runs of 6-min duration. Each run consisted of 40 experimental stimuli and 40 fixation 

crosses (total trials =120 in 3 runs). Performance was measured through response time. The 

participants were provided training on the task prior to the start of the scanning session.  
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Pupillometric data collection 

Eye-video data were captured whilst participants completed the task. Right-eye movement 

was recorded on a Visible EyeTM system (Avotec Inc., Stuart, FL) mounted on the head-

coil of the MRI scanner. Custom-built video recording software and a video-capture card 

was used to record eye-videos onto a computer at 25 frames/s (350 x 280 px). The eye-

video data was processed using the starburst algorithm in Matlab software to measure the 

participant’s pupil size from the dark-pupil infrared illuminated eye videos (Dongheng Li 

et al. 2005). Relative change in pupil size is a good indicator of changes in arousal (Chang 

C et al. 2016; Liu X et al. 2018); hence we estimated the time-course of pupil size at the 

onset of inferred sleep events by calculating baseline corrected time-locked pupil size.  

Preprocessing of fMRI data from Study 2 

The fMRI data from study was preprocessed and normalized as per the details described 

for Study 1. 

A method for detecting sleep onsets in the awake human brain  

The fMRI activity pattern associated with EEG theta (Fig. 2E, Fig. S1) is archetypical of 

reduced in arousal associated with early sleep-like behaviour in both humans and 

macaques (Chang C et al. 2016; Liu X et al. 2018; Stevner ABA et al. 2019). Hence, we 

postulated that by monitoring intrusions of the fMRI activity map associated with EEG-

theta activity, we may be able to infer sleep onsets in the fMRI data from the study 2 

without the need for simultaneous EEG recordings. Thus, we implemented a method to 

track EEG-theta fMRI activity patterns in the fMRI dataset from the Study 2 (Overview 
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provided in Fig. 1).  First, we mapped average theta-related fMRI activity (Fig. 2, Fig. S1) 

in 82 brain regions by using the cortical and sub-cortical parcellations from the Desikan-

Killiany atlas, resulting in a theta-activity vector (82 x 1). A rolling window regression 

model was then employed to identify any transient fMRI activity in pre-processed fMRI 

signal (motion corrected, normalised, task and noise related activity regressed out). We 

modelled transient fMRI activity as a typical haemodynamic response function with span 

of 32.5s (13 TR). At each time-point, this model was fit to the data using a general linear 

model. By using a ‘rolling regression’, we identified parameter estimates of the fit between 

the transient fMRI model and the denoised fMRI data in each of the 82 regions, resulting 

in 82 x 1 vectors of parameter estimates at each time point.  These parameter estimates 

were then correlated (Pearson’s correlation) with the 82 x 1 vector of fMRI activity 

associated with EEG-theta activity, which provided as estimation of how well the transient 

activity at each time-point represents sleep-like activity. Any time-points where the 

correlation was significantly high (p<0.05,  corrected) and positive (i.e., r > 0) were 

considered to be due to sleep onsets (inferred sleep onsets).   
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Fig 1. Graphical overview of the method implemented for detecting sleep onsets from 

fMRI data. (A i-ii) Simultaneous fMRI and EEG data were analyzed using a GLM to 

generate a spatial template of fMRI activity associated with power spectral density in EEG-

theta. (A iii) Average BOLD fMRI activity (t-statistics) associated with EEG theta was 

estimated for 82 regions as per the Desikan-Killiany atlas. (A iv) This process generated a 

vector of 82 x1 in size corresponding to the EEG-theta related BOLD signal in 82 regions. 

(B i) The preprocessed and normalized fMRI data from Study 2 sleep was processed to 

remove noise and task-related activity. (B ii) BOLD time-courses from 82 regions (as per 

DK atlas) were extracted. (B iii) For each time-course, a rolling-window general linear 

model was run with a typical impulse haemodynamic response function as a predictor, 

which is run for each TR. (B iv) The beta-values of the fit between impulse response and 

fMRI signal for each region generates 82 x 1 vector at each time point, which is correlated 
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against the EEG-theta vector (from A iv). (B v). Any time-points where the correlation was 

significant (p<0.05, corrected) and positive (i.e., r > 0) were considered to be attributed to 

sleep onsets. 

Voxel-wise analysis of fMRI activity associated with task and inferred sleep events 

To tease apart the spatial distribution of brain activity associated with task 

performance and sleep onsets, we further analysed the fMRI data from study 2 using the 

multi-level voxel-wise modelling of fMRI data in FSL.  At the subject level, the fMRI data 

from each participant were analyzed using a first-level general linear model, which 

included predictors for (1) task-related regressors (120 trials across 3 runs) modelled as 

epochs of duration modulated by response time, (2)  sleep onsets modelled as impulse 

activity convolved with a double-gamma haemodynamic response function, (3) response 

errors modelling the time points when subjects failed to respond during the task, (4) six 

motion parameters, and (5) large motion outliers (from fsl_motion_outliers using the dvars 

option). For each subject, the main effects of task and inferred sleep events were estimated 

using first-level contrasts representing average activity.  For second-level group analysis, 

a non-parametric approach was used to estimate group-level significance of the first-level 

parameter estimates.  A group-level t-test was performed using non-parametric statistics 

(FSL Randomize) and 5000 permutations. The main-effect of tasks were considered 

significant at p<0.05 (voxel-level family-wise-error corrected). A paired-test model was 

then used to estimate difference in task-related and sleep onset related fMRI activity 

between rested and sleep-deprived sessions. The difference was considered to be 
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significant at p<0.05 (voxel-wise FWE corrected).  The main-effect of sleep onset was 

considered significant at p<0.05 (cluster corrected, z-threshold >4).  

The impact of sleep onsets on task-related activity and connectivity 

To investigate the potential impact of sleep onsets on task-related functional activity and 

connectivity, we analysed task-related activity and connectivity in six key bilateral brain 

regions associated with the task (using main-effect of task during rested session only). 

These regions were chosen based on their involvement in decision-making (Poudel GR et 

al. 2017). These included the bilateral prefrontal, anterior cingulate, inferior parietal, 

putamen, thalamus, and insula. Average task-related activity in each individual was 

extracted using spherical masks (10 mm radius) centered on the local-maxima of activity 

within each region. The average task-related activity was then correlated (Pearson’s r) with 

the total number of inferred sleep events in both rested and sleep-deprived sessions.  Beta-

series correlation was used to estimate task-specific functional connectivity between the 

six regions (Rissman J et al. 2004). This method implements separate predictors to model 

task-related activity using general linear model (GLM). The resulting parameter estimates 

(beta values) for each brain regions were correlated to derive a task-related functional 

connectivity matrix. The association between functional connectivity and sleep intrusions 

were then estimated by using Pearson’s correlation and considered significant at p<0.05 

(FWE corrected).  

Computational modelling of the spread of sleep-related neural activity 

We modelled the spread of sleep-related activity in the brain as a passive, diffusive flow of 

activity via brain’s structural connectome (Poudel GR et al. 2019; Poudel GR et al. 2020). 
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We used the structural connectivity of a normative brain that has been made publicly 

available (IIT Human Brain Atlas V5.0 https://www.nitrc.org/projects/iit). The structural 

connectome was defined for the 82 cortical-and sub-cortical regions as per the Desikan-

Killiany atlas.  This undirected brain network graph can be represented as G = (v, e), where 

v is the set of brain parcels (nodes) given by v=(v1, v2, . . . , vn)  and e is the set of 

connections between vi and vj (edge) given by e = (vi, vj ). The spread model treats the edge 

(vi, vj) as a conduit that connects nodes vi and vj, and the spread of activity at time t can be 

modelled as: 

f(t) = e-aHf(0)                                                  (eqn 1) 

where f(t) denotes the vector consisting of the amount of diffusion of pathology at node vi 

at time t, beginning from an initial distribution of pathology given by f(0) at time zero. H 

is the graph Laplacian defined as the difference between degree matrix and adjacency 

matrix. Alpha (a) is the spread constant (assumed to be 1 in our analyses).  

The activity at a node at time t  f(t) can be estimated as: 

𝑓(𝑡) = & (	𝑒!"⋋$𝑢%	
$𝑓(0))𝑢%

'

%()
										                (eqn: 2) 

where U=[u1, u2, u3, …un] represent eigenvectors of the Laplacian matrix.   

To assess whether the initiating spread of brain activity in any specific region of 

the brain is most predictive of patterns of sleep-related activity, we simulated the process 

of spread on a normative connectome by repeatedly initiating the spread from all brain 

regions within the Desikan-Killiany atlas. For each region i, the network model is used to 

estimate the spread at all other regions at time t = 1–20, with initial condition f(0) set as a 
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unit vector with 1 at the ith location and 0 elsewhere. This process generated vectors with 

82 elements at each time point. The predicted activity vector at all time points, f(t), were 

correlated against measured group-level activity (t-value) using Pearson’s correlation 

coefficient. For each seed region i, we identified the maximum correlation value, which 

was used as a measure of the likelihood of the region being the putative seed of the spread 

(Fig. S4).  

To test for the specificity of our findings, we evaluated the model against two null 

models. First, we randomly scrambled the group-level activity (t-stats) of the neural 

activity vector and simulated the spread model on a true connectome. Second, we ran the 

spread model on 1000 random connectome with preserved degree distribution of the 

original connectome. These two analyses allowed us to infer whether the true prediction 

was significantly greater than a prediction using random network. 

Validation of the key finding using an independent dataset  

To test the robustness of our findings and validate our approach for detecting transient 

neural activity associated with sleep onsets in fMRI data, we also analyzed another 

independent dataset (N=56) of partially sleep-deprived participants from the Open neuro 

database (ds000201). The data were processed using identical steps outlined in previous 

steps. Further details on the processing of this data is provided in the Supplementary 

Information.  

Results  

Spatial pattern of fMRI activity associated with sleep onset  
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A positive association (p<0.05, cluster corrected at z>2.3) between EEG theta and fMRI 

signal was observed in the bilateral precuneus, superior parietal lobule, precentral gyrus, 

postcentral gyrus, and superior frontal gyrus (Fig. 2E, Table S1, Fig. S1). A negative 

association (p<0.05, cluster corrected at z>2.3) was observed between EEG alpha and 

fMRI activity in wide-spread cortical regions (Fig. 2E, Table S1, Fig. S1) including the 

bilateral precuneus, superior parietal, precentral, postcentral, lateral occipital, middle 

frontal, and middle temporal cortices. A negative association was also observed in deeper 

cortical regions including the parahippocampus and insula.  

 

Fig. 2: Simultaneous fMRI and EEG derived spatial pattern associated with early (stage 1) 

sleep. (A) EEG data from electrodes located at the occipito-parietal areas were used to 

identify fluctuations in alpha (8–13 Hz) and theta (4–7 Hz) power spectral density. (B) A 

plot showing that the average power spectral density at these electrodes was within the 

theta-alpha band (4–13 Hz). Shaded areas denote standard error of mean (SEM). (C-D) 
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Examples of intrusions of alpha and theta activity in resting-EEG. (E) fMRI activity pattern 

associated with theta and alpha power in EEG. A positive correlation between EEG theta 

and fMRI signal is shown in red. A Negative association between fMRI signal and EEG 

alpha waves is shown in blue. Correlations were significant at the cluster-corrected level 

p<0.05 (cluster forming threshold of z=2.3). The fMRI activity are overlaid on a MNI brain 

with neurological orientation.  

Frequent intrusions of sleep during a cognitive task performed while rested and sleep-

deprived 

In the study 2, the total number of the sleep onsets, detected using novel framework, 

ranged from 17 to 63 (Mean: 35, SD: 14) in rested sessions and 20 to 74 (Mean: 42, SD: 

15) in sleep-deprived sessions (paired t-test, t(18)  = 1.6, p = 0.1) (Fig. 3A,  Fig. S2). There 

was a significant difference in average pupil size during the sleep onsets detected at rested 

and sleep-deprived sessions (t(18) = 3.44, p = 0.002), with on-average a 20% reduction in 

pupil size after sleep-deprivation (Fig. 3B).  The decision trials which coincided with the 

sleep onsets had longer average response time (RT) compared to the other trials (t(18) = 

2.21, p = 0.04) when in the sleep deprived session. There was a positive correlation between 

total number of sleep events and mean RT in the sleep-deprived session (r=0.53, p=0.02) 

but not in the rested session (Fig. 3C).  
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Fig. 3: The pupillometric and behavioural characteristics associated with the sleep onsets 

detected from fMRI data. (A) Boxplot of mean and SD of the total number of sleep onsets 

in rested and sleep-deprived conditions. There was no significant difference in total number 

of sleep onsets. (B) The plots of changes in pupil area from baseline during sleep onsets. 

Shaded error bars represent SEM. There was on average a 20% reduction in pupil size 

during inferred sleep events after sleep-deprivation. (C) Pearson’s correlation between total 

number of sleep onsets and average reaction time (mean RT) during the task. There was a 

significant correlation during sleep-deprived session but not while well-rested.  
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Spatially distinct fMRI activity during the task and sleep onsets 

 The spatial patterns of fMRI activity associated with task and sleep onsets in rested 

and sleep-deprived sessions are provided in Fig. 4 A, B (Table S2). Significant task-fMRI 

activity (p<0.05, FWE-corrected) was observed in the bilateral prefrontal (inferior/middle 

frontal), motor (precentral/postcentral), parietal (superior parietal), anterior and posterior 

cingulate, and bilateral insula cortices. Increased sub cortical activity was also observed in 

the bilateral thalamus and striatum. There was no significant voxel-wise difference in task-

related brain activity between rested and sleep-deprived sessions.   

 Whereas, fMRI activity during inferred sleep onsets (p<0.05, cluster-corrected, 

Z³4.0) was observed in the bilateral visual (occipital pole, cuneus, lingual gyri), auditory 

(superior temporal gyri, Heschl’s gyri), primary and secondary somatosensory (postcentral 

gyri, parietal operculum, superior parietal lobule, and insular cortex) areas, the primary 

motor (precentral gyri) and supplementary motor areas, default-mode areas including in 

the bilateral precuneus and angular gyri and limbic areas encompassing the bilateral 

parahippocampal regions (Fig 4 A,B). Decreased activity was observed in sub cortical 

areas including the bilateral thalamus, caudate, and putamen, and cortical areas such as the 

rostral anterior cingulate gyrus (basal forebrain), rostral middle-frontal gyrus, and lateral 

inferior parietal areas. These deactivations were only significant in the sleep-deprived 

session. The time-courses of fMRI activations and deactivations at the onset of sleep-events 

in a number of cortical and sub-cortical regions are shown on Fig. 4C. Time-courses 

demonstrated a clear pattern of synchronous activations in cortical regions. Whereas, 

deactivation appeared to be strongest in the bilateral thalamus. There was also some 
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overlap between the task-related and sleep-related networks, particularly in the 

motor/association cortex. This overlap was observed in the left precentral gyrus, 

supplementary motor area, left superior parietal cortex, and bilateral lateral occipital 

cortices (Fig S3).  

 

Fig. 4: Whole-brain fMRI activity patterns associated with the decision-making task and 

inferred sleep events. (A) The pattern of task-related activation (red, p<0.05 FWE-

corrected) overlaid with sleep-onset related activation (green, p<0.05, cluster-corrected) 

observed during the rested session. (B) The pattern of task-related activation (red, p<0.05 

FWE-corrected), sleep-onset related activation (green, p<0.05, cluster-corrected), and 

sleep-onset related deactivation (blue, p<0.05, cluster-corrected) observed during the 

sleep-deprived session. Any overlap in task-related and sleep-related activation is rendered 
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in yellow. (C) Baseline corrected time-courses (and SEM) of fMRI signal time-locked to 

the sleep events (marked by dotted line) in several brain regions, showing synchronous 

activation/deactivation patterns in the wide-spread cortical and sub-cortical regions 

 

The impact of sleep onsets on task-related activity and connectivity 

There was a significant negative correlation between total sleep events and level of fMRI 

activity in the left thalamus (r=-.53, p=0.02) and bilateral putamen (r=-.58, p=0.009) during 

the sleep-deprived condition (Fig. 5B). Other regions of interest did not show any 

association either in the well-rested or sleep-deprived conditions. Task-related functional 

connectivity between the left ACC and right putamen, the left ACC and right thalamus, the 

left ACC and right dorsolateral prefrontal cortex (DLPFC), and the right DLPFC and right 

putamen were significantly positively correlated (p<0.05) with total sleep events in the 

sleep-deprived session (Fig 5A, C). There was no significant correlation however between 

functional connectivity and total sleep events in the rested session (Fig.  S4).  
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Fig. 5: Visualization of the association between task-related activity and functional 

connectivity and intrusions of sleep onsets. (A) The cortical and sub-cortical regions of 

interest including right and left DLPFC, right and left thalamus, right and left ACC, right 

and left insula, right and left inferior parietal lobule are visualized on a surface brain.  The 

functional connections showing significant association between functional connectivity 

and total sleep-onsets are visualized as red lines. Significant correlations were observed 

between total number of sleep onsets and task-related fMRI activity in the left thalamus, 

right putamen, and left putamen. (B) Example scatterplots showing significant association 

between number of sleep onsets and fMRI activity/functional connectivity in the right 

putamen and left ACC – right putamen functional connection. Remaining scatterplots are 

provided in the supplementary data (Fig S4).   
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Modelling the spread of neural activity during sleep-like intrusions 

The network spread generated predictions of neural activity over time, which was 

correlated with the actual neural activity pattern associated with inferred sleep intrusions 

(i.e. Fig 4). We identified that seeding the neural deactivation from the medial orbitofrontal 

region (basal forebrain) provided the best fit between predicted and measured activity at 

all time points (Fig. 6 A, B). This association was significant for the sleep-onset related 

activity from both rested and sleep-deprived sessions (Fig. 6 C) 

 

Fig. 6: Trans-connectome spread of activity determines the pattern of sleep-related BOLD 

activity in the brain during intrusions of sleep in the awake brain. (A) The basal forebrain 

seed was the best predictor of BOLD activity during sleep-like intrusions. (B) The spatial 

pattern of predicted and measured activity when seeding the spread of deactivation is 

shown overlaid on the Desikan-Killiany atlas. (C) The correlation between predicted and 
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measured activity was highest for the basal forebrain seed in both rested and sleep-deprived 

sessions. (D) Histograms of correlations when the model was evaluated against a randomly 

permutated activity pattern (100 times, top panel) and null networks (1000 times, buttom 

panel). The correlation achieved from a true model (red arrow) is well outside the 95% 

confidence interval of correlations achieved by random models.  

The findings are specific and are significantly higher compared to achieved using 

random networks and random neural activity pattern. The distribution of prediction 

(correlation values) over 1000 scrambled matrices is shown in Fig. 5D (top panel). The 

random model’s correlation values are much lower than the correlation of 0.56 (0.53 in 

rested) achieved by the true model and are outside the 95% confidence interval, or p < 0.05. 

Hence, the reported prediction of neural activity pattern seeded from the basal forebrain 

may not be explained by chance. 

Replication of key findings using an independent dataset 

In the independent validation dataset, the inference method identified frequent intrusions 

of sleep-like events (Mean: 23, SD: 8) in the partially sleep-deprived participants. The 

events were used in a whole-brain GLM analysis of the fMRI data, which identified co-

activation and de-activation patterns similar to the ones observed during sleep-like activity 

in our study (see SI; Fig 7 A, C).  The individuals who reported to be very sleepy during 

the scan (Using median split of KSS scores, median KSS>7.5) showed significantly greater 

activity in the visual cortex  (unpaired t-test, p<0.05, cluster corrected at z>2.3, local 

maxima MNI: -12, -74, -6) compared to alert individuals.   
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Discussion 

The competitive neural systems underpinning wakefulness and sleep can be unstable in 

individuals who are vulnerable to sleep and circadian disturbances. This instability has 

been linked to brief intrusions of local and global sleep-like states during wakefulness 

(Krueger JM and G Tononi 2011; Vyazovskiy VV et al. 2011) (Olbrich S et al. 2009; Nir 

Y et al. 2011; Ong JL et al. 2015; Poudel GR et al. 2018). However, there are still many 

unanswered questions regarding how the states of sleep and wakefulness can co-exist in 

humans and how these states manifest in human behaviour. We have developed a method 

and a model to track the ebb and flow of neural activity associated with sleep onsets in 

awake and cognitively active humans. Our results can be summarized into three main 

findings; (1) The neural activity associated with sleep onsets,  identified using simultaneous 

fMRI and EEG, can frequently intrude into awake humans. (2) These inferred sleep onsets 

are associated with pupillometric markers of reduced arousal and slowed response times, 

particularly following sleep-deprivation. (3) Sleep onsets are associated with a transient 

pattern of activation and de-activation in brain networks distinct from co-existing task-

related brain regions. (4) Graph theoretical modelling showed that a model of spread of 

neural activity from the basal forebrain, via the structural connectome, can predict the 

measured pattern of neural activity during sleep onsets, suggesting that the basal forebrain 

acts an epicentre for the propagation of neural inhibition during the transition into sleep.  

EEG-theta activity at sleep onset is associated with an increase in fMRI activity  

The transition from wakefulness to sleep is considered to be a state characterised 

by the slowing down of neural activity, the disappearance of higher-frequency waves (>8 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted June 5, 2020. ; https://doi.org/10.1101/2020.06.04.133603doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.04.133603


 

 

 

 

27 

Hz) and appearance of slower waves (1–7 Hz) on EEG recordings.  However, recent 

neuroimaging findings suggest that the sleep onset process is dynamic and can have both 

transient increases and decreases in regionally-specific brain activity (Dang-Vu TT et al. 

2010; Krueger JM and G Tononi 2011; Quercia A et al. 2018). Consistent with this view, 

we found that early sleep characterised by increased power in EEG theta waves is 

associated with increased BOLD activity in the posterior parietal areas of the brain.  

Whereas alert wakefulness indicated by increased power in EEG alpha waves is associated 

with decreased activity in the occipital, parietal, frontal, and limbic areas of the brain. When 

relaxed with eyes-closed, waxing and waning of alpha activity can occur due to a drift into 

either the drowsy or alert state (Laufs H et al. 2003). The transition towards a more 

alert/attentive state is associated with increased fronto-parietal activity (Laufs H et al. 

2003). In contrast, transition to drowsiness manifests as increased occipito-parietal activity 

(Laufs H et al. 2003). By modelling EEG theta-related activity in each individual, we were 

able to isolate and replicate regionally specific increased activity during increased EEG 

theta activity; a pattern of activity typically associated with lower arousal and early sleep 

in humans (Laufs H et al. 2003; Kaufmann C et al. 2006; Laufs H et al. 2007; Brodbeck V 

et al. 2012; Tagliazucchi E and H Laufs 2014) and other mammals (Chang C et al. 2016).   

Sleep onsets can intrude in both well-rested and sleep-deprived individuals 

Emerging evidence suggests that behavioural states of sleep and wakefulness are 

not discrete mental states but may overlap and even co-exist. A sleep-like neural activity 

pattern (i.e., momentary neural silencing) can intrude into an awake and active brain in 

response to a prolonged period of activity or increased homeostatic sleep drive (Krueger 
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JM and G Tononi 2011; Quercia A et al. 2018). Intrusions of brief sleep-like episodes have 

been reported in individuals performing monotonous monitoring tasks for an extended time 

(Peiris MTR et al. 2006; Poudel GR et al. 2014), even while well-rested. In this study 

however, we detected frequent intrusions of neural activity pattern associated with early 

sleep, identified using an independent recording of simultaneous EEG and fMRI, in awake 

individuals performing a cognitive task. Notably, such intrusions were not just limited to 

the sleep-deprived condition but were also frequent while well-rested (Peiris MTR et al. 

2006; Poudel GR et al. 2014) meaning more individuals are at risk of these events than 

once thought.  

In the current study, we extended on the research of (Chang C et al. 2016), who 

used a similar approach for tracking the tonic level of arousal in monkeys using fMRI 

signal. However, our approach differs substantially by allowing for  tagging each intrusion 

of sleep-like neural activity as an sleep-onset in both rested and sleep-deprived brain.  

Notably, there was no difference in the frequency of inferred sleep events between rested 

and sleep-deprived conditions. However, there were differences in behavioural features. 

The sleep events in sleep-deprived sessions were associated with reduced pupil size and an 

increased overall response times during the decision-making trials.  These behavioural 

differences may be explained by differences in the magnitude of sleep deprivation, and 

subsequent drive to sleep. Extreme sleep intrusions, which are more frequent following 

sleep loss, manifest as momentary slow closures of eye-lids accompanied by responses 

lapses (Wang C et al. 2016; Poudel GR et al. 2018; Teng J et al. 2019). However, local 

neuronal assemblies may momentarily go to use-dependent sleep, even in rested 
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individuals without any overt sleep pressure (Krueger JM and G Tononi 2011). This is also 

demonstrated in studies showing that time-on-task errors can appear during monotonous 

tasks, without overt behavioural signs of sleep (Thiffault P and J Bergeron 2003).  

Transient intrusions of behavioural lapses have been documented in previous studies of 

performance extended monitoring tasks, even when well-rested (Peiris MTR et al. 2006; 

Huang RS et al. 2008; Poudel GR et al. 2014). Sustained performance on a task is therefore 

sufficient to induce local silencing of neuronal activity, resulting in sleep-like behaviour in 

humans (Quercia A et al. 2018). Taken together, the findings suggest that sleep-like mental 

states can intrude in both rested and sleep-deprived individuals performing cognitive tasks.  

The brain activity associated with sleep onsets and cognitive functioning can co-exist in 

spatially distinct brain regions 

The sleep-onset process is regulated by mutually inhibitory pathways originating in the 

brainstem and hypothalamus, which act against each other, oscillating or switching on and 

off. One important aspect of this sleep-switch model is that sub-cortical sleep switching 

may be communicated with cortical brain networks, conveying neural information to the 

cortex and back via the thalamus and ascending arousal system.  Hence, individuals with 

elevated sleep-drive show both increased and decreased activity in the cortical networks 

depending on whether they are sleepy or alert (Poudel GR et al. 2012; Toppi J et al. 2016).  

Consistent with this network model of wake-sleep regulation, voxelwise analysis of our 

fMRI revealed that distinct brain networks may diverge at the edge of wakefulness and 

sleep. Specifically, while the somatosensory and limbic areas of the brain transiently 

increase in activity, the thalamus and the ventral prefrontal cortices are transiently 
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deactivated. This transient decrease in the thalamic and rostral prefrontal cortex may reflect 

the withdrawal of the ascending arousal system during transition into sleep (Xu M et al. 

2015). Local intra-cortical recordings suggest that the thalamus is associated with 

decreased activity earlier than the cortex during transition to NREM sleep (Magnin M et 

al. 2010). Neuroimaging studies have corroborated these findings and suggest transient 

decreased activity in the thalamus during microsleeps (Poudel GR et al. 2014) and 

spontaneous slowed eye-closures associated with drowsiness (Ong JL et al. 2015; Wang C 

et al. 2016).   

Furthermore, consistent with our findings, the brain also shows increased activity 

in somatosensory and associative brain networks at the onset of sleep and drowsiness 

(Horovitz SG et al. 2008; Olbrich S et al. 2009; Ong JL et al. 2015; Wang C et al. 2016). 

Such co-activation of neural activity during a hypoactive behavioural state has been 

attributed to rich endogenous mental activity that can occur at the sleep onset in humans 

(Ong JL et al. 2015). However, a pattern strikingly similar to ours has also been 

demonstrated in macaques during wake-sleep dip transitions (Chang C et al. 2016), 

suggesting that opposing neural signaling between the thalamus and cortex may be at play 

during sleep onset. Such trans-network divergence in neural activity may also reflect 

mutually inhibitory dynamics akin to the sub-cortical switching associated with the wake-

sleep transition (Saper CB et al. 2005). Notably, despite the frequent sleep onsets intrusions 

in the brain, we found that the task-related brain networks were robustly activated in both 

rested and sleep-deprived sessions. That is, the task activated brain regions expected to be 

involved in attention and working memory (frontal and parietal regions), motor (left 
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primary motor), decision-making (ACC, insula), and alertness/arousal (bilateral thalamus) 

processes. Although there was some overlap between sleep-related activation and task-

related pattern, particularly in the association cortex, the pattern of deactivation was only 

observed in sleep-like intrusions. Furthermore, sleep deprivation did not significantly 

change task-related BOLD activity. However, there was a moderate association between 

the number of sleep onsets and task-related BOLD activity (in bilateral putamen and 

thalamus) and connectivity (putamen-ACC), but only when individuals were sleep 

deprived.  Taken together, these findings suggest that distinct sleep-like brain states can 

co-occur with the brain-states associated with the awake and the alert brain.   

Trans-connectome spread of the brain activity during sleep onset 

Although state transitions from wakefulness to sleep appear to be spontaneous, high 

density EEG studies have shown that underpinning neural oscillations are travelling waves 

which propagate anterior-posteriorly throughout the cortex (Massimini M et al. 2004). In 

the current study, we modelled the propagation of neural activity as a linear diffusion 

process across the brain's structural connectome. This model suggests that the basal 

forebrain regions may act as the epicentre of deactivation, as the spread from the basal 

forebrain best predicts the overall BOLD activity during sleep-like states. The nucleus 

basalis located in the basal forebrain has widespread cholinergic projections to the 

neocortex and is an essential neuromodulator regulating arousal and attention (DiFrancesco 

MW et al. 2019). Hence, any withdrawal of excitatory cholinergic input from the basal 

forebrain can result in hyperpolarisation in the cortical pyramidal neurons leading to 

slow/large amplitude oscillations typical of deep sleep. The basal forebrain region may not 
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only affect electrographic activity of the cortex via direct projections (Lin S-C et al. ; Xu 

M et al. 2015) but also the cerebral blood flow in the basal forebrain-cingulate network 

resulting from the amount of intrinsic sleep-drive (Poudel GR et al. 2012). Our model 

therefore provides evidence for an important role of basal forebrain in seeding the spread 

of activation/deactivation during sleep-like intrusions in the awake brain.  
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