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SUMMARY

The main objective of this thesis is to provide new low power solutions for Very Large

Scale Integration (VLSI) designers. Especially, we focus on leakage power reduction. Al-

though leakage power was negligible at 0.18µ technology and above, in nanoscale technol-

ogy, such as 0.07µ, leakage power is almost equal to dynamic power consumption.

In this thesis, we present a novel circuit structure we call “sleepy stack.” The sleepy

stack structure dramatically reduces leakage. The sleepy stack is a combination of two well-

known low-leakage techniques which are the forced stack technique and the sleep transistor

technique. The sleepy transistor technique can achieve ultra-low leakage power consump-

tion, but loses logic state during sleep mode. Meanwhile, the forced stack technique saves

leakage power consumption by stacking transistors and retains logic state. However, the

forced stack technique cannot use high-Vth without incurring a dramatic delay increase

(>6.2X); however, if only low-Vth transistors are used, the leakage power savings of this

technique are small. By combining two prior techniques, however, the sleepy stack tech-

nique can achieve (i) ultra-low leakage power consumption while (ii) saving state. One

of the main advantages of the sleepy stack technique is a use of high-Vth transistors for

key places. Utilizing high-Vth transistors, the sleepy stack technique can achieve around

200X leakage power reduction with similar delay as the forced stack technique using low-

Vth transistors (when applied to generic logic circuits targeting 0.07µ technology). Since

the sleepy stack technique comes with area and delay overhead compared to a conven-

tional Complementary Metal Oxide Semiconductor (CMOS) technique, the sleepy stack

technique can be applicable to a design that requires ultra-low leakage power consumption

with quick response time and is able to pay the associated area and delay cost.
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One of the advantages of the sleepy stack technique is saving state. Therefore, the

sleepy stack technique can be applicable memory design, i.e., Static Random Access Mem-

ory (SRAM). When we apply the sleepy stack to SRAM cell design, we can observe new

Pareto points which have not been presented prior to the research in this thesis. Although

the sleepy stack incurs some delay and area overheads, the sleepy stack SRAM cell can

achieve ultra-low leakage power consumption while suppressing two main leakage paths

in an SRAM cell. When compared to a high-Vth SRAM cell, which is the best prior state-

saving SRAM cell, the sleepy stack SRAM cell achieves 5.13∼ 2.77X greater leakage re-

duction with 32∼ 19% delay increase (at 110o using 0.07µ technology). Alternatively, by

increasing sleepy stack transistor widths, the sleepy stack SRAM cell can achieve approx-

imately the same delay as high-Vth SRAM yet achieves 2.49∼ 2.26X leakage reduction

over high-Vth SRAM. Unfortunately, there is a cost of 140% area increase.

Along with the sleepy stack structure, we propose a architectural level low power tech-

nique we name Low-Power Pipelined Cache (LPPC). Originally, a pipelined cache was

proposed to reduce cache pipeline stage delay and thus improve processor performance.

However, we use the reduced cache delay to reduce power consumption. Our strategy is

to pipeline caches without changing cycle time; instead, we lower cache supply voltage

to save power consumption. Although we may increase the depth of a pipelined cache

to achieve large power reduction, total energy savings associated with increasing pipeline

depth may limited due to the pipelining penalties and lower limit of supply voltage. We

obtain an optimal depth of the pipelined cache in our experimental configuration target-

ing an embedded processor; the result we find is that a two stage pipelined cache achieves

maximum energy reduction (70% cache power savings).

The sleepy stack structure achieves ultra-low leakage power consumption with some

area and delay overheads. To reduce the delay overhead while achieving low-leakage

power, we combine LPPC and the sleepy stack. When targeting 0.07µ technology, the

sleepy stack pipelined cache achieves 17X leakage power reduction with 4% execution
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cycle increase and 31% active power increase compared to conventional SRAM. Using a

pipelined cache, we can hide most of the delay overhead induced by the sleepy stack, which

is 33%. The result indicates that total energy is saved when the device spends at least three

times as much time in sleep mode as in active mode.

In summary, this thesis presents heretofore unexplored methods for low-power VLSI

design. In particular, the sleepy stack approach provides what may be the best solution for

VLSI designers concerned about the twin problems of low static power and maintenance

of VLSI logic state during sleep mode. For such a two-headed problem, the sleepy stack

approach can provide two orders of magnitude (100X) or more static power reduction over

the best prior approach; however, there is a cost – potentially quite small – in terms of delay

increase and area overhead. In short, sleepy stack principles provide heretofore unknown

Pareto points for consideration in VLSI design.
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CHAPTER I

INTRODUCTION

Power consumption is one of the top concerns of Very Large Scale Integration (VLSI) cir-

cuit design, for which Complementary Metal Oxide Semiconductor (CMOS) is the primary

technology. Today’s focus on low power is not only because of the recent growing demands

of mobile applications. Even before the mobile era, power consumption has been a funda-

mental problem. To solve the power dissipation problem, many researchers have proposed

different ideas from the device level to the architectural level and above. However, there is

no universal way to avoid tradeoffs between power, delay and area, and thus designers are

required to choose appropriate techniques that satisfy application and product needs.

Power consumption of CMOS consists of dynamic and static components. Dynamic

power is consumed when transistors are switching, and static power is consumed regardless

of transistor switching. Dynamic power consumption was previously (at 0.18µ technology

and above) the single largest concern for low-power chip designers since dynamic power

accounted for 90% or more of the total chip power. Therefore, many previously proposed

techniques, such as voltage and frequency scaling, focused on dynamic power reduction.

However, as the feature size shrinks, e.g., to 0.09µ and 0.065µ, static power has become a

great challenge for current and future technologies. Based on the International Technology

Roadmap for Semiconductors (ITRS) [30], Kim et al. report that subthreshold leakage

power dissipation of a chip may exceed dynamic power dissipation at the 65nm feature

size [38].

One of the main reasons causing the leakage power increase is increase of subthreshold

leakage power. When technology feature size scales down, supply voltage and threshold

voltage also scale down. Subthreshold leakage power increases exponentially as threshold
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voltage decreases. Furthermore, the structure of the short channel device lowers the threshold

voltage even lower. In addition to subthreshold leakage, another contributor to leakage

power is gate-oxide leakage power due to the tunneling current through the gate-oxide insu-

lator. Since gate-oxide thickness will be reduced as the technology decreases, in nanoscale

technology, gate-oxide leakage power may be comparable to subthreshold leakage power

if not handled properly. However, we assume other techniques will address gate-oxide

leakage; for example, high-k dielectric gate insulators may provide a solution to reduce

gate-leakage [38]. Therefore, this thesis focuses on reducing subthresholod leakage power

consumption.

In this dissertation, we provide novel circuit structure named “sleepy stack” as a new

remedy for designers in terms of static power. The sleepy stack has a novel structure that

combines the advantages of two major prior approaches, the sleep transistor technique and

the forced stack technique. However, unlike the sleep transistor technique, the sleepy stack

technique retains the original state; furthermore, unlike the forced stack technique, the

sleepy stack technique can utilize high-Vth to achieve more than two orders of magnitude

leakage power reduction compared to the forced stack. Unfortunately, the sleepy stack

technique comes with delay and area overheads. Therefore, the sleepy stack technique

provides new Pareto points to designers who require ultra-low leakage power consumption

and are willing to pay some area and delay cost. In this thesis, we explore the basic structure

of the sleepy stack. Also, we study various sleepy stack circuits including generic logic

circuits and memory. We discuss the advantages and disadvantages of the sleepy stack and

a technique to reduce the delay overhead.

Along with the sleepy stack structure, we introduce in this dissertation an architectural

level power reduction technique. One of the most effective dynamic power reduction tech-

niques is lowering the supply voltage of CMOS transistors because the power consumption

of CMOS transistors increases quadratically proportional to the supply voltage. However,

lowering the supply voltage incurs an increase in transistor switching delays. Therefore,
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designing CMOS circuits typically necessitates tradeoffs between performance (in terms

of delay) and power consumption. Although CMOS circuits are governed by such trade-

offs, it is possible for a system to selectively lower supply voltage without compromising

performance at the architectural level. The strategy is to lower supply voltage for circuits

in non-critical paths while maintaining supply voltage for circuits in critical path(s); thus,

available surplus slack in non-critical paths are removed. In our particular case, we ob-

serve that by pipelining the caches, we can obtain large surplus slack, which allows for

large dynamic power savings. This new low-power cache technique is named Low-Power

Pipelined Cache (LPPC). By apply sleepy stack instead of lowering supply voltage, LPPC

can be used to save leakage power consumption.

1.1 Problem Statement

This research work addresses new low power approaches for Very Large Scale Integration

(VLSI) logic and memory. Power dissipation is one of the major concerns when designing

a VLSI system. Until recently, dynamic power was the only concern. However, as the tech-

nology feature size shrinks, static power, which was negligible before, becomes an issue

as important as dynamic power. Since static power increases dramatically (indeed, even

exponentially) in nanoscale silicon VLSI technology, the importance of reducing leakage

power consumption cannot be overstressed. A well-known previous technique called the

sleep transistor technique cuts off Vdd and/or Gnd connections of transistors to save leakage

power consumption. However, when transistors are allowed to float, a system may have to

wait a long time to reliably restore lost state and thus may experience seriously degraded

performance. Therefore, retaining state is crucial for a system that requires fast response

even while in an inactive state. Our research provides new VLSI techniques that achieve

ultra-low leakage power consumption while maintaining logic state, and thus can be used

for a system with long inactive times but a fast response time requirement.
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1.2 Contributions

In this dissertation, we present two low-power techniques, (i) the sleepy stack technique for

static power reduction and (ii) the low-power pipelined cache (LPPC) for dynamic and/or

static power reduction. The two techniques provide new weapons to designers whose pri-

mary concern is low power.

The following items are the main contributions of this research:

• Design of sleepy stack for logic circuits. We develop a novel low-leakage technique

we call “sleepy stack.” The sleepy stack technique is applied to generic logic circuits,

and we achieve between two and three orders of magnitude leakage power reduction

compared to the best prior state saving technique we could find (namely, the forced

stack technique).

• Design of a sleepy stack SRAM cell. Static Random Access Memory (SRAM) is

a power hungry component in a VLSI chip. Therefore, we apply the sleepy stack

technique to SRAM design. Since the sleepy stack technique comes with area and

delay penalties, we explore many possible sleepy stack SRAM cell combinations

and provide new Pareto points that can be used by designers who want extremely

low leakage power consumption (and are willing to pay a cost of some area and/or

delay increase).

• Design of a novel low power pipelined cache (LPPC). We design a novel low-

power pipelined cache (LPPC). LPPC applies pipelining to a cache while lowering

supply voltage of a cache to reduce dynamic power or using sleepy stack SRAM to

reduce leakage power. We also optimize the number of cache pipeline stages using a

specific architecture that we explore.

• Design of novel sleepy stack pipelined cache. We design a novel sleepy stack

pipelined cache. We utilize the LPPC to save leakage power consumption by using
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sleepy stack SRAM. Although the sleepy stack SRAM shows some delay overhead,

by using the LPPC we can hide the delay overhead, and thus we can achieve very

low leakage cache power consumption with small performance overhead.

1.3 Thesis Organization

The thesis is organized into eleven chapters.

CHAPTER I: INTRODUCTION. This chapter introduces power consumption issues

in VLSI. This chapter also summarizes the contributions of this thesis. Finally, this

chapter explains organization of the thesis.

CHAPTER II: MOTIVATION. This chapter addresses our motivation for this re-

search.

CHAPTER III: NOTATION AND BACKGROUND. This chapter explains impor-

tant notation and background used throughout this dissertation.

CHAPTER IV: PREVIOUS WORK. This chapter describes previous work in power

reduction research and explains key differences between our solutions and previous

work.

CHAPTER V: SLEEPY STACK STRUCTURE. This chapter introduces the novel

sleepy stack leakage reduction technique. First, the structure of the sleepy stack is

described followed by a detailed explanation of sleepy stack operation. An analytical

delay model of the sleepy stack is derived and compared to the forced stack technique

using an inverter circuit.

CHAPTER VI: APPLYING SLEEPY STACK. This chapter explores various appli-

cations of the sleepy stack approach. The applications/uses include generic logic cir-

cuits and memory circuits. For each application/use of the sleepy stack, comparisons
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with the best known prior low-leakage techniques are carried out using benchmark

circuits. We explain the experimental methodology used.

CHAPTER VII: SLEEPY STACK EXPERIMENTAL RESULTS. This chapter

discusses the experimental results from various applications of the sleepy stack ap-

proach. The sleepy stack technique is empirically compared to well-known previous

approaches. The comparisons are assessed in terms of area, dynamic power, static

power and area while changing numerous VLSI and CMOS circuit parameters.

CHAPTER VIII: LOW-POWER PIPELINED CACHE (LPPC) ARCHITECTURE.

This chapter introduces our new dynamic power reduction technique “low-power

pipelined cache” and explains low power mechanism of the LPPC. The pipelining

techniques for LPPC are discussed, and lastly, this chapter explores pipelining penal-

ties and the solutions of the LPPC.

CHAPTER IX: LOW-POWER PIPELINED CACHE (LPPC) EXPERIMENTAL SET-

UP AND RESULTS. This chapter covers experimental methodology and LPPC re-

sults. In the experimental methodology, processor and cache models are explained

followed by the architectural configurations and benchmarks used to evaluate the

LPPC approach. Finally, the chapter provides experimental results for the low-power

pipelined cache architecture compared to a non-pipelined cache architecture as well

as a low-voltage pipelined cache architecture.

CHAPTER X: SLEEPY STACK PIPELINED CACHE. This chapter discusses com-

bining the sleepy stack technique and the low-power pipelined cache technique. The

proposed cache structure is explained and explored in terms of performance and

power.

CHAPTER XI: CONCLUSION. This chapter summarizes the major accomplish-

ments of this thesis.
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CHAPTER II

MOTIVATION

Historically, in the 1980’s CMOS technology took over the mainstream of VLSI design

because CMOS consumes far less power than its predecessors (nMOS, bipolar, etc.). Al-

though this advantage still holds, power dissipation of CMOS has nonetheless become a

problem.

For a long time, dynamic power accounted for more than 90% (typically, over 99%) of

total chip power, and thus was frequently used as the metric for total power consumption for

technologies 0.18µ and above. However, as technology scales down to tens of nanometers,

leakage power becomes as important as dynamic power. Therefore, many ideas have been

proposed to tackle the leakage power problem. Although cutting off transistors from power

rails, e.g., using the sleep transistor technique, is one of the possible solutions, losing state

during inactive mode incurs long wake-up time and thus may not be appropriate for a

system that requires fast response times.

To provide a motivational scenario to illustrate the possible impact of this thesis, let us

compare the impact of static (leakage) power consumption in the context of a cell phone

example. We assume that in general, the cell phone we consider is always on (i.e., 24 hours

a day). However, the actual usage time of the cell phone is very limited. If we assume

a 500 minute calling plan with 500 minutes total used per month, the cell phone is active

only 1.15% (500min/(30days ∗ 24hours ∗ 60min)) of the total on-time. This means that

during rest – 98.85% of the time – the cell phone is non-active; however, due to static

power consumption, during rest (standby) the cell phone still consumes energy and reduces

battery life. In technology such as 0.07µ, the impact of leakage power is huge.

Let us consider an energy consumption scenario of a cell phone predicted based on
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Table 1: Power and area results from Chapter 7

Active

power (W)

Leakeage

power (W)
Area (u

2
)

Active

power (W)

Leakeage

power (W)
Area (u

2
)

4 Inverters 1.25E-06 9.81E-10 5.97E+00 1.09E-06 4.56E-12 9.03E+00

512B SRAM 5.22E-04 5.39E-06 2.00E+01 5.80E-04 3.24E-07 3.66E+01

Best prior work that saves state

(forced stack)

Our approach

(sleepy stack)

Table 2: Energy consumption scenario of a cell phone (0.07µ)

Active

power (W)

Leakeage

power (W)
Area (u

2
)

Energy (J)

(Month)

Active

power (W)

Leakeage

power (W)
Area (u

2
)

Energy (J)

(Month)

Processor

logic circuits
1.38E-01 1.02E-01 6.61E+05 2.65E+05 1.47E-01 5.74E-04 1.21E+06 5.87E+03

32KB SRAM 5.54E-03 4.15E-02 6.61E+05 1.06E+05 6.09E-03 2.44E-03 1.21E+06 6.44E+03

Total 1.43E-01 1.43E-01 1.32E+06 3.72E+05 1.53E-01 3.01E-03 2.42E+06 1.23E+04

Best prior work that saves state

(forced stack)

Our approach

(sleepy stack)

our experimental results which will be presented in Chapter 7. Specifically, Table 1 shows

some specific results from Chapter 7 for 0.07µ technology at 25oC. Table 2 shows our

hypothetical energy consumption scenario. We compare two different techniques which are

the forced stack technique (best prior work that saves state) and the sleepy stack technique

(our approach).

First, we assume a single chip containing an embedded processor core in 0.07µ tech-

nology. The chip largely consists of logic circuits and a 32KB SRAM; note that we exclude

I/Os and the pad frame. Furthermore, we only consider here the digital chip; i.e., the liquid

crystal display, Radio Frequency (RF) circuitry, etc., are all ignored.

Second, we assume that SRAM and logic circuits each occupy half of the digital chip

area, respectively. We estimate 32KB SRAM area based on SRAM cell area which we

will present in Chapter 7 – note that in all cases we exclude test, e.g., our SRAM does

not include Built-In Self Test (BIST). The forced stack 32KB SRAM area is 6.61x105µ2,

and the sleepy stack SRAM area is 1.21x106µ2. Then we estimate that the processor logic

gates occupy the same amount of area as the 32KB SRAM as shown in the area columns

of Table 2.
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Third, we also assume that at 0.07µ technology leakage power consumption is as much

as active power consumption when we use the forced stack technique. We multiply forced

stack leakage values from Table 1 by a factor (specifically, 939), so that forced stack leakage

power becomes the same as forced stack active power, i.e., 143mW. Then we apply the

same factor (939) to the sleepy stack leakage power from Table 1, resulting in sleepy stack

leakage power of 3.01mW. In other words, while Table 1 is based on Berkeley Predicted

Technology Model (BPTM) [7], we instead assume a scenario where leakage power equals

active power (which is, we believe, a hypothetical situation we may possibly see in the

future.)

Now, recalling that our cell phone is active 500 minutes per month and thus inactive

42700 minutes per month, we calculate forced stack digital chip energy per month as fol-

lows:

Energy1 = 143mW ∗ (500 ∗ 60sec) + 143mW ∗ (42700 ∗ 60sec) (1)

= 37.2KJ (2)

Similarly, we calculate sleepy stack digital chip energy per month as follows:

Energy2 = 153mW ∗ (500 ∗ 60sec) + 3.01mW ∗ (42700 ∗ 60sec) (3)

= 1.23KJ (4)

The result predicts that the ultra-low leakage power technology, i.e., sleepy stack, saves

30X total energy consumption compared to the best prior work, i.e., forced stack. There-

fore, potentially, the ultra-low leakage power technique can extend by 30X the cell phone

battery life in this motivational example. There is a cost for this 30X savings, however:

note that the overall are increases 83% (from 1.32mm2 to 2.42mm2 – see Table 2).

Although there already exist many low-leakage techniques, the best prior low-leakage

technique in terms of leakage power reduction, the sleep transistor technique, loses logic

state during sleep mode. Therefore, the sleep transistor technique requires non-negligible
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time to wake-up the device from the sleep mode. If we consider an emergency calling

situation to use cell phone, this wake-up time may not be acceptable. Therefore, an ultra-

low-leakage technique that can save state even in non-active mode can be quite important

in nanoscale technology VLSI.

In this dissertation, we use circuit as well as architectural techniques to reduce leakage

power consumption. Especially, our technique can retain logic state and thus fast response

time can be achieved even during non-active mode. The technique can be applicable to

generic logic circuits as well memory, i.e., SRAM, since our technique can retain state.

In this chapter, some motivation for the importance of this research is provided. In the

next chapter, we explain expressions, notation and background important for this thesis.
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CHAPTER III

NOTATION AND BACKGOUND

In this chapter, we explain important notation and VLSI background used in this disserta-

tion. First, we introduce subthreshold leakage power consumption on which our research

focuses. Next, we explain the background underlying a particular leakage power model

able to explain the stack effect, which is an important leakage reduction factor in our

research. We then explain the body-bias effect. Furthermore, we explain subthreshold

leakage power consumption of a conventional 6 Transistor (6-T) SRAM cell. Finally, we

explain switching power and delay tradeoffs of CMOS circuits.

3.1 Leakage power

In this section, we explain notation and background relevant to leakage power consumption.

� ✁� ✁
✂ ✄ ☎ ✆ ✝ ☎ ✞ ✟ ✠ ✞ ✡

☛ ✠ ✞ ✡
☞ ✌ ✆ ✟ ✍ ✡ ✎ ✟ ✠ ✏ �

Figure 1: Subthreshold leakage of an nFET

Although dynamic power is dominant for technologies at 0.18µ and above, leakage

(static) power consumption becomes another dominant factor for 0.13µ and below. One of

the main contributors to static power consumption in CMOS is subthreshold leakage current

shown in Figure 1, i.e., the drain to source current when the gate voltage is smaller than

the transistor threshold voltage. Since subthreshold current increases exponentially as the

threshold voltage decreases, nanoscale technologies with scaled down threshold voltages
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will severely suffer from subthreshold leakage power consumption.

✑ ✒
✓ ✔

✑ ✕

✓ ✖ ✖

✑ ✗ ✓ ✖ ✘ ✙

✓ ✖ ✖

✓ ✘ ✚ ✙✓ ✛ ✘ ✙

✓ ✖ ✘ ✒✓ ✘ ✚ ✒✓ ✛ ✘ ✒
✓ ✖ ✘ ✕

✓ ✘ ✚ ✕
✓ ✛ ✘ ✕

Figure 2: (a) A single transistor (left) and (b) stacked transistors (right)

Subthreshold leakage can be reduced by stacking transistors, i.e., taking advantage of

the so-called “stack effect” [34]. The stack effect occurs when two or more stacked tran-

sistors are turned off together; the result is reduced leakage power consumption.

Let us explain an important stack effect leakage reduction model. The model we explain

here is based on the leakage models in [34] and [46]. For a turned off single transistor

shown in Figure 2(a), leakage current (Isub0) can be expressed as follows:

Isub0 = Ae
1

nVθ
(Vgs0−Vth0−γVsb0+ηVds0)

(1 − e−Vds0/Vθ) (5)

= Ae
1

nVθ
(−Vth0+ηVdd)

(6)

where A = µ0Cox(W/Leff )V
2
θ e1.8, n is the subthreshold swing coefficient, and Vθ is the

thermal voltage. Vgs0, Vth0, Vbs0 and Vds0 are the gate-to-source voltage, the zero-bias

threshold voltage, the base-to-source voltage and the drain-to-source voltage, respectively.

γ is the body-bias effect coefficient, and η is the Drain Induced Barrier Lowering (DIBL)

coefficient. µ is zero-bias mobility, Cox is the gate-oxide capacitance, W is the width of the

transistor, and Leff is the effective channel length [60]. (Note that throughout this thesis

we assume µn = 2µp, i.e., nMOS carrier mobility is twice pMOS carrier mobility. Also

note that we use a W/L ratio based on a actual transistor size, in which way a W/L ratio

properly characterizes circuit models used in this thesis.) We assume 1 >> e−Vds0/Vθ .
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Let us assume that the two stacked transistors (M1 and M2) in Figure 2(b) are turned off.

We also assume that the transistor width of each of M1 and M2 is the same as the transistor

width of M0 (WM0 = WM1 = WM2). Two leakage currents Isub1 of the transistor M1 and

Isub2 of the transistor M2 can be expressed as follows:

Isub1 = Ae
1

nVθ
(Vgs1−Vth0−γVsb1+ηVds1)

(1 − e−Vds1/Vθ) (7)

= Ae
1

nVθ
(−Vx−Vth0−γVx+η(Vdd−Vx))

(8)

Isub2 = Ae
1

nVθ
(Vgs2−Vth0−γVsb2+ηVds2)

(1 − e−Vds2/Vθ) (9)

= Ae
1

nVθ
(−Vth0+ηVx)

(1 − e−Vx/Vθ). (10)

where Vx is the voltage at the node between M1 and M2, and we assume 1 >> e−Vds1/Vθ .

Now consider leakage current reduction between Isub0 and Isub1(= Isub2). The reduc-

tion factor X can be expressed as follows:

X =
Isub0

Isub1

=
Ae

1

nVθ
(−Vth0+ηVdd)

Ae
1

nVθ
(−Vx−Vth0−γVx+η(Vdd−Vx))

= e
Vx

nVθ
(1+γ+η)

(11)

Vx in Equation 11 can be derived by letting Isub1 = Isub2 and by solving the following

equation:

1 = e
1

nVθ
(ηVdd−Vx(1+2η+γ))

+ e−Vx/Vθ (12)

If all the parameters are known, we can calculate stack effect leakage power reduction

using Equations 11 and 12. As an example, we consider leakage model parameter values

targeting 0.5µ technology in Table 3 obtained from [34]. From Equation 12, we calculate

Table 3: Leakage model parameters (0.5µ tech)

Parameter Value

Vdd 1V

Vth 0.2V

n (subthreshold slope coeffcient) 1.5

η (DIBL coeffcient) 0.05V/V

γ (body-bias effect coeffcient) 0.24V/V

Vx = 0.0443V , and from Equation 11, we obtain leakage reduction factor X = 4.188.
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Although the reduction is 4.188X at 0.5µ technology, the reduction increases at nanoscale

technology because η increases as technology feature size shrinks.

Threshold voltage of a CMOS transistor can be controlled using body bias. In general,

we apply Vdd to the body (e.g., an n-well or n-tub) of pMOS and apply Gnd to a body

(e.g., p-well or p-substrate) of nMOS. This condition, in which source voltage and body

voltage of a transistor are the same, is called Zero-Body Bias (ZBB). Threshold voltage

at ZBB is called ZBB threshold voltage. When body voltage is lower than source voltage

by biasing negative voltage to body, this condition is called Reverse-Body Bias (RBB).

Alternatively, when body voltage is higher than source voltage by biasing positive voltage

to body, this condition is called Forward-Body Bias (FBB). When RBB is applied to a

transistor, threshold voltage increases, and when FBB applied to a transistor, threshold

voltage decreases. This phenomenon is called body-bias effect, and this is frequently used

to control threshold voltage dynamically [72].

In this section, Section 3.1, we explained subthreshold leakage power consumption, the

stack effect, and body-bias effects which can alter subthreshold leakage power consump-

tion. In the next section, we explain leakage current of an SRAM cell.

3.2 SRAM cell leakage paths

✜✢✣✤✢✥✦ ✧

★ ✩ ✪ ✫ ✬ ✭ ✮ ✯ ★ ✩ ✪ ✫ ✬ ✭ ✮ ✯

✰✱✲✳✴✵
✳ ✶✷

✸ ✯ ✬ ✬
✬ ✯ ✹ ✺ ✹ ✻ ✯

✼ ✭ ✽ ✬ ✭ ✮ ✯
✬ ✯ ✹ ✺ ✹ ✻ ✯

✾ ✿

❀ ✿

✾ ✱

❀ ✱
❀ ❁❀ ❂

✼ ✭ ✽ ✬ ✭ ✮ ✯
✬ ✯ ✹ ✺ ✹ ✻ ✯

Figure 3: SRAM cell leakage paths

In this section, we explain the major subthreshold leakage components in a 6-T SRAM

cell. The subthreshold leakage current in an SRAM cell is typically categorized into two

kinds [37] as shown in Figure 3: (i) cell leakage current that flows from Vdd to Gnd internal
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to the cell and (ii) bitline leakage current that flows from bitline (or bitline’)

to Gnd.

Although an SRAM cell has two bitline leakage paths, the bitline leakage cur-

rent and bitline’ leakage current differ according to the value stored in the SRAM bit.

If an SRAM cell holds ‘1’ as shown in Figure 3, the bitline leakage current passing

through N3 and N2 is effectively suppressed due to two reasons. First, after precharging

bitline and bitline’ both to ‘1,’ the source voltage and the drain voltage of N3

are the same, and thus potentially no current flows through N3. Second, two stacked and

turned off transistors (N2 and N3) induce the stack effect. Meanwhile, for this case where

the SRAM bit holds value ‘1,’ a large bitline’ leakage current flows passing through

N4 and N1. If, on the other hand, the SRAM cell holds ‘0,’ a large bitline leakage

current flows while bitline’ leakage current is suppressed. Our results in Section 7.2.3

indicates that bitline leakage accounts for approximately 35% of SRAM cell leakage

power consumption.

In this section, Section 3.2, we explain the two major types of leakage paths in an

SRAM cell (cell leakage and bitline leakage). In next section, we explain tradeoffs

between switching power and delay.

3.3 Switching power and delay tradeoffs

In this section, we explain tradeoffs between switching power and delay.

In CMOS, power consumption consists of leakage power and dynamic power – note that

dynamic power includes both switching power and short-circuit power. Switching power

is consumed when a gate charges its output load capacitance, and short-circuit power is

consumed when a pull-up network and a pull-down network are on together for an instant

while transistors are turning on and off. For 0.18µ channel lengths and above, leakage

power is very small compared to dynamic power. Furthermore, short-circuit power is also

less than 10% of the dynamic power for a typical CMOS design, and the ratio between
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dynamic power and short-circuit power does not change as long as the ratio between supply

voltage and threshold voltage remains the same [50]. Since, for 0.18µ and above, short-

circuit power and leakage power are relatively small compared to switching power, CMOS

power consumption of a particular CMOS gate under consideration can be represented by

the following switching power (Pswitching) equation for 0.18µ and above:

Pswitching = ptCLV 2
ddf (13)

where CL, Vdd, and f denote the load capacitance of a CMOS gate, the supply voltage

and the clock frequency, respectively [15]. Notation pt denotes the switching ratio of a

gate output; this switching ratio represents the number of times the particular gate’s output

changes from Gnd to Vdd per second – please note that when output capacitance discharges

from Vdd to Gnd, switching power is not consumed because power from Vdd is not used

(e.g., discharging to Gnd does not consume battery power). The switching ratio varies

according to the input vectors and benchmark programs, and thus an average value of each

benchmark may be used as a switching ratio.

Equation 13 shows that lowering Vdd decreases CMOS switching power consumption

quadratically. However, this power reduction unfortunately entails an increase in the gate

delay in a CMOS circuit as shown in following approximated equation:

Td ∝

Vdd

(Vdd − Vth)α
(14)

where Td, Vth, and α denote the gate delay in a CMOS circuit, the threshold voltage and

velocity saturation index of a transistor, respectively. It is well-known that while α has

values close to 2 for above 2.0µ, for 0.25µ α is between 1.3 and 1.5, and for below 0.1µ

α is close to 1 [35], [59]. However, instead of scaling down a α value along with the

technology feature size, CMOS technology may take a constant α value to avoid the hot-

carrier related problem [59]. A constant α value could be accomplished by changing Vth

because α is a function of gate-source voltage [8]. If we scale down Vdd, switching power

in Equation 13 decreases, while the gate delay in Equation 14 increases. Therefore, CMOS
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circuit speed can be traded with switching power consumption as shown in Equations 13

and 14.

When there exist tradeoffs between multiple criteria, e.g., power and delay, we may say

one design is better than another design in specific criteria. The point of design space is

called a Pareto point if there is no point with one or more inferior objective [40].

In this thesis we estimate leakage power consumption by measuring static power when

transistors are not switching. Furthermore, we estimate active power consumption by mea-

suring power when transistors are switching. This active power include dynamic power

consumption and leakage power consumption.

In this chapter we explained important notation and VLSI background used in this

thesis. In the next section, we explain previous low-power research related to our research.
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CHAPTER IV

PREVIOUS WORK

In this chapter, we review important prior work that is closely related to our research.

Furthermore, the previous work is compared to our research. First we explore the prior

work targeting leakage power reduction, and then we finish by studying previous techniques

relevant to low-power pipelined caches.

4.1 Static Power Reduction VLSI Research

In this section, we discuss previous low-power techniques that primarily target reducing

leakage power consumption of CMOS circuits. Techniques for leakage power reduction

can be grouped into two categories: (i) state-saving techniques where circuit state (present

value) is retained and (ii) state-destructive techniques where the current Boolean output

value of the circuit might be lost [38]. A state-saving technique has an advantage over a

state-destructive technique in that with a state-saving technique the circuitry can immedi-

ately resume operation at a point much later in time without having to somehow regenerate

state. We characterize each low-leakage technique according to this criterion. We study

low-leakage techniques for generic logic circuits followed by low-leakage SRAM designs

separately.

4.1.1 Static Power Reduction Research for Generic Logic Circuits

This section explains previously proposed low-leakage techniques for generic logic circuits.

As introduced, previously proposed work can be divided into techniques that either (i) save

state or (ii) destroy state. Although our research focuses on techniques which save state,

we also review the state-destructive techniques for the purposes of comparison.
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4.1.1.1 Sleep transistor
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Figure 4: Sleep transistor technique

State-destructive techniques cut off transistor (pull-up or pull-down or both) networks

from supply voltage or ground using sleep transistors [45]. These types of techniques

are also called gated-Vdd and gated-Gnd (note that a gated clock is generally used for

dynamic power reduction). Motoh et al. propose a technique they call Multi-Threshold-

Voltage CMOS (MTCMOS) [45], which adds high-Vth sleep transistors between pull-up

networks and Vdd and between pull-down networks and ground as shown in Figure 4 while

logic circuits use low-Vth transistors in order to maintain fast logic switching speeds. The

sleep transistors are turned off when the logic circuits are not in use. By isolating the

logic networks using sleep transistors, the sleep transistor technique dramatically reduces

leakage power during sleep mode. However, the additional sleep transistors increase area

and delay. Furthermore, the pull-up and pull-down networks will have floating values and

thus will lose state during sleep mode. These floating values significantly impact the wake-

up time and energy of the sleep technique due to the requirement to recharge transistors

which lost state during sleep (this issue is nontrivial, especially for registers and flip-flops).

Comparison with prior work using sleep transistors

The sleep transistor technique and the sleepy stack technique both achieve roughly the

same (100X or more) static power savings over conventional CMOS. However, unlike the
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sleep transistor technique, the sleepy stack technique saves logic state during low leakage

mode (sleep mode), and this is a significant advantage over the state-destructive sleep tran-

sistor technique. The sleep transistor technique requires non-negligible power consumption

to restore lost state. Further, the wake-up time of the sleep transistor technique is signifi-

cant, while the sleepy stack technique needs only a very small extra wake-up time (a few

clock cycles).

4.1.1.2 Zigzag
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Figure 5: Zigzag technique

To reduce the wake-up cost of the sleep transistor technique, the zigzag technique is

introduced [41]. The zigzag technique reduces the wake-up overhead by choosing a par-

ticular circuit state (e.g., corresponding to a “reset”) and then, for the exact circuit state

chosen, turning off the pull-down network for each gate whose output is high while con-

versely turning off the pull-up network for each gate whose output is low. For example,

the zigzag technique in Figure 5 assume that the input ‘A’ is asserted such that the output

values result as shown in the figure. If the output is ‘1,’ then a pull-down sleep transistor

is applied; if the output is ‘0,’ then a pull-up sleep transistor is applied. By applying, prior

to going to sleep, the particular input pattern chosen prior to chip fabrication, the zigzag

technique can prevent floating. Although the zigzag technique retains the particular state

chosen prior to chip fabrication, any other arbitrary state during regular operation is lost in
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power-down mode.

Comparison with prior work using zigzag

Although the zigzag technique can reduce wake-up cost, the zigzag technique still loses

state. Thus, any particular state (from prior to going to sleep) which is needed upon wakeup

must be regenerated somehow. Also, the zigzag technique may need extra circuitry to

generate a specific input vector (in case reset values are not used for the sleep mode input

vector).

4.1.1.3 Forced stack

Another technique to reduce leakage power is transistor stacking. Transistor stacking ex-

ploits the stack effect explained in Chapter 3; the stack effect results in substantial sub-

threshold leakage current reduction when two or more stacked transistors are turned off

together.

❴

❵ ❛
❜ ❝

❜ ❞

❡

Figure 6: Forced stack inverter

Example 1: The stack effect can be understood from the forced stack inverter example shown

in Figure 6. Unlike a generic CMOS inverter, this forced stack inverter consists of two pull-up tran-

sistors and two pull-down transistors. All inputs share the same input ‘A.’ If A = 0, then both

transistors M1 and M2 are turned off. Due to the internal resistance of M2, the intermediate node

voltage Vx is higher than Gnd. The positive potential of Vx results in a negative gate-source voltage

(Vgs) for M1 and negative source-base voltage (Vsb) for M1. Furthermore, M1 has a reduced
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drain-source voltage (Vds), which degrades the Drain Induced Barrier Lowering (DIBL) effect [18].

All three effects together change the leakage reduction factor X in Equation 11 (see Chapter 3),

reducing leakage current by an order of magnitude for today’s channel lengths (0.18µ, 0.13µ, 0.10µ

and 0.07µ) [7]. ✷

Narendra et al. study the effectiveness of the stack effect including effects from in-

creasing the channel length [47]. Since forced stacking of what previously was a single

transistor increases delay, Johnson et al. propose an algorithm that finds circuit input vec-

tors that maximize stacked transistors of existing complex logic [32].

Comparison with prior work using the forced stack approach

Compared to the forced stack technique, the sleepy stack technique potentially achieves

more power savings (e.g., 100X compared with 10X for the stack effect) because the sleepy

stack can use high-Vth transistors in key places. The forced stack technique cannot use

high-Vth transistors without dramatic delay increase (larger than 5X delay increase com-

pared to conventional CMOS).

4.1.2 Static Power Reduction Research for SRAM

In this section, we discuss state-of-the-art low-power memory techniques, especially SRAM

and cache techniques on which our research focuses.

4.1.2.1 High-Vth SRAM Cell

One easy way to reduce leakage power consumption is by adopting high-Vth transistors for

all SRAM cell transistors. This solution is simple but incurs delay increase (our experi-

ments indicate that doubling Vth for all six transistors increases delay by 2.5X using 0.07µ

technology).

Comparison with prior work using high-Vth SRAM cells

Compared to the high-Vth SRAM cell, the sleepy stack SRAM cell achieves 2.5X

leakage power reduction with the same delay (see Section 7.2.4). Alternatively, the sleepy
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stack SRAM cell achieves 5.13X leakage power reduction with 32% delay increase when

compared with high-Vth SRAM (again, see Section 7.2.4).

4.1.2.2 Asymmetric-Cell Cache (ACC)
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Figure 7: Asymmetric SRAM cell

Azizi et al. observe that in normal programs, most of the bits in a cache are zeros.

Therefore, Azizi et al. propose an Asymmetric-Cell Cache (ACC), which partially applies

high-Vth transistors in an SRAM cell to save leakage power if the SRAM cell is in the

zero state [5]. Figure 7 shows an asymmetric SRAM cell. If the cell stores a ‘0,’ then

the transistors P1 and N2 dissipate cell leakage while transistor N4 dissipates bitline

leakage power. Therefore, if we use high-Vth transistors for P1, N2 and N4, we can reduce

leakage power as long as the cell stores ‘0.’ Azizi et al. also propose a new sense amplifier

to offset performance degradation due to the high-Vth transistors. The new sense amplifier

may induce area increase since the transistor count of the new sense amplifier is 55% larger

than a conventional sense amplifier.

Comparison with prior work using dual-Vth cells

The Asymmetric-Cell Cache leakage power savings are quite limited in case of a bench-

mark which fills SRAM with mostly non-zero values. Compared to the Asymmetric-Cell

Cache, the sleepy stack achieves large leakage reduction regardless of stored values, i.e., the

sleepy stack technique saves leakage power in cases with benchmarks with a large number

of ‘1’ values. Moreover, even in case with benchmarks with a large number of ‘0’ values,
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ACC achieves 40X leakage reduction while our sleepy stack achieves leakage reduction of

100X or more.

4.1.2.3 ABC-MTCMOS

SRAM Cell

Sleep

Sleep’

VDDH VDD

VGND

VVDD

Figure 8: ABC-MTCMOS

Nii et al. propose a low-leakage SRAM design named Auto-Backgate-Controlled Multi-

Threshold CMOS (ABC-MTCMOS) [49] based on the conventional MTCMOS technique

explained in Section 4.1.1.1. Unlike straightforward MTCMOS, in which logic circuits

float and thus potentially lose state during sleep mode, ABC-MTCMOS shown in Figure 8

uses Reverse-Body Bias (RBB) to reduce leakage power consumption and thus maintains

state (no floating).

Let us take a specific example from [49], which targets 0.35µ technology. During

active mode, Sleep=‘0’ and Sleep’=‘1’ are asserted, and thus the SRAM cell is connected

to Vdd, which is 1V , and Gnd. However, during sleep mode, Sleep=‘1’ and Sleep’=‘0’ are

asserted; then, the body of the pFET of the SRAM cell is connected to Vddh, which is 3.3V .

Furthermore, during sleep mode the Vddh connection supplies power to V Vdd through two

diodes. The voltage drop across a diode is 0.5V (assumed by Nii et al. [49]), and thus in

sleep mode the source voltage of the pFETs is 2.3V . Therefore, this structure forms reverse
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source-body bias for pFETs. This reverse bias increases pFET Vth within the SRAM cell.

Meanwhile, in sleep mode, V Gnd is connected to Gnd using two diodes. The the voltage

drop across the two diodes is 1V , and thus V Gnd = 1V . Therefore, the nFETs of the

SRAM cell also experience reverse source-body bias, which increases nFET Vth within the

SRAM cell.

During active mode, ABC-MTCMOS use Zero-Body Bias (ZBB), and thus ABC-

MTCMOS maintains performance. Meanwhile, during sleep mode, ABC-MTCMOS ap-

plies RBB for both pFETs and nFETs. RBB increases threshold voltage without losing

logic state. This increased threshold voltage reduces leakage power consumption during

sleep mode.

Comparison with prior work using ABC-MTCMOS

The ABC-MTCMOS technique requires an additional supply voltage throughout the

whole SRAM cell array. More importantly, since the ABC-MTCMOS technique needs

to charge large wells (e.g., larger n-wells), ABC-MTCMOS requires significant transition

time and power consumption, which the sleepy stack does not need. Further, a large electric

field across the transistors may affect reliability [26]. Finally, ABC-MTCMOS achieves

similar leakage power reduction as our sleepy stack technique (1000X over conventional

CMOS).

4.1.2.4 Gated-Vdd and gated-Gnd SRAM cell

Sleep transistors explained in Section 4.1.1.1 can also be used for SRAM cell design. Us-

ing sleep transistors, the gated-Vdd SRAM cell blocks pull-up networks from the Vdd rail

(pMOS gated-Vdd) and/or blocks pull-down networks from the Gnd rail (nMOS gated-

Vdd) [54]. The gated-Vdd SRAM cell achieves low-leakage power consumption from both

the stack effect and high-Vth sleep transistors. However, this gated-Vdd SRAM cell [54]

loses state when the sleep transistors are turned off. To overcome this problem, Powell et

al. propose the Dynamically ResIzable instruction cache (DRI i-cache), an integration of
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circuit and architecture techniques [54]. Considering an SRAM cell, Powell et al. study the

effect of nMOS gated-Vdd and pMOS gated-Vdd in terms of energy, speed and area. (Please

note that Powell et al. use the term “nMOS gated-Vdd” to indicate placing a sleep transis-

tor between the pull-down network and Gnd; similarly, Powell et al. use the term “pMOS

gated-Vdd” to indicate placing a sleep transistor between the pull-up network and Vdd.) Fig-

ure 9 shows an SRAM cell with nMOS gated-Vdd. The SRAM cell with nMOS gated-Vdd

can suppress two kinds of leakage paths: (i) cell leakage paths and (ii) bitline leakage

paths (see Section 3.2). Note that a pMOS gated-Vdd SRAM cell can be implemented with

small area since the transistors in the pull-up network of an SRAM cell uses smaller tran-

sistor widths than the widths of transistors in the pull-down network. However, pMOS

gated-Vdd cannot suppress the bitline leakage paths.

Gated-VDD
control

wordline

VDD

bitlinebitline’

VGND

Figure 9: SRAM cell with nMOS gated-Vdd

Although the conventional nMOS gated-Vdd technique lose data, a nMOS gated-Vdd

technique with carefully sized transistors can retain the original data. Agarwal et al. study

the data retention capability of nMOS gated-Vdd technique and propose Data Retention

Gated-Ground Cache (DRG-Cache) [1]. When the nMOS gated-Vdd transistor in Figure 9

is turned off, the V Gnd node is charged up. If the V Gnd is not high enough to change the

stored value, the cell will retain its value. Agarwal et al. study various retaining conditions

including temperature, Vth, and gate size. However, since the V Gnd node does not hold

value ‘0’ firmly, the DRG-Cache design is vulnerable, and even a small induced charge
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may change the stored value [21].

Comparison with prior work using gated-Vdd

Since SRAM is a memory circuit and prefers to maintain state even during sleep mode,

the state-saving of the sleepy stack has a great advantage over the gated-Vdd technique. The

sleepy stack does not require complex architectural technique, which the DRI cache uses,

to alleviate performance penalty induced by the lost values. Compared to the DRG-Cache,

the sleepy stack technique is safer in soft errors. If we consider that even some conventional

caches adopts soft error recovery system [55], techniques that increase soft error could limit

the usage.

4.1.2.5 Drowsy Cache
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Figure 10: Drowsy cache

Flautner et al. propose the “drowsy cache” technique that switches Vdd dynamically [23].

The basic idea behind the drowsy cache is that the Vdd voltage value required to maintain

state is only 1.5xVth; e.g., in 0.07µ, if Vdd = 1V and Vth = 0.2V , then the voltage required

to maintain state is 0.3V . Thus, the drowsy cache uses Vddl, which is 1.5xVth, during

drowsy mode; during active mode, the drowsy cache uses Vddh(= Vdd) as shown Figure 10.

For short-channel devices such as 0.07µ channel length devices, leakage power increases
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when drain voltage increases because increased drain voltage lowers the potential barrier at

the channel region, thereby increasing subthreshold leakage current. This phenomenon is

called Drain Induced Barrier Lowering (DIBL). Inversely, by lowering the supply voltage

of a short-channel device, subthreshold leakage current can be suppressed. The drowsy

cache lowers the supply voltage during drowsy mode and suppresses leakage current using

DIBL. To control bitline leakage, the drowsy cache adopts high-Vth wordline tran-

sistors. The drowsy cache technique can retain stored data at a leakage power reduction of

86% or less (approximately 7X or less).

Comparison with prior work using drowsy cache

The drowsy cache reduces leakage power mainly using the DIBL effect, and thus the

leakage reduction of the drowsy cache is limited and much smaller than the sleepy stack

technique (approximately 7X compared to 100X or more).

4.1.2.6 Body Biasing

Unlike the drowsy cache, which scales Vdd dynamically, some techniques scale Vth dynam-

ically using body-bias (–e.g., we have already seen ABC-MTCMOS in Section 4.1.2.3).

Kim et al. propose Reverse Body-Biasing (RBB) SRAM, which applies negative voltage to

a body (i.e., p-well in a deep n-well process) [37]. In deep n-well technology, each p-well

is formed in an n-well, and thus p-wells are separated from the p-substrate. Using this tech-

nology, Kim et al. avoid having to charge up large p-substrate area. RBB SRAM adopts

low-Vth and applies Zero Body-Biasing (ZBB) during active mode while scaling up Vth us-

ing RBB during sleep mode. By use of an approach similar to ABC-MTCMOS, Kim et al.

implement RBB for the nMOS transistors of SRAM cells. When RBB is applied to pMOS,

the leakage reduction achieved is relatively small, area overhead is large, and charging and

discharging the p-well consumes large amount of extra energy (Kim et al. only consider

deep n-well technology, e.g., twin-tub is not considered). However, the RBB SRAM tech-

nique still has large latency and overhead due to body bias transition, which charges and
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discharges large p-well capacitance. Kim et al. also propose Forward Body-Biasing (FBB)

SRAM. FBB applies positive voltage to the body of nFETs. FBB SRAM adopts high-Vth

transistors and uses FBB during active mode to achieve high speed while using ZBB during

sleep mode to suppress leakage current [36]. To overcome charging/discharging large p-

substrate, the FBB SRAM technique divides SRAM into subarrays by adopting deep n-well

technology, which isolates p-wells from p-substrate using n-wells.

Comparison with prior work using body biasing

The body biasing techniques typically require charging large substrate or deep n-well

technology, which the sleepy stack does not need. The body biasing technique achieves

up to 72% leakage reduction while our sleepy stack achieves leakage reduction of 100X or

more.

Until now, we explained previous low-leakage techniques that can be applicable to

generic logic circuit and/or memory. The low-leakage techniques can be categorized into

two, (i) state saving, in which out research falls, and (ii) state destructive. In the next

section, we explain previous work that is related to power reduction using voltage scaling

and pipelining, approaches which our research also utilizes.

4.2 Power Reduction Research Using Voltage Scaling and
Pipelining Caches

Our Low-Power Pipelined Cache (LPPC), which is one of our contributions (see Chap-

ter 8), uses pipelining and voltage scaling to save dynamic power and/or static power. In

this section, we discuss prior work that reduces power consumption primarily using either

(i) static voltage scaling (i.e., voltage values are set at design time and never change during

circuit operation) or (ii) pipelined caches.
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4.2.1 HYPER-LP

Chandrakasan et al. study parallelization and pipelining techniques to save power consump-

tion [15]. Parallelization and pipelining increase throughput by means of circuit duplica-

tion and circuit pipelining. Chandrakasan et al. lower supply voltage of circuits to save

power consumption. Lowering supply voltage increases circuit delay. Chandrakasan et

al. lower supply voltage until the throughput returns to the throughput before paralleliza-

tion and/or pipelining. Since switching power consumption is quadratically proportional

to supply voltage, this method potentially achieves large power savings while maintain-

ing throughput. However, duplication and/or pipelining circuits have some drawbacks.

The parallelization technique incurs significant area increase due to duplicated circuits and

wires connecting them, resulting in extra power consumption. The pipelining technique

also increases area due to latches between pipeline stages (the latches are used to store

intermediate signals).

Although there exist some limitations to using parallelization and pipelining, the par-

allelization and pipelining techniques have driven power optimized high-level synthesis.

Chandrakasan et al. introduce an automated high-level synthesis system, HYPER-LP [14],

which explores concurrency in circuits to reduce the delay of the critical path in circuits

by means of loop unrolling or pipelining. The reduced delay enables circuits to operate at

a lower Vdd, and thus the lowered Vdd increases gate delay while reducing power as well.

In high-level synthesis techniques [40], the concurrency exploration is typically used to

reduce a critical path to enhance throughput. On the other hand, the high-level synthesis

transformations for power optimization typically tradeoff between switching capacitance

and voltage, while maintaining throughput [13].

Comparison with prior work using HYPER-LP

HYPER-LP mainly focuses on dynamic power reduction of logic circuits and does

not consider power reduction of SRAM. Meanwhile, our LPPC focuses on cache power

reduction.
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4.2.2 Multiple Vdd and Vth Optimization

High-level synthesis based on voltage scaling can be extended to circuits with multiple

supply voltages. A multiple voltage supply system can, for example, assign a low supply

voltage (Vddl) to non-critical paths while assigning a high supply voltage (Vddh) to critical

paths. The voltage level of each operation unit (each collection of logic circuits) is decided

so that the power is reduced while preserving timing constraints: this is called the Multiple-

Voltage Scheduling (MVS) [16]. Raje et al. propose a behavioral level MVS algorithm that

uses a data flow graph to abstract a system; thus, an algorithm can be applied to minimize

power consumption at the system or chip level [56].

In a multiple-Vdd system, the co-existence of multiple voltages in circuits potentially

induces two problems. One is extra wiring needed to properly supply multiple Vdd values,

potentially causing large area overhead. The other problem is placement of level converters.

If a Vddl gate drives the input of a Vddh gate, the voltage level of the output of the Vddl

gate is not high enough to drive the input of the Vddh gate; thus, if no level converter is

used, the incompletely cut-off pMOS transistor of the Vddh gate may incur static current

flowing from Vddh to ground (Gnd). This phenomenon can be prevented by placing a level

converter that shifts the voltage level of the Vddl gate output to Vddh. These two problems are

potentially serious for Vdd optimization because many extra wires and level converters may

be required. Therefore, Johnson and Chang tackle the MVS problem with the consideration

of level converters [16], [33].

While [16], [33] and [56] focus on solutions within high-level synthesis frameworks,

Usami and Horowitz propose clustered voltage scaling, which handles level converter over-

head in gate placement. Clustered voltage scaling minimizes the number of level converters

by clustering gates having the same supply voltage and placing Vddh gate clusters before

Vddl gate clusters if possible [69]. Usami et al. also tackle the placement problem of wires

carrying different voltages by placing Vddh and Vddl wires row-by-row [70]. In placing

gates using different supply voltages, the easier way is to place Vddh and Vddl gates in two
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separate areas, which is called area-by-area placement. However, area-by-area placement

requires long interconnections between Vddh and Vddl cells. The row-by-row scheme first

places cells without considering voltages and then chooses the voltage level of each Vdd

wire based on the majority of cells. The cells in a row of a different Vdd value (e.g., Vddl)

are relocated to the nearest row where cells use the same Vdd (e.g., Vddl).

M1

E1/d1 ≠ E2/d2

E1

E2

d1

M2

d2

Slack

time

energy

Time constraint

E1/d1 ≠ E2/d2

E1

E2

d2

M1 M2

d1

E1

E2

E1/d1 = E2/d2

time

energy

Time constraint

Figure 11: Before (up) and after (down) applying EDR paradigm

Choi et al. propose a new energy minimization metric they name the Energy-Delay

Ratio (EDR) paradigm [19]. The EDR paradigm claims that total energy consumption is

minimized when the energy-delay ratios of each module are the same. Choi et al. target

0.25µ technology in which switching energy dominates. In Figure 11, module M1 has

energy E1 and delay d1 while module M2 has energy E2 and delay d2; the top box in Fig-

ure 11 shows the situation prior to applying the EDR paradigm. Since d1 + d2 is less than

the time constraint, we can distribute the slack, the time difference between the time con-

straint and circuit delay, to achieve power reduction by means of lowering supply voltage.
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The EDR is the metric that can be used to distribute slack to achieve minimum total en-

ergy consumption as shown in the bottom box in Figure 11. The EDR paradigm is used to

minimize dynamic power by configuring Vdd, Vth and transistor width.

The techniques mentioned above are primarily concerned with dynamic power. As

leakage power increases with shrinking feature size, researchers consider multiple Vth val-

ues as a solution. Wei et al. propose dual-Vth circuit optimization, which applies lower Vth

for transistors in critical paths and higher Vth for non-critical paths [73]. Roy et al. extend

the problem to multiple Vdd and Vth optimization to control both dynamic and static power

concurrently [58]. Choi et al. develop a post-layout power optimization algorithm includ-

ing Vdd, Vth, and transistor width based on the EDR paradigm [20]. Diril et al. also propose

Vdd and Vth assignment algorithm based on the EDR paradigm to reduce dynamic power as

well as static power [22]. Although Diril et al. ignore the level converter issue, Srivastava

et al. propose a multiple Vdd, multiple Vth assignment algorithm which considers the level

converter issue [63].

Comparison with prior work using multiple Vdd and Vth optimization

Multiple Vdd and Vth optimization techniques discussed in this section mainly focus on

power reduction of logic circuits. Meanwhile, our LPPC focuses on power reduction of

SRAM. Although multiple Vdd and Vth optimization techniques change Vth without chang-

ing circuit structure to reduce static power, the techniques discussed in Section 4.1.1 change

circuit structures as well as Vth; as a result, while prior Vth optimization techniques cannot

save much power for gates on the critical path, our sleepy stack approach for logic circuits

can potentially apply to the critical path as well.

4.2.3 Low-Power Pipelined Cache

Chappell el al. broke down a cache into multiple segments and pipelined the segments [17].

Due to the increased parallelism, this pipelined cache technique can reduce cache access

delay thus improving performance. However, Chappell el al. only address performance,
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and no power reduction technique is mentioned [17].

Agarwal et al. proposed high bandwidth pipelined cache by breaking down caches and

placing latches [2]. Although Agarwal et al. give some energy results, the primary concern

of their work is not to reduce power but to improve performance.

Gunadi et al. proposed a bit-slice-pipelined cache to reduce power consumption by en-

abling the row decoder only for the necessary subbank [24]. Pipelining is used to offset

the performance degradation due to bit slicing. However, this technique only addresses

dynamic power reduction targeting 0.18µ technology in which leakage power is not domi-

nant.

Comparison with prior work relevant to low-power pipelined caches

Prior pipelined caches mentioned above mainly focus on performance improvement.

Although Gunadi et al. address power reduction by enabling only the requested subbank,

they do not use voltage scaling and do not mention leakage power at all. Although Gunadi’s

pipelined cache saves larger dynamic power than our LPPC, we are using static voltage

scaling which can be used together with Gunadi’s pipelined cache. Meanwhile, our LPPC

can be applicable to static power reduction for SRAM.

4.3 Summary

In this chapter, we discussed previous work related to the sleepy stack and LPPC tech-

niques. Sleepy stack generic logic circuits achieve more power static savings (typically,

10X or more) than the forced stack approach while saving exact logic state (the sleep tran-

sistor technique and the zigzag technique have roughly equal static power reduction as

sleepy stack but unfortunately lose original logic state). Our sleepy stack SRAM cell can

achieve more power savings than high-Vth SRAM cell, ACC and drowsy cache. Further-

more, the sleepy stack SRAM does not require large transition time and transition power

consumption unlike ABC-MTCMOS, and the sleepy stack SRAM does not require any

special CMOS process, which body biasing techniques typically require. Finally, there is
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no known prior pipelined cache technique proposed to save leakage power consumption

while our LPPC achieves leakage power reduction using cache pipelining, and can even be

combined with sleepy stack as we will show toward the end of this thesis (Chapter 10).

In the next section, we will discuss the sleepy stack structure and sleepy stack opera-

tion.
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CHAPTER V

SLEEPY STACK STRUCTURE

In this chapter, we introduce our new leakage power reduction technique we name “sleepy

stack.” The sleepy stack technique has a combined structure of the forced stack tech-

nique and the sleep transistor technique. However, unlike the sleep transistor technique,

the sleepy stack technique retains the exact logic state; and, unlike the forced stack tech-

nique, the sleepy stack technique can utilize high-Vth transistors without 5X (or greater)

delay penalties. Therefore, far better than any prior approach known to this thesis author,

the sleepy stack technique can achieve ultra-low leakage power consumption while saving

state.

We first explain the structure of the sleepy stack technique using an inverter. Then

we describe the details of sleepy stack operation in active mode and sleep mode. The

advantages of the sleepy stack technique over the forced stack technique and the sleep

transistor technique are explored. Finally, we derive a first order delay model that compares

the sleepy stack technique to the forced stack technique analytically.

5.1 Sleepy stack approach

In this section, we explain our sleepy stack structure comparing to the forced stack tech-

nique and the sleep transistor technique. The details of the sleepy stack inverter are de-

scribed as an example. Two operation modes, active mode and sleep mode, of the sleepy

stack technique are explored.
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Figure 12: (a) Forced stack inverter (left) and (b) Sleep transistor inverter (right)

5.1.1 Sleepy stack structure

The sleepy stack structure has a combined structure of the forced stack and the sleep tran-

sistor techniques. Although we covered those two techniques in Section 4.1.1, we explain

the forced stack and the sleep transistor inverters here for the purposes of comparison with a

sleepy stack inverter. Figure 12(a) depicts a forced stack inverter, and Figure 12(b) depicts

a sleep transistor inverter. The forced stack inverter breaks existing transistors into two

transistors and forces a stack structure to take advantage of the stack effect; this is shown

in Figure 12(a). Meanwhile, the sleep transistor inverter shown in Figure 12(b) isolates

existing logic networks using sleep transistors. The stack structure in Figure 12(b) saves

leakage power consumption during sleep mode. This sleep transistor technique frequently

uses high-Vth sleep transistors (the transistors controlled by S and S ′) to achieve larger

leakage power reduction.

The sleepy stack technique has a structure merging the forced stack technique and the

sleep transistor technique. Figure 13 shows a sleepy stack inverter. The sleepy stack tech-

nique divides existing transistors into two transistors each typically with the same width

W1 half the size of the original single transistor’s width W0 (i.e., W1 = W0/2), thus

maintaining equivalent input capacitance. The sleepy stack inverter in Figure 13(a) uses

W/L = 3 for the pull-up transistors and W/L = 1.5 for the pull-down transistors, while a

conventional inverter with the same input capacitance would use W/L = 6 for the pull-up
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Figure 13: (a) Sleepy stack active mode (left) and (b) sleep mode (right)

transistor and W/L = 3 for the pull-down transistor (assuming µn = 2µp). Then sleep tran-

sistors are added in parallel to one of the transistors in each set of two stacked transistors.

We use half size transistor width of the original transistor (i.e., we use W0/2) for the sleep

transistor width of the sleepy stack. Although we use W0/2 for the width of the sleep tran-

sistor, changing the sleep transistor width may provide additional tradeoffs between delay,

power and area. However, in this thesis we mainly focus on applying the sleepy stack struc-

ture with W2/2 sleep transistor widths to generic logic circuits and SRAM while varying

technology feature size, threshold voltage and temperature – although for SRAM, where

transistor width is particularly critical and high-impact, we do vary all SRAM transistor

widths (including sleep transistors).

5.1.2 Sleepy stack operation

Now we explain how the sleepy stack works during active mode and during sleep mode.

Also, we explain leakage power saving using the sleepy stack structure.

The sleep transistors of the sleepy stack operate similar to the sleep transistors used in

the sleep transistor technique in which sleep transistors are turned on during active mode

and turned off during sleep mode. Figure 13 depicts the sleepy stack operation using a

sleepy stack inverter. During active mode (Figure 13(a)), S = 0 and S ′ = 1 are asserted,

and thus all sleep transistors are turned on. This sleepy stack structure can potentially
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reduce circuit delay in two ways. First, since the sleep transistors are always on during

active mode, the sleepy stack structure achieves faster switching time than the forced stack

structure; specifically, in Figure 13(a), at each sleep transistor drain, the voltage value

connected to the sleep transistor source is always ready and available at the sleep transistor

drain, and thus current flow is immediately available to the low-Vth transistors connected to

the gate output regardless of the status of each transistor in parallel to the sleep transistors.

Furthermore, we can use high-Vth transistors (which are slow but 1000X or so less leaky),

for the sleep transistors and the transistors parallel to the sleep transistors (see Figure 13)

without incurring large delay increase.

During sleep mode (Figure 13(b)), S = 1 and S ′ = 0 are asserted, and so both of the

sleep transistors are turned off. Although the sleep transistors are turned off, the sleepy

stack structure maintains exact logic state. The leakage reduction of the sleepy stack struc-

ture occurs in two ways. First, leakage power is suppressed by high-Vth transistors, which

are applied to the sleep transistors and the transistors parallel to the sleep transistors. Sec-

ond, two stacked and turned off transistors induce the stack effect, which also suppresses

leakage power consumption. By combining these two effects, the sleepy stack structure

achieves ultra-low leakage power consumption during sleep mode while retaining exact

logic state. The price for this, however, is increased area.

We will derive an analytical delay model of the sleepy stack inverter and compare the

sleepy stack technique to the forced stack inverter in the next section. This analytical

comparison can be skipped if desired. The detailed experimental methodology and the

results will be presented in Chapter 6.

5.2 Analytical comparison of sleepy stack inverter vs. forced
stack inverter

In this section, the analytical delay model of a sleepy stack inverter are explained and

compared to a forced stack inverter, the best prior state-saving leakage reduction technique
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we could find.

5.2.1 Delay model

➟ ➠ ➟ ➠➡ ➢

➡ ➢

➟ ➤ ➥

Figure 14: (a) Inverter logic circuit (left) and (b) RC equivalent circuit (right)

Generally the transistor delay of a conventional inverter shown in Figure 14 can be

expressed using the following equation:

Td0 = CLRt, (15)

where CL is the load capacitance and Rt is the transistor resistance. Cin in Figure 14(b)

indicates input capacitance. Although the non-saturation mode equation is complicated,

we can predict the adequate first-order gate delay from Equation 15 [15].

➦ ➧

➦ ➨ ➩

➦ ➧

➦ ➨ ➩

➫ ➭ ➯

➫ ➭ ➯

➫ ➭ ➯

➫ ➭ ➯➲ ➨ ➩ ➦ ➳ ➵

Figure 15: (a) Forced stack technique inverter (left) and (b) RC equivalent circuit (right)

Now we derive the delay of the inverter with the forced stack technique shown in Fig-

ure 15. Since we assume that we break each existing transistor into two half sized tran-

sistors (see Section 5.1.1), the resistance of each transistor of the forced stack technique
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is doubled, i.e., 2Rt, compared to the standard inverter; furthermore, in this way we can

maintain input capacitance equal to Figure 14(b). In Figure 15, Cx1 is internal node ca-

pacitance between the two pull-down transistors. Using the Elmore equation [72], we can

express the delay of the forced stack inverter as follows:

Td1 = (2Rt + 2Rt)CL + 2RtCx1 (16)

= 4RtCL + 2RtCx1. (17)

Similarly, we can depict the sleepy stack inverter and its RC equivalent circuit as shown

in Figure 16. Two extra sleep transistors are added and each sleep transistor has a resistance

of 2Rt (as discussed in Section 5.1.1, please note that increasing sleep transistor width

reduces the sleep transistor resistance further – however, let us continue with the approach

of Section 5.1). The internal node capacitance is Cx2.

➸
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Figure 16: (a) Sleepy stack technique inverter (left) and (b) RC equivalent circuit (right)

Using the Elmore equation, we can derive the transistor delay of the sleepy stack in-

verter as follows:

Td2 = (2Rt + Rt)CL + RtCx2 (18)

= 3RtCL + RtCx2. (19)

We assume that the internal node capacitance Cx2 is 50% larger than Cx1 because Cx2

is the capacitance from three transistors connected while Cx1 is the capacitance from two
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transistors connected. Then

RtCx2 = 1.5RtCx1 (20)

Td2 = 3RtCL + 1.5RtCx1 =
3

4
Td1. (21)

Therefore, Td2 is 25% faster than Td1 if we use the same Vdd and Vth for the forced stack

inverter and the sleepy stack inverter. Alternatively, we may increase Vth of the sleepy stack

inverter and make the delay of the sleepy stack inverter and the delay of the forced stack

inverter the same.

Let us take an example. Using Equation 14 (see Section 3.3), the delay of the forced

stack (Td1) and the delay of the sleepy stack (Td2) can be expressed as follows:

Td1 = K1
Vdd

(Vdd − Vth1)α
(22)

Td2 = K2
Vdd

(Vdd − Vth2)α
(23)

where K1 and K2 are delay coefficients of the forced stack inverter and the sleepy stack

inverter, respectively. When the threshold voltage of the forced stack Vth1 is the same as the

threshold voltage of the sleepy stack Vth2, we calculate K2 = 0.75K1 from Equation 21. If

we assume that α = 1.3, Vdd = 1V , and Vth = 0.25V , we can make Td1 equal to Td2 by

applying Vth2 = 0.423, which is 69% higher than the Vth1 of the forced stack inverter. This

higher Vth can potentially result in large leakage power reduction (e.g., 10X).

5.3 Summary

In this chapter, we introduced the sleepy stack technique for leakage power reduction. By

combining the forced stack technique and the sleep transistor technique, the sleepy stack

can achieve smaller transistor delay than the forced stack technique while retaining state

unlike the sleep transistor technique. The main advantage of the sleepy stack approach

is the ability to use high-Vth for both the sleep transistors and the transistors in parallel

with the sleep transistors. The increased threshold voltage transistors of the sleepy stack
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technique potentially brings much larger (>10X) leakage power reduction than the forced

stack technique while achieving the same transistor delay. From the analytical model of the

sleepy stack inverter, we observe that the sleepy stack inverter can reduce delay by 25%,

which alternatively can be used to increase Vth by 69%. Using this increased threshold

voltage, the sleepy stack inverter can potentially achieve a large (e.g., 10X) leakage power

reduction compared to the forced stack inverter.

In this chapter, we explained the sleepy stack structure and sleepy stack operation. We

also described a first order delay model of the sleepy stack (please note that all power

and delay results reported are based, however, on HSPICE). In the next chapter we apply

the sleepy stack structure to generic logic circuits and to SRAM, explaining in detail our

methodology.
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CHAPTER VI

APPLYING SLEEPY STACK

In chapter 5, we explained our new low-leakage “sleepy stack” structure. Furthermore,

we explore various circuit applications of the sleepy stack technique. We largely cate-

gorize the applications into two kinds: generic logic circuits and memory circuits, i.e.,

SRAM. The generic logic circuits – including inverter, NAND, NOR and full adder gates –

are implemented using state-saving as well as state-destructive low-leakage techniques for

empirical evaluation. We will explain our detailed experimental methodology. We then ex-

plore various implementations of the sleepy stack SRAM cell and explain the experimental

methodology we apply to the SRAM cell.

6.1 Applying sleepy stack to logic circuits

In this section, we first explain target benchmark circuits focusing on generic logic to eval-

uate our sleepy stack technique. Then we explain low-leakage techniques we consider for

purposes of comparison. Although the basic ideas of the compared techniques have been

covered in Section 4.1, this section will give detailed structure with transistor sizing for

each prior technique to be compared to our sleepy stack approach. Finally, we explain ex-

perimental methodology that we used to compare our technique to the previous techniques

we consider.

6.1.1 Benchmark circuits

We apply the sleepy stack technique to various generic logic circuits to show that the sleepy

stack technique is applicable to general logic design. We choose three benchmark circuits:

(i) a chain of 4 inverters, (ii) a 4:1 multiplexer and (iii) a 4-bit adder.
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6.1.1.1 A chain of 4 inverters
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Figure 17: Chain of 4 inverters

A chain of 4 inverters shown in Figure 17 is chosen because an inverter is one of the

most basic CMOS circuits and is typically used to study circuit characteristics. We size

each transistor of the inverter to have equal rise and fall times in each stage. Instead of

using the minimum possible size of the transistor in a given technology, we use W/L = 6

for PMOS and W/L = 3 for the NMOS. Please refer to Figure 55 in Appendix A for a

layout of the chain of 4 inverters in TSMC 0.18µ technology using the widths shown in

Figure 17; note that in Figure 55 all pMOS transistors have W = 1.08µ and L = 0.18µ

while all nMOS transistors have W = 0.54µ and L = 0.18µ.

S0

I0

I1

I2

I3

S1

E

Figure 18: 4:1 multiplexer
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6.1.1.2 4:1 multiplexer

A possible implementation of a 4:1 multiplexer is shown in Figure 18, in which I0-I3 are

input signals, S1 and S2 are selection signals, and E is an enable signal. The multiplexer

consists of inverter, 2-input NAND and 2-input NOR gates. All gates are size to have rise

and fall times equal to an inverter with PMOS W/L = 6 and NMOS W/L = 3. Although

the 4:1 multiplexer shown in Figure 18 is not the most efficient way to implement a 4:1

multiplexer, we use the design of Figure 18 to show that the sleepy stack can be applicable

to a combination of (a logic network of) typical CMOS gates. Please refer to Figures 65

and 66 in Appendix B for NAND and NOR layouts used in this 4:1 multiplexer.

6.1.1.3 4-bit adder

By use of the one bit full adder shown in Figure 19, we implement a 4-bit adder. A full

adder is an example of a typical complex CMOS gate. In Figure 19, a and b are two inputs
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Figure 19: 1-bit full adder
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and c is a carry input. Carry and Sum are outputs. The transistor sizing of the full adder

is noted in Figure 19. Please refer to Figure 60 in Appendix C for the full adder layout we

use.

These three benchmark circuits (chain of 4 inverters, 4:1 multiplexer and 4-bit adder)

designed in a conventional CMOS structure are used as our base case. In the next section

we explain the low-leakage techniques we compare to our sleepy stack technique. These

three benchmark circuits are also implemented using the low-leakage techniques explained

in the next section, Section 6.1.2.

6.1.2 Prior low-leakage techniques considered for comparison purposes

The sleepy stack technique is compared to a conventional CMOS approach, which is our

base case, and three other well-known previous approaches, i.e., the forced stack, sleep

and zigzag techniques explained in Section 4.1.1. Furthermore, we additionally consider

a high-Vth technique where all transistors are made to be high-Vth (this is another typical

state-of-the-art approach to reduce leakage power consumption).

6.1.2.1 Base case and high-Vth

In this thesis we use the phrase “base case” to refer to the conventional CMOS technique

shown in Figure 20 and described in a classic textbook by Weste and Eshraghian [74].

Figure 20 shows a pull-up network and a pull-down network using as few transistors as

Ö× ØØ×ÙÚÛ ÜÝ Þ ßàá

Ö× ØØ×ÙÚÛ ÜÝ Þ ßàâ

Figure 20: Base case
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possible to implement the Boolean logic function desired. The base case of a chain of 4

inverters is sized as explained in Section 6.1.1.1. The base case of a 4:1 multiplexer is

sized as explained in Section 6.1.1.2. The base case of a 4-bit adder is sized as explained

in Section 6.1.1.3.

For the high-Vth technique, we use the same circuit structure and transistor widths as the

base case for the benchmark circuit, but we use high-Vth transistors instead of the low-Vth

transistors used in the base case.

6.1.2.2 Sleepy stack technique

ãä ååä æçè éê ë ìíî

ãä ååä æçè éê ë ìíïðñ òóô ð ñ òó õ ö÷
ð ñ òó õ ö÷
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ð ñò óô ù

ù ú

Figure 21: Sleepy stack

Figure 21 shows the sleepy stack technique applied a conventional CMOS design.

When we apply the sleepy stack technique, we replace each existing transistor with two

half sized transistors and add one extra sleep transistor as shown in Figure 21. If dual-Vth

values are available, high-Vth transistors are used for sleep transistors and transistors that

are parallel to the sleep transistors.

6.1.2.3 Forced stack technique

Figure 22 shows the forced stack technique, which forces a stack structure by breaking

down an existing transistor into two half size transistors. When we apply the forced stack

technique, we replace each existing transistor with two half sized transistors as shown in

Figure 22.
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Figure 22: Forced stack

6.1.2.4 Sleep transistor technique

The sleep transistor technique shown in Figure 23 uses sleep transistors between both Vdd

and the pull-up network as well as between Gnd and the pull-down network. Generally,

the width/length (W/L) ratio is sized based on a trade-off between area, leakage reduction

and delay. For simplicity, we size the sleep transistor to the size of the largest transistor

in the network (pull-up or pull-down) connected to the sleep transistor. The size noted in

Figure 23 shows an example when the sleep transistors are applied to one of the inverters

from Figure 17. The pMOS and nMOS sleep transistors have W/L = 6 and W/L = 3,

respectively, because the size of the pull-up and pull-down transistors in Figure 17 are

W/L = 6 and W/L = 3, respectively. If dual-Vth values are available, high-Vth transistors

are used for sleep transistors.

✑✒ ✓✓✒✔✕✖✗✘ ✙ ✚✛✜

✑✒ ✓✓✒✔✕✖✗✘ ✙ ✚✛✢

✣

✣ ✤

✥ ✦ ✧★✩

✥ ✦ ✧★✪

Figure 23: Sleep
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6.1.2.5 Zigzag technique
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Figure 24: Zigzag

The zigzag technique in Figure 24 uses one sleep transistor in each logic stage either in

the pull-up or pull-down network according a particular input pattern. In this thesis, we use

an input vector that can achieve the lowest possible leakage power consumption. Then, we

either assign a sleep transistor to the pull-down network if the output is ‘1’ or else assign

a sleep transistor to the pull-up network if the output is ‘0.’ For Figure 24, we assume that

the output of the first stage is ‘1’ and the output of the second stage is ‘0’ when minimum

leakage inputs are asserted. Therefore, we apply a pull-down sleep transistor for the first

stage and a pull-up sleep transistor for the second stage. Similar to the sleep transistor

technique, we size the sleep transistors to the size of the largest transistor in the network

(pull-up or pull-down) connected to the sleep transistor. The transistor sizing in Figure 24

shows an example where the zigzag technique is applied to two inverters from Figure 17.

If dual-Vth values are available, high-Vth transistors are use for the sleep transistors.

The low-leakage techniques explained in this section, Section 6.1.2, are implemented

using the three benchmark circuits described in Section 6.1.1. In the next section, we

explain our experimental methodology.
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6.1.3 Experimental methodology

The implemented circuits are simulated to measure delay, power, and area. For power mea-

surement, we consider both dynamic power and static power. We first explain experimental

infrastructure, and then we explain detailed measurement methodology.

6.1.3.1 Simulation setup
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Figure 25: Experimental methodology

We use an empirical methodology to evaluate the five techniques which are the base

case, zigzag, sleep, stack and sleepy stack techniques. Each benchmark circuit imple-

mented using each of the five techniques is evaluated in terms of delay, dynamic power,

static power and area. Our experimental procedure, which is shown in Figure 25, is as

follows. We first design each target benchmark circuit with each specific technique us-

ing Cadence Virtuoso, a custom layout tool [11], and the North Carolina State University

(NCSU) Cadence design kit targeting TSMC 0.18µ technology [48]. When we design a

circuit using Cadence Virtuoso, we implement schematics as well as layouts. Then we

extract schematics from layout to obtain transistor circuit netlists. The extracted netlists

are fed into the HSPICE simulation to estimate delay and power of the target benchmark
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designed with a specific technique; we use Synopsys HSPICE [65].

We use TSMC 0.18µ parameters obtained from MOSIS [66], and we also use the Berke-

ley Predictive Technology Model (BPTM) parameters for the technologies below 0.18µ in

order to estimate the changes in power and delay as technology shrinks [7, 12]. The chosen

technologies, i.e., 0.07µ, 0.10µ, 0.13µ and 0.18µ, use supply voltages of 0.8V, 1.0V, 1.3V

and 1.8V, respectively. We assume that only a single supply voltage is used in the chip de-

signs we target. We do consider both single- and dual-Vth technology for the sleep, zigzag

and sleepy stack techniques. For the forced stack technique, we apply high-Vth to one of

the stacked transistor while fixing the technology to 0.07µ to observe delay and leakage

variations (we find that high-Vth causes dramatic – greater than 5X – delay increase with

the forced stack technique – see Section 7.1.2). For the logic circuits, we set all high-Vth

transistors to have 2.0 times higher Vth than the Vth of a normal transistor (low-Vth).

6.1.3.2 Delay

We measure the worst case propagation delay of each benchmark. Input vectors and input

and output triggers are chosen to measure delay across a given circuit’s critical path. The

propagation delay is measured between the trigger input edge reaching 50% of the supply

voltage value and the circuit output edge reaching 50% of the supply voltage value. Input

waveforms have a 4ns period (i.e., a 250 MHz rate) and rise and fall times of 100ps.

For the chain of 4 inverters, we measure two different propagation delay values: one

when an input goes high and another when an input goes low. We take the larger value as

the worst case propagation delay of the chain of 4 inverters.

For the 4:1 multiplexer, we measure the worst case propagation delay of the path S1-

Inv-NAND-NOR-NOR-NAND-output shown in Figure 26 (note that several other paths

exist with equal delay). We measure this critical path delay when the output changes from

‘0’ to ‘1.’ To generate this signal transition, we pick initial input values as I0 = 1, S1 = 1,

E = 1, I1 = 0, I2 = 0, I3 = 0, and S0 = 0 as shown in Figure 27; the result is that the
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Figure 26: 4:1 multiplexer critical path
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Figure 27: Input/output waveform for 4:1 multiplexer

output is equal to ‘0.’ Then we set S1 = 0 to make the output equal to ‘1.’ We measure the

propagation delay between the falling edge of S1 and the rising edge of the output.

We form a 4-bit adder as shown in Figure 28 using four 1-bit full adders all of which

are identical in size. The critical path of our 4-bit adder is the path B0 − Cout0 − Cin1 −
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Figure 28: Inputs of 4-bit adder for critical path delay measurement

Cout1−Cin2−Cout2−Cin3−Cout0−Cin1−Sum3. To measure the worst case propagation

delay, we initially force input signals as shown in Figure 28. Then we assert B0 = 1 and

measure the delay from B0 to Sum3.

6.1.3.3 Active power

Active power is measured by asserting semi-random input vectors and calculating the aver-

age power dissipation during this time. Input vectors are chosen so that a large number of

possible input combinations are included in the set. We take the average power dissipation

reported by HSPICE as our estimate of active power consumption. This active power in-

cludes dynamic power as well as static power during the time we measure. However, we do

not subtract out static power consumption to calculate pure dynamic power consumption;

instead, we use this power consumption as active power consumption. All sleep transis-

tors are turned on when we measure active power for the sleep, zigzag and sleepy stack

techniques.

We measure the active power of the chain of 4 inverters by asserting ‘1’ and ‘0’ repeat-

edly. For the 4:1 multiplexer, the input vectors are chosen to represent a sample of possible

inputs, with a change of at least four of the seven input bits at every input change. For the

4-bit adder, we assert input vectors covering every possible input. The waveform in Fig-

ure 29 shows input vectors asserted for each one bit adder, where the input vector changes

in every 4ns. Please note that we use the same signal timing while we scaling technology

from 0.18µ to 0.07µ. We do not customize signal timing to each particular technology
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Figure 29: Waveforms of 1-bit adder for dynamic power measurement

(e.g., 0.13µ) because in this way we can observe the effect of technology scaling on a fixed

clock. However, we are aware that reducing cycle time along with technology feature size

is possible and may reveal additional insights and tradeoffs.

6.1.3.4 Static power

We also use HSPICE to measure static power consumption. Since static power varies ac-

cording to input state, we consider either a full combination of input vectors or subset of

possible input combinations. When we measure static power, we first assert an input vector

and measure power consumption after signals become stable (e.g., after 30ns). Each mea-

sured static power consumption over 30ns is averaged to derive static power consumption

of each benchmark.

For the chain of 4 inverters, we consider two input vectors ‘1’ and ‘0.’ For the 4:1

multiplexer, we choose eight input vectors out of 128 possible input combinations. The

chosen input combinations are shown in Table 4. For the 4-bit adder, all eight possible

input vectors of a full adder are considered for leakage power measurement.

The sleep transistors of the sleep, zigzag, and sleepy stack techniques are turned off

during sleep mode in which we measure the leakage power consumption. For the zigzag

technique, we take the lowest static power dissipation instead of averaging each measured

power result for each input tested; in short, we assume that the zigzag technique applied
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Table 4: Input sets for a 4:1 multiplexer static power measurement

I0 I1 I2 I3 S0 S1 E

0 0 0 0 0 0 0

1 0 0 0 0 0 0

1 0 0 0 0 0 1

1 1 0 0 0 0 1

1 1 0 1 0 1 1

1 1 0 1 1 1 1

1 1 0 1 1 1 0

1 1 1 1 1 1 1

an input vector that achieves the lowest possible leakage power by analyzing circuitry as

explained in Section 4.1.1.2 and Section 6.1.2.5.

6.1.3.5 Area

The area of the 0.18µ technology version of each target circuit in a particular design style

(e.g., zigzag) is measured using layout. For a chain of 4 inverters and a 4-bit adder, we

directly measure from an actual full layout we did for each (see Appendices A and B).

For a 4:1 multiplexer, we directly measure the area of the gates used (i.e., NAND, NOR

and INV – see Appendix C) and estimate total area. Although the gates used to build the

4:1 multiplexer, i.e., NAND, NOR, and INV, have different heights, we assume that all

gates have identical height to use the same Vdd and Gnd rails. Therefore, we estimate area

of the 4:1 multiplexer by multiplying the height of the tallest gate and the sum of all gate

widths. For example, if we use an INV (width=0.5µ, height=1µ), a NAND (width=0.5µ,

height=1.2µ) and a NOR (width=0.5µ, height=1.4µ), then the area is 2.9µ2.

Area when utilizing technologies below 0.18µ is estimated by scaling the area of each

benchmark layout for each particular design style where TSMC 0.18µ technology is taken

as a starting point. We add 10% area overhead in order to consider non-linear scaling

layers, e.g., a particular metal layer. For example, if an area of 100µm2 is measured for a

particular layout in the TSMC 0.18µ process, we estimate the area for a 0.13µ process to be

100µm2
× (0.132/0.182) × 1.1. To estimate area of layouts using 0.13µ, 0.10µ and 0.07µ
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technologies, we do not take into account extra area needed to wire gates (even though

needed, e.g., to connect the gates comprising the 4:1 multiplexer or the 1-bit adders into

4 bits)), but the absence of a wiring penalty equally affects all techniques considered (i.e,

base case, sleep, zigzag, forced stack and sleepy stack).

6.1.3.6 Experiments

We perform two different experiments. We first compare the sleepy stack to the base case

and three well-known techniques, i.e., sleep, zigzag, and forced stack, while scaling tran-

sistor technologies. For this experiment, we use all three benchmark circuits explained in

Section 6.1.1.

Second, we compare the sleepy stack technique only to the state-saving techniques, i.e.,

the forced stack technique and the high-Vth technique. At this time we consider various Vth

values, various transistor widths and two different temperatures. We exclusively use a

chain of 4 inverters for this experiment. For the base case, we vary Vth of all transistors.

For the forced stack technique, we vary Vth of transistors connected to either Vdd or Gnd.

For the sleepy stack technique, we vary Vth of sleep transistors and transistors in parallel

with the sleep transistors. We use the “Delvto” option of HSPICE to change Vth. We

also consider two different temperatures because leakage power is highly dependent on

temperature. The two temperatures are 25oC and 110oC. The experimental results of the

generic logic circuits will be presented in Section 7.1.

In this section, Section 6.1, we explained the application of sleepy stack to generic

logic circuits. We further explained our experimental methodology. In the next section, we

explain sleepy stack SRAM and associated experimental methodology.

6.2 Applying sleepy stack to SRAM

We apply sleepy stack principles to SRAM cell design. We consider four different versions

of a sleepy stack SRAM cell to observe delay, area, and power tradeoffs. For purposes of
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comparison, we also consider two other state-saving low-leakage SRAM techniques, which

are the high-Vth SRAM cell and the forced stack SRAM cell.

6.2.1 Sleepy stack SRAM structure
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Figure 30: SRAM cell and leakage paths

We design an SRAM cell based on the sleepy stack technique. The conventional 6-T

SRAM cell consists of two coupled inverters and two wordline pass transistors as shown

in Figure 3, repeated here as Figure 30 for convenience. Since the sleepy stack technique

can be applied to each transistor separately, the six transistors can be changed individually.

However, to balance current flow (failure to do so potentially increases the risk of soft

errors [21]), a symmetric design approach is used.

Table 5: Sleepy stack technique on a SRAM cell

Combinations
cell leakage

reduction

bitline leakage

reduction

Pull-down (PD) sleepy stack medium low

Pull-down (PD), wordline (WL) sleepy stack medium high

Pull-up (PU), pull-down (PD) sleepy stack high low

Pull-up (PU), pull-down (PD),

wordline (WL) sleepy stack
high hign

We already discussed the two main types of subthreshold leakage currents in a 6-T

SRAM cell in Chapter 3. It is very important when applying the sleepy stack technique to

consider the various leakage paths in the SRAM cell. To address the effect of the sleepy

stack technique properly, we consider four combinations of the sleepy stack SRAM cell as

shown in Table 5. In Table 5, “Pull-Down (PD) sleepy stack” means that the sleepy stack
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Figure 31: Sleepy stack SRAM cell

technique is only applied to the pull-down transistors of an SRAM cell as indicated in the

bottom dashed box in Figure 31. “Pull-Down (PD), wordline (WL) sleepy stack” means

that the sleepy stack technique is applied to the pull-down transistors as well as wordline

transistors. Similarly, “Pull-Up (PU), Pull-Down (PD) sleepy stack” means that the sleepy

stack technique is applied to the pull-up transistors and the pull-down transistors (but not

to the wordline transistors) of an SRAM cell. Finally, “Pull-Up (PU), Pull-Down (PD),

wordline (WL) sleepy stack” means that the sleepy stack technique is applied to all the

transistors in an SRAM cell.

The PD sleepy stack can suppress some part of the cell leakage. Meanwhile, the PU,

PD sleepy stack can suppress the majority of the cell leakage. However, without applying

the sleepy stack technique to the wordline (WL) transistors, bitline leakage cannot

be significantly suppressed. Although lying in the bitline leakage path, the pull-down

sleepy stack is not effective to suppress both bitline leakage paths because one of the

pull-down sleepy stacks is always on. Therefore, to suppress subthreshold leakage current

in a SRAM cell fully, the PU, PD and WL sleepy stack approach needs to be considered as

shown in Figure 31.
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Figure 32: Sleepy stack SRAM cell layout

The sleepy stack SRAM cell design results in area increase because of the increase in

the number of transistors. However, we halve the transistor width of a conventional SRAM

cell to make a sleepy stack SRAM cell and thus the area increase of the sleepy stack SRAM

cell not necessarily directly proportional to the number of transistors. Halving transistor

width is possible when halved transistor width is larger than a minimum transistor width.

Unlike the conventional 6-T SRAM cell, the sleepy stack SRAM cell requires the routing

of one or two extra wires for the sleep control signal. We only use metal 1 and metal 2

layers for routing as shown in Figure 32 because we assume metal layers above metal 2 are

reserved for global routing. Further, the sleepy stack SRAM cell is designed to abut easily.
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6.2.2 Methodology

To evaluate the sleepy stack SRAM cell, we compare our technique to (i) using high-Vth

transistors as direct replacements for low-Vth transistors (thus maintaining only 6 transis-

tors in an SRAM cell) and (ii) the forced stack technique [47]; we choose these tech-

niques because these two techniques are state saving techniques without high risk of soft

error [21]. Although Asymmetric-Cell SRAM explained in Section 4.1.2.2 is also a state-

saving SRAM cell design, we do not consider Asymmetric-Cell SRAM because we assume

that our SRAM cells are filled equally with ‘1s’ and ‘0s.’ This is not the condition that ACC

prefers, and thus leakage power savings of ACC are smaller than the high-Vth SRAM cell,

which uses high-Vth for all six transistors.

We first layout SRAM cells of each technique, i.e., the conventional 6-T SRAM cell,

the forced stack SRAM cell and the sleepy stack SRAM cell. Instead of starting from

scratch, we use the CACTI model for the SRAM structure and transistor sizing [57]. We

use NCSU Cadence design kit targeting TSMC 0.18µ technology [48]. By scaling down

the 0.18µ layout, we obtain 0.07µ technology transistor level HSPICE schematics [53], and

we design a 64x64bit SRAM cell array. Please refer to Appendix D for layouts of these

various SRAM cells with different techniques in TSMC 0.18µ technology.

We estimate area directly from our custom layout (see Appendix D) using TSMC 0.18µ

technology and scale to 0.13µ, 0.10µ and 0.07µ using the same approach (with 10% araa

penalty) as described in Section 6.1.3.5. We are aware this is not exact, hence the word

“estimate.” We also assume the area of the SRAM cell with high-Vth technique is the

same as low-Vth. This assumption is reasonable because high-Vth can be implemented by

changing gate oxide thickness, and this almost does not affect area at all. We estimate

dynamic power, static power and read time of the SRAM cell using HSPICE simulation

with Berkeley Predictive Technology Model targeting 0.07µ technology [7]. The read time

is measured from the time when an enabled wordline reaches 10% of the Vdd voltage to

the time when either bitline or bitline’ drops from 100% of the precharged voltage
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to 90% of the precharged voltage value while the other remains high. Therefore, one of

the bitline signal remains at Vdd, and the other is 0.9xVdd. This 10% voltage difference

between bitline and bitline’ is typically enough for a sense amplifier to detect the

stored cell value [6]. Dynamic power of the SRAM array is measured during the read

operation with cycle time of 4ns. Static power of the SRAM cell is measured by turning off

sleep transistors if applicable. To avoid leakage power measurement biased by a majority

of ‘1’ versus ‘0’ (or vice-versa) values, half of the cells are randomly set to ‘0,’ with the

remaining half of the cells set to ‘1.’

We compare the sleepy stack SRAM cell to the conventional 6-T SRAM cell, high-Vth

6-T SRAM cell and forced stack SRAM cell. For the “high-Vth” technique and the forced

stack technique, we consider the same technique combinations we applied to the sleepy

stack SRAM cell – see Table 5 in Section 6.2.1.

Table 6: Applied SRAM techniques

Case1 Low-Vth Std Conventional 6T SRAM

Case2 PD high-Vth High-Vth applied to PD

Case3 PD, WL high-Vth High-Vth applied to PD, WL

Case4 PU, PD high-Vth High-Vth applied to PU, PD

Case5 PU, PD, WL high-Vth High-Vth applied to PU, PD, WL

Case6 PD stack Stack applied to PD

Case7 PD, WL stack Stack applied to PD, WL

Case8 PU, PD stack Stack applied to PU, PD

Case9 PU, PD, WL stack Stack applied to PU, PD, WL

Case10 PD sleepy stack Sleepy stack applied to PD

Case11 PD, WL sleepy stack Sleepy stack applied to PD, WL

Case12 PU, PD sleepy stack Sleepy stack applied to PU, PD

Case13 PU, PD, WL sleepy stack Sleepy stack applied to PU, PD, WL

Technique

To properly observe the techniques, we compare 13 different cases as shown in Table 6.

Case1 is the conventional 6-T SRAM cell, which is our base case. Cases 2, 3, 4 and 5 are

6-T SRAM cells using the high-Vth technique. PD high-Vth is the high-Vth technique ap-

plied only to the pull-down transistors. PD, WL high-Vth is the high-Vth technique applied
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to the pull-down transistors as well as to the wordline transistors. PU, PD high-Vth is the

high-Vth technique applied to the pull-up and pull-down transistors. PU, PD, WL high-Vth

is the high-Vth technique applied to all the SRAM transistors. Cases 6, 7, 8 and 9 are 6-T

SRAM cells with the forced stack technique [47]. PD stack is the forced stack technique

applied only to the pull-down transistors. PD, WL stack is the forced stack technique ap-

plied to the pull-down transistors as well as to the wordline transistors. PU, PD stack is

the forced stack technique applied to the pull-up and pull-down transistors. PU, PD, WL

stack is the forced stack technique applied to all the SRAM transistors. Please note that we

do not apply high-Vth to the forced stack technique because the forced stack SRAM with

high-Vth incurs more than 2X delay increase. Cases 10, 11, 12 and 13 are the four sleepy

stack SRAM cell approaches as listed in Table 5. For the sleepy stack, high-Vth is applied

only to the sleep transistors and the transistors parallel to the sleep transistors as shown in

Figure 31.

The experimental results regarding SRAM leakage results will be presented in Sec-

tion 7.2.

6.3 Summary

In this chapter, we explore two applications of the sleepy stack approach: sleepy stack

logic circuits and sleepy stack SRAM. For the sleepy stack logic circuit evaluation, we take

a chain of 4 inverters, a 4:1 multiplexer and a 4-bit adder as benchmark circuits. Then

we compare six different techniques, i.e., base case, high-Vth, sleep, zigzag, forced stack,

and sleepy stack. We use HSPICE for performance evaluation, i.e., power consumption

and delay. We estimate area using layout. Then we explain the sleepy stack SRAM cell

and two other techniques, i.e., the high-Vth SRAM cell and the forced stack SRAM cell.

Furthermore, we explain detailed experimental methodology.

In the next section, we will explain experimental results using the methodology explain

in this section.
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CHAPTER VII

SLEEPY STACK EXPERIMENTAL RESULTS

We compare the sleepy stack technique to a number of key, well-known low-leakage tech-

niques. We first explore the experimental results for general logic circuits. Then we explore

the experimental results for SRAM cell design.

7.1 Experimental results for general logic circuits

In this section, we explain the experimental results for generic logic circuits. We utilize the

three logic designs presented in Section 6.1.

7.1.1 Impact of technology scaling

First we explore the impact of technology scaling. Figures 33, 34 and 35 show the ex-

perimental results for the chain of 4 inverters (see Section 6.1.1.1), 4:1 multiplexer (see

Section 6.1.1.2), and 4-bit adder (see Section 6.1.1.3). Figures 33, 34 and 35 show results

from 0.18µ to 0.07µ. We considered five different techniques: base case (standard low-Vth

CMOS), forced stack, sleep, zigzag, and sleepy stack. Please note that in Figures 33, 34

and 35, a ‘*’ next to a technique name means that the technique was implemented utilizing

high-Vth transistors appropriately.

We can observe from Figures 33(a), 34(a) and 35(a) that static power increases as tech-

nology feature size shrinks. We can also observe from Figures 33(b), 34(b) and 35(b) that

dynamic power decreases as technology feature size shrinks . Finally, we can observe from

Figures 33(c), 34(c) and 35(c) that propagation delay decreases as technology feature size

shrinks.

Let us focus on the single Vth 0.07µ technology implementation of each benchmark
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Figure 33: Results for a chain of 4 inverters (*dual Vth)

Table 7: Results for a chain of 4 inverters (0.07µ)

A chain of 4 inverters Propagation delay (s) Static Power (W) Dynamic Power (W) Area (µµµµ2)

Base case 7.05E-11 1.57E-08 1.34E-06 5.23

Forced stack 2.11E-10 9.81E-10 1.25E-06 5.97

Sleep 1.13E-10 2.45E-09 1.39E-06 10.67

ZigZag 1.15E-10 1.96E-09 1.34E-06 7.39

Sleepy Stack 1.45E-10 1.69E-09 1.08E-06 9.03

Sleep (dual Vth) 1.69E-10 4.12E-12 1.46E-06 10.67

ZigZag (dual Vth) 1.67E-10 4.07E-12 1.39E-06 7.39

Sleepy Stack (dual Vth) 1.99E-10 4.56E-12 1.09E-06 9.03

shown in Tables 7, 8 and 9: we see that our sleepy stack approach with single-Vth results

in leakage power roughly equivalent to the other three leakage-reduction approaches, i.e.,

forced stack, sleep and zigzag when each uses single-Vth technology. Compared to the

sleep and zigzag approaches, which do not save state, the sleepy stack approach results in
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up to 68% delay increase and up to 138% area increase. Furthermore, compared to the

forced stack approach, which saves state, the sleepy stack approach results in up to 118%

area increase, but the sleepy stack is up to 31% faster. Thus, we recommend the sleepy stack

approach with single-Vth when state-preservation is needed, dual-Vth is not available, the

speedup over forced stack is important and the area penalty for sleepy stack is acceptable.
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Figure 34: Results for a 4:1 multiplexers (*dual Vth)

In addition to single-Vth technology, the zigzag, sleep and sleepy stack approaches

are also implemented using dual-Vth technology in which high-Vth transistors are used

as explained in Sections 6.1.2.2, 6.1.2.4 and 6.1.2.5. Compared to the sleep and zigzag

approaches with using dual-Vth technology, the sleepy stack approach can save state. This

is a main advantage of the sleepy stack over the sleep and zigzag techniques.
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Table 8: Results for a 4:1 multiplexers (0.07µ)

4:1 multiplexer Propagation delay (s) Static Power (W) Dynamic Power (W) Area (µµµµ2)

Base case 1.39E-10 8.57E-08 2.49E-06 50.17

Forced stack 4.52E-10 6.46E-09 2.14E-06 57.40

Sleep 1.99E-10 1.65E-08 2.10E-06 74.11

ZigZag 2.17E-10 1.36E-08 2.54E-06 74.36

Sleepy Stack 3.35E-10 1.09E-08 2.18E-06 125.33

Sleep (dual Vth) 2.87E-10 2.41E-11 2.15E-06 74.11

ZigZag (dual Vth) 3.28E-10 3.62E-11 2.59E-06 74.36

Sleepy Stack (dual Vth) 4.84E-10 3.20E-11 2.09E-06 125.33
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Figure 35: Results for a 4-bit adders (*dual Vth)

Let us compare in 0.07µ technology the state-saving techniques, which are the base case

with single Vth, forced stack with single Vth and sleepy stack with dual-Vth, highlighted as

shaded rows in Tables 7, 8 and 9. The results from a chain of 4 inverters in Table 7 shows

that the sleepy stack achieves 3440X leakage reduction over the base case. Furthermore,
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Table 9: Results for a 4-bit adders (0.07µ)

4-bit adder Propagation delay (s) Static Power (W) Dynamic Power (W) Area (µµµµ2)

Base case 3.76E-10 8.87E-08 8.81E-06 22.96

Forced stack 1.16E-09 6.77E-09 7.63E-06 30.94

Sleep 5.24E-10 1.24E-08 9.03E-06 30.94

ZigZag 5.24E-10 9.09E-09 8.44E-06 27.62

Sleepy Stack 8.65E-10 1.07E-08 7.70E-06 65.88

Sleep (dual Vth) 7.48E-10 2.23E-11 9.41E-06 30.94

ZigZag (dual Vth) 7.43E-10 2.19E-11 8.53E-06 27.62

Sleepy Stack (dual Vth) 1.23E-09 3.56E-11 7.26E-06 65.88

the sleepy stack achieves 215X leakage power reduction over the forced stack while reduc-

ing delay by 6% and increasing area by 51%. The results from a 4:1 multiplexer in Table 8

shows that the sleepy stack achieves 2680X leakage reduction over the base case. Com-

pared to the forced stack, the sleepy stack achieves 202X leakage power reduction over

the forced stack while increasing delay by 7% and increasing area by 118%. Finally, the

results from a 4-bit adder in Table 9 shows that the sleepy stack achieves 2490X leakage

reduction over the base case. Compared to the forced stack, Table 9 shows that the sleepy

stack achieves 190X leakage power reduction over the forced stack while increasing delay

by 6% and increasing area by 113%.

In short, our sleepy stack technique achieves up to 215X leakage power reduction with

up to 7% delay overhead. Not surprisingly, the sleepy stack approach has 51∼118% larger

area as compared to the forced stack approach. Therefore, our sleepy stack approach with

dual-Vth can be used where state-preservation and ultra-low leakage power consumption

are needed and are judged to be worth the area overhead.

7.1.2 Impact of Vth

Choosing the right Vth value of the sleepy stack technique is very important in terms of

delay and power consumption. Therefore, using a chain of 4 inverters with 0.07µ technol-

ogy, we compare dynamic power, leakage power and delay of the state-saving techniques,

i.e., base case (conventional CMOS technique), forced stack and sleepy stack, while vary-

ing Vth. We vary Vth of transistors as follows: all the transistors in the base case; one of
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Figure 36: Results from a chain of 4 inverters while varying Vth

stacked transistors in the forced stack case; and the sleep transistors plus transistors parallel

to the sleep transistors in the sleepy stack case. Figure 36 shows the measured results while

varying Vth. From Figure 36(a), we can see the forced stack inverter increases delay dra-

matically as Vth increases (e.g., with 2xVth, 6.2X delay the over base case). The base case

also shows relatively large variation compared to the sleepy stack technique as Vth changes.

While varying Vth of the sleepy stack, we can find Vth of the sleepy stack that achieves the
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same delay with the forced stack with Vth = 0.2V , and dotted lines in Figure 36(a) indicate

the Vth values found. At 25oC, the sleepy stack with Vth = 0.4V has almost exactly the

same delay as the forced stack with Vth = 0.2V . Also, at 110oC, the sleepy stack with

Vth = 0.42V has exactly the same delay as the forced stack with Vth = 0.2V .

If we compare the sleepy stack technique to the base case with Vth = 0.2V , the sleepy

stack technique achieves 1000X-3400X leakage power reduction according to the temper-

ature. Although the base case with higher Vth achieves better leakage reduction over the

forced stack technique, the sleepy stack technique achieves 2X leakage power reduction

over the base case with higher Vth. From Figure 36(b), we can observe that the base case

with Vth = 0.2V consumes unacceptable active power consumption when the temperature

is 110oC. This is because large leakage power consumption of the base case severely hurts

active power consumption. This result emphasizes the importance of the leakage power

reduction techniques in nanoscale technology.

7.1.3 Impact of transistor width

The sleepy stack technique comes with some area overhead. Therefore, we explore the im-

pact of transistor width variation using three state-saving techniques, i.e., base case (con-

ventional CMOS), forced stack and sleepy stack. Although increasing transistor width

reduces gate internal resistance, the increased transistor width increases gate input capaci-

tance. Therefore, we need to carefully size transistor width to reduce overall delay. We set

Vth of the base case and the sleepy stack technique to Vth = 0.4V while using Vth = 0.2V

for the forced stack technique since the forced stack technique with high-Vth increases de-

lay dramatically as observed in Figure 37(a). We set the temperature to 25oC. Also, we

use 3Cinv as a load capacitance. The results show that inverter chain delay decreases as

transistor width increases. However, delay reduction saturates due to the increased gate

input capacitance. In Figure 37(a), initially the delay of the base case and the sleepy stack
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Figure 37: Results from a chain of 4 inverters while varying width

inverter are different. However, as transistor width increases, sleepy stack shows notice-

able delay reduction, and the sleepy stack and the base case achieve similar delay using

5X transistor width. From Figure 37(b), the sleepy stack inverter with 1xWidth is 72% and

51% larger than the base case and the forced stack, respectively. Since the sleepy stack

technique comes with some area penalties, we find an area of the forced stack technique

that has the same area of sleepy stack technique by increasing transistor width. The forced

stack inverter has similar areas with the sleepy stack when 2X transistor widths are applied.

The forced stack with 2X width shows almost similar delay with the sleepy stack technique,

but the forced stack shows 430X larger leakage power consumption than the sleepy stack

technique.

We presented the advantage of the sleepy stack technique used in generic logic circuits.

In next section, we explain the experimental results from SRAM.
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7.2 Experimental results for SRAM

In this section, we explore the experimental results for the different sleepy stack SRAM

cell variations. Unlike the generic circuit experimental comparisons in Section 7.1, here,

we only consider state-saving techniques, i.e., high-Vth and forced stack, in addition to the

sleepy stack SRAM. Also, for SRAM, we consider one more factor, the static noise margin,

which represents the noise immunity of SRAM.

7.2.1 Area

Table 10: Layout area

Technique Height(u) Width(u) Area(u
2
)

Normalized

area

Case1 Low-Vth Std 3.825 4.500 17.213 1.00

Case2 PD high-Vth 3.825 4.500 17.213 1.00

Case3 PD, WL high-Vth 3.825 4.500 17.213 1.00

Case4 PU, PD high-Vth 3.825 4.500 17.213 1.00

Case5 PU, PD, WL high-Vth 3.825 4.500 17.213 1.00

Case6 PD stack 3.465 4.680 16.216 0.94

Case7 PD, WL stack 3.465 5.760 19.958 1.16

Case8 PU, PD stack 3.285 4.680 15.374 0.89

Case9 PU, PD, WL stack 3.465 5.760 19.958 1.16

Case10 PD sleepy stack 4.545 5.040 22.907 1.33

Case11 PD, WL sleepy stack 4.455 6.705 29.871 1.74

Case12 PU, PD sleepy stack 5.760 5.040 29.030 1.69

Case13 PU, PD, WL sleepy stack 5.535 6.615 36.614 2.13

Table 10 shows the area of each technique. Please note that SRAM cell area can be

reduced further by using minimum size transistors, but reducing transistor size increases

cell read time. Some SRAM cells with the forced stack technique show smaller area even

compared to the base case. The reason is that divided transistors can enable a particularly

squeezed design. The sleepy stack technique increases area by between 33% and 113%.

The added sleep transistors are a bottleneck to reduce the size of the sleepy stack SRAM

cells. Further, wiring the sleep control signals (an overhead we do not consider in Table 10)

makes the design more complicated.
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7.2.2 Cell read time

Table 11: Cell read time

1xVth 1.5xVth 2xVth 1xVth 1.5xVth 2xVth 1xVth 1.5xVth 2xVth 1xVth 1.5xVth 2xVth

Case1 Low-Vth Std 1.04E-10 1.05E-10 1.000 1.000

Case2 PD high-Vth 1.06E-10 1.08E-10 1.07E-10 1.11E-10 1.022 1.043 1.020 1.061

Case3 PD, WL high-Vth 1.16E-10 1.33E-10 1.17E-10 1.32E-10 1.111 1.280 1.117 1.262

Case4 PU, PD high-Vth 1.06E-10 1.10E-10 1.07E-10 1.10E-10 1.022 1.055 1.020 1.048

Case5 PU, PD, WL high-Vth 1.15E-10 1.33E-10 1.16E-10 1.32E-10 1.111 1.277 1.110 1.259

Case6 PD stack 1.42E-10 1.41E-10 1.368 1.345

Case7 PD, WL stack 1.71E-10 1.76E-10 1.647 1.682

Case8 PU, PD stack 1.40E-10 1.40E-10 1.348 1.341

Case9 PU, PD, WL stack 1.77E-10 1.75E-10 1.704 1.678

Case10 PD sleepy stack 1.33E-10 1.36E-10 1.32E-10 1.31E-10 1.276 1.307 1.263 1.254

Case11 PD, WL sleepy stack 1.52E-10 1.61E-10 1.50E-10 1.62E-10 1.458 1.551 1.435 1.546

Case12 PU, PD sleepy stack 1.33E-10 1.36E-10 1.35E-10 1.38E-10 1.275 1.306 1.287 1.319

Case13 PU, PD, WL sleepy stack 1.51E-10 1.67E-10 1.52E-10 1.57E-10 1.456 1.605 1.450 1.504

N/A N/A

N/A N/A

N/A N/A

N/A N/A

25°C 110°C

Delay (sec) Normalized delay

25°C 110°C

N/A

N/A N/A

N/A N/A

N/A N/A

N/A

Technique

Although SRAM cell read time changes slightly as temperature changes, the impact

of temperature on the cell read time is quite small. However, the impact of threshold

voltage is large. We apply 1.5xVth and 2xVth for the high-Vth technique and the sleepy

stack technique. As shown in Table 11, the delay penalty of the forced stack technique

is between 35% and 70% compared to the standard 6-T SRAM cell. This is one of the

primary reasons that the forced stack technique cannot use high-Vth transistors without

incurring dramatic delay increase (e.g., 2X or more delay penalty is observed using either

1.5xVth or 2xVth).
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Figure 38: Worst case (at 110oC) cell read time comparison

Let us focus on the worst case condition, i.e., at 110oC shown in Figure 38. Among
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the three low-leakage techniques, the sleepy stack technique is the second best in terms

of cell read time. The PU, PD, WL high-Vth with 2xVth is 16% faster than the PU, PD,

WL sleepy stack with 2xVth at 110o. Since we are aware that area and delay are critical

factors when designing SRAM, we will explore area and delay impact using tradeoffs in

Section 7.2.4. However, let us first discuss leakage reduction (i.e., without yet focusing on

tradeoffs, which will be the focus of Section 7.2.4).

7.2.3 Leakage power

We measure leakage power while changing threshold voltage and temperature because the

impact of threshold voltage and temperature on leakage power is significant. Table 12

shows leakage power consumption with two high-Vth values, 1.5xVth and 2xVth, and two

temperatures, 25oC and 110oC, where Case1 and the cases using the forced stack technique

(Cases 6, 7, 8 and 9) are not affected by changing Vth because these use only low-Vth.

Table 12: Leakage power

1xVth 1.5xVth 2xVth 1xVth 1.5xVth 2xVth 1xVth 1.5xVth 2xVth 1xVth 1.5xVth 2xVth

Case1 Low-Vth Std 9.71E-05 1.25E-03 1.0000 1.0000

Case2 PD high-Vth 5.31E-05 5.12E-05 7.16E-04 6.65E-04 0.5466 0.5274 0.5711 0.5305

Case3 PD, WL high-Vth 2.01E-05 1.69E-05 3.20E-04 2.33E-04 0.2071 0.1736 0.2555 0.1860

Case4 PU, PD high-Vth 3.68E-05 3.45E-05 5.04E-04 4.42E-04 0.3785 0.3552 0.4022 0.3522

Case5 PU, PD, WL high-Vth 3.79E-06 1.38E-07 1.07E-04 8.19E-06 0.0391 0.0014 0.0857 0.0065

Case6 PD stack 5.38E-05 7.07E-04 0.5541 0.5641

Case7 PD, WL stack 2.15E-05 3.20E-04 0.2213 0.2554

Case8 PU, PD stack 3.75E-05 4.95E-04 0.3862 0.3950

Case9 PU, PD, WL stack 5.39E-06 1.04E-04 0.0555 0.0832

Case10 PD sleepy stack 5.18E-05 5.16E-05 6.62E-04 6.51E-04 0.5331 0.5315 0.5282 0.5192

Case11 PD, WL sleepy stack 1.80E-05 1.77E-05 2.45E-04 2.28E-04 0.1852 0.1827 0.1955 0.1820

Case12 PU, PD sleepy stack 3.54E-05 3.52E-05 4.43E-04 4.31E-04 0.3646 0.3630 0.3534 0.3439

Case13 PU, PD, WL sleepy stack 1.62E-06 3.24E-07 2.09E-05 2.95E-06 0.0167 0.0033 0.0167 0.0024

N/A

N/AN/A

N/A

N/A

N/A N/A

N/A

N/A

N/A

Normalized leakage power

25°C

Leakage power (W)

110°C 25°C 110°C

N/A N/A

N/A

N/A

N/A N/A

Technique

7.2.3.1 Results at 25oC

Our results at 25oC show that Case5 is the best with 2xVth and Case13 is the best with

1.5xVth. Specially, at 1.5xVth, Case5 and Case13 achieve 25X and 60X leakage reduction

over Case1, respectively. However, the leakage reduction comes with delay increase. The

delay penalty is 11% and 45%, respectively, compared to Case1.
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7.2.3.2 Results at 110oC

Absolute power consumption numbers at 110oC show more than 10X increase of leakage

power consumption compared to the results at 25oC. This could be a serious problem for

SRAM because SRAM often resides next to a microprocessor whose temperature is high.
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Figure 39: Worst case (at 110oC) leakage comparison

At 110oC, the sleepy stack technique shows the best result in both 1.5xVth and 2xVth

even compared to the high-Vth technique (see Figure 39. The leakage performance degra-

dation under high temperature is very noticeable with the high-Vth technique and the forced

stack technique. For example, at 25oC the high-Vth technique with 1.5xVth (Case5) and the

forced stack technique (Case9) show around 96% leakage reduction. However, at 110oC

the same techniques show around 91% of leakage power reduction compared to Case1.

Only the sleepy stack technique achieves superior leakage power reduction; after increas-

ing temperature, the sleepy stack SRAM shows 5.1X and 4.8X reductions compared to

Case5 and Case9, respectively, with 1.5xVth.

When the low-leakage techniques are applied only to the pull-up and pull-down transis-

tors, leakage power reduction is at most 65% (2xVth, 110oC) because bitline leakage

cannot be suppressed. The remaining 35% of leakage power can be suppressed by apply-

ing low-leakage techniques to wordline transistors. This implies that bitline leakage

power addresses around 35% of SRAM cell leakage power consumption. This trend is be

75



observed for all three technniques compared, i.e., high-Vth, forced stack, sleepy stack.

7.2.4 Tradeoffs in low-leakage techniques

Although the sleepy stack technique shows superior results in terms of leakage power, we

need to explore area, delay and power together because the sleepy stack technique comes

with non-negligible area and delay penalties. To be compared with the high-Vth technique

at the same cell read time, we consider four more cases other than shown in Table 6. We

increase all transistors placed in the wordline and all transistors placed in pull-down of

the sleepy stack SRAM. Then, for the sleepy stack technique, we find new transistor widths

of wordline transistors and pull-down transistors, which result in delay approximately

equal to the delay of the 6-T high-Vth case, i.e., Case5. The new cases are marked with ‘*’

(Cases 10*, 11*, 12*, 13*). The results are shown in Table 13 and Table 14. To enhance

readability of tradeoffs, each table is sorted by leakage power. Although we compared four

different simulation conditions, we take the condition with 1.5xVth at 110oC and 2xVth

at 110oC as important representative technology points at which to compare the trade-

offs between techniques. We choose 110oC because generally SRAM operates at a high

temperature and also because high temperature is the “worst case.”

Table 13: Tradeoffs (1.5xVth, 110oC)

Technique
Leakage

power (W)
Delay (sec) Area (u

2
)

Normalized

leakage power

Normalized

delay

Normalized

area

Case1 Low-Vth Std 1.254E-03 1.05E-10 17.21 1.000 1.000 1.000

Case2 PD high-Vth 7.159E-04 1.07E-10 17.21 0.571 1.020 1.000

Case6 PD stack 7.071E-04 1.41E-10 16.22 0.564 1.345 0.942

Case10* PD sleepy stack* 6.744E-04 1.15E-10 25.17 0.538 1.102 1.463

Case10 PD sleepy stack 6.621E-04 1.32E-10 22.91 0.528 1.263 1.331

Case4 PU, PD high-Vth 5.042E-04 1.07E-10 17.21 0.402 1.020 1.000

Case8 PU, PD stack 4.952E-04 1.40E-10 15.37 0.395 1.341 0.893

Case12* PU, PD sleepy stack* 4.532E-04 1.15E-10 31.30 0.362 1.103 1.818

Case12 PU, PD sleepy stack 4.430E-04 1.35E-10 29.03 0.353 1.287 1.687

Case3 PD, WL high-Vth 3.203E-04 1.17E-10 17.21 0.256 1.117 1.000

Case7 PD, WL stack 3.202E-04 1.76E-10 19.96 0.255 1.682 1.159

Case11* PD, WL sleepy stack* 2.721E-04 1.16E-10 34.40 0.217 1.111 1.998

Case11 PD, WL sleepy stack 2.451E-04 1.50E-10 29.87 0.196 1.435 1.735

Case5 PU, PD, WL high-Vth 1.074E-04 1.16E-10 17.21 0.086 1.110 1.000

Case9 PU, PD, WL stack 1.043E-04 1.75E-10 19.96 0.083 1.678 1.159

Case13* PU, PD, WL sleepy stack* 4.308E-05 1.16E-10 41.12 0.034 1.112 2.389

Case13 PU, PD, WL sleepy stack 2.093E-05 1.52E-10 36.61 0.017 1.450 2.127
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Table 14: Tradeoffs (2.0xVth, 110oC)

Technique Static (W) Delay (sec) Area (u
2
)

Normalized

leakage

Normalized

delay

Normalized

area

Case1 Low-Vth Std 1.25E-03 1.05E-10 17.21 1.000 1.000 1.000

Case6 PD stack 7.07E-04 1.41E-10 16.22 0.564 1.345 0.942

Case2 PD high-Vth 6.65E-04 1.11E-10 17.21 0.530 1.061 1.000

Case10 PD sleepy stack 6.51E-04 1.31E-10 22.91 0.519 1.254 1.331

Case10* PD sleepy stack* 6.51E-04 1.31E-10 22.91 0.519 1.254 1.331

Case8 PU, PD stack 4.95E-04 1.40E-10 15.37 0.395 1.341 0.893

Case4 PU, PD high-Vth 4.42E-04 1.10E-10 17.21 0.352 1.048 1.000

Case12* PU, PD sleepy stack* 4.31E-04 1.33E-10 29.48 0.344 1.270 1.713

Case12 PU, PD sleepy stack 4.31E-04 1.38E-10 29.03 0.344 1.319 1.687

Case7 PD, WL stack 3.20E-04 1.76E-10 19.96 0.255 1.682 1.159

Case3 PD, WL high-Vth 2.33E-04 1.32E-10 17.21 0.186 1.262 1.000

Case11* PD, WL sleepy stack* 2.29E-04 1.30E-10 32.28 0.183 1.239 1.876

Case11 PD, WL sleepy stack 2.28E-04 1.62E-10 29.87 0.182 1.546 1.735

Case9 PU, PD, WL stack 1.04E-04 1.75E-10 19.96 0.083 1.678 1.159

Case5 PU, PD, WL high-Vth 8.19E-06 1.32E-10 17.21 0.007 1.259 1.000

Case13* PU, PD, WL sleepy stack* 3.62E-06 1.32E-10 38.78 0.003 1.265 2.253

Case13 PU, PD, WL sleepy stack 2.95E-06 1.57E-10 36.61 0.002 1.504 2.127

In Table 13 and Table 14, we observe seven and six Pareto points, respectively, which

are in shaded rows, considering three variables of leakage, delay, and area. For both results,

Case13 shows the lowest possible leakage, 2.7∼5.1X smaller than the leakage of any of the

prior approaches considered; however, there is a corresponding delay and area penalty. Al-

ternatively, Case13* shows the same delay (within 0.2%) as Case5 and 2.26∼2.5X leakage

reduction over Case5. In short, this paper presents new, previously unknown Pareto points

at the low-leakage end of the spectrum.

Please note that we do not vary sleep transistor width (e.g., we do not increase width

even more) or transistor width of the in parallel transistor (e.g., we do not decrease to

minimum the width of the transistor in parallel with the sleep transistor). Such additional

optimizations can reduce delay further at a potential cost of increased area. However,

we have nonetheless performed a broad search of the design space to capture important

characteristics; of course, the design space is exponential and can be further explored!
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Table 15: Active power

1xVth 1.5xVth 2xVth 1xVth 1.5xVth 2xVth 1xVth 1.5xVth 2xVth 1xVth 1.5xVth 2xVth

Case1 Low-Vth Std 8.19E-04 2.04E-03 1.000 1.000

Case2 PD high-Vth 7.67E-04 7.48E-04 1.48E-03 1.41E-03 0.936 0.913 0.724 0.691

Case3 PD, WL high-Vth 7.02E-04 6.78E-04 1.26E-03 9.75E-04 0.858 0.829 0.618 0.478

Case4 PU, PD high-Vth 7.60E-04 7.31E-04 1.17E-03 1.19E-03 0.928 0.893 0.572 0.582

Case5 PU, PD, WL high-Vth 6.86E-04 6.89E-04 8.82E-04 7.50E-04 0.838 0.842 0.432 0.368

Case6 PD stack 7.58E-04 1.37E-03 0.926 0.669

Case7 PD, WL stack 5.45E-04 8.12E-04 0.665 0.398

Case8 PU, PD stack 7.41E-04 1.22E-03 0.905 0.596

Case9 PU, PD, WL stack 5.22E-04 5.97E-04 0.637 0.293

Case10 PD sleepy stack 8.03E-04 8.03E-04 1.65E-03 1.66E-03 0.981 0.981 0.807 0.811

Case11 PD, WL sleepy stack 6.32E-04 5.87E-04 1.20E-03 1.22E-03 0.773 0.717 0.586 0.600

Case12 PU, PD sleepy stack 7.87E-04 8.23E-04 1.60E-03 1.63E-03 0.961 1.005 0.786 0.797

Case13 PU, PD, WL sleepy stack 5.89E-04 5.80E-04 1.20E-03 1.11E-03 0.719 0.708 0.588 0.546

N/A N/A

N/A N/A

N/A N/A

N/A N/A

Active power (W)

Technique 25°C

Normalized active power

110°C

N/AN/A

25°C 110°C

N/A N/A

N/A

N/A N/A

N/A

7.2.5 Active power

Table 15 shows power consumption during read operations. The active power consumption

includes dynamic power used to charge and discharge SRAM cells plus leakage power

consumption. At 25oC leakage power is less than 20% of the active power in case of

the standard low-Vth SRAM cell in 0.07µ technology according to BPTM [7]. However,

leakage power increases 10X as the temperature changes to 110oC although active power

increases 3X. At 110oC, leakage power is more than half of the active power from our

simulation results. Therefore, without an effective leakage power reduction technique,

total power consumption – even in active mode – is affected significantly.

7.2.6 Static noise margin

Table 16: Static noise margin

Active mode Sleep mode

Case1 Low-Vth Std 0.299 N/A

Case10 PD sleepy stack 0.317 0.362

Case11 PD, WL sleepy stack 0.324 0.363

Case12 PU, PD sleepy stack 0.299 0.384

Case13 PU, PD, WL sleepy stack 0.299 0.384

Static noise margin (V)
Technique

Changing the SRAM cell structure may change the static noise immunity of the SRAM

cell. Thus, we measure the Static Noise Margin (SNM) of the sleepy stack SRAM cell
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Figure 40: Static noise margin analysis

and the conventional 6-T SRAM cell using the butterfly plots shown in Figure 40. The

SNM is defined by the size of the maximum nested square in a butterfly plot. The SNM

of the sleepy stack SRAM cell is measured twice in active mode and sleep mode, and

results are shown in Table 16. The SNM of the sleepy stack SRAM cell in active mode is

0.299V and almost exactly the same as the SNM of a conventional SRAM cell; the SNM

of a conventional SRAM cell is 0.299V . Although we do not perform a process variation

analysis, we expect that the high SNM of the sleepy stack SRAM cell makes the technique

as immune to process variations as a conventional SRAM cell.

7.3 Summary

We compared the sleepy stack technique to existing techniques in terms of delay, dynamic

power, leakage power and area. The empirical analysis in Section 7.1.2 shows that we

can increase Vth up to 2.1X while matching the delay to the forced stack technique. The

increased Vth directly affects leakage power consumption. We apply the sleepy stack

technique to a chain of 4 inverters, a 4:1 multiplexer and a 4-bit adder, achieving up to
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200X leakage power reduction compared to the forced stack technique with 50∼120%

area penalty.

We also apply the sleepy stack technique to SRAM cell design. The sleepy stack SRAM

cell achieves 2.5X leakage power reduction compared to the high-Vth SRAM cell when

delay is matched at 110oC with 1.5xVth and 2xVth. Although the sleepy stack SRAM cell

comes with some area and delay penalty, the sleepy stack performs the best for a system

which requires the lowest possible leakage power consumption while saving state.

In the next chapter, we will explain our low power pipelined cache (LPPC).
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CHAPTER VIII

LOW-POWER PIPELINED CACHE (LPPC)

ARCHITECTURE

In this chapter, we present our Low Power Pipelined Cache (LPPC) for dynamic power

reduction. LPPC uses a pipelined cache, a cache technique widely used to enhance cache

performance by means of pipelining. Unlike earlier pipelined cache techniques, we use

cache pipelining to save power consumption of a cache by lowering supply voltage. We

explore two pipelining techniques – standard (latch) pipelining and wave pipelining – and

compare advantages and disadvantages. Finally, we discuss potential disadvantages of the

LPPC. Pipelining a cache may come with processor pipelining penalties. We explore pos-

sible penalties and appropriate solutions.

8.1 Background of a Pipelined Cache

Although pipelining a cache is briefly described in Section 4.2.3, in this section we explain

much more detail about the structure and operation of a pipelined cache. These details

become quite important later when we describe the basic architecture of our experimental

setup.

As explained in Section 4.2.3, a cache can be pipelined to increase cache access band-

width. This technique is called the pipelined cache technique. The pipelined cache tech-

nique was introduced initially to improve pipelined processor performance (clock speed).

Figure 41 depicts non-pipelined and pipelined cache architectures. Figure 41(a) shows

a 5-stage processor pipeline with non-pipelined caches. The five stages are Instruction

Fetch (IF), Instruction Decode (ID), Execute (EX), MEMory Access (MEM), and Write

Back (WB). The IF and MEM stages access an Instruction cache (I-cache) and a Data

81
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I-cache1 I-cache2 D-cache1 D-cache2

IF ID EX MEM WB

I-cache D-cache

(a) A pipeline with non-pipelined caches

(b) A pipeline with pipelined caches

Vdd

Vdd

(Non-Cache)

Vdd

(Cache)

Figure 41: Non-pipelined and pipelined cache architectures

cache (D-cache), respectively. If the access time of either cache is larger than the delay

of any other stage (i.e., ID, EX or WB), the cycle time of the processor must be increased

to accommodate the cache access time, thus resulting in performance degradation. One

prominent solution to this problem is to pipeline one or both caches. Figure 41(b) shows

a case where the cache access pipeline stages (IF and MEM) are both broken into two

stages and pipelined. The IF stage turns into IF1 and IF2, and the MEM stage turns into

MEM1 and MEM2. The I-cache and D-cache are pipelined corresponding to the pipeline

stages, forming I-cache1–I-cache2 and D-cache1–Dcache2, respectively. Thus, a smaller

processor cycle time can be achieved, potentially resulting in performance improvement.

Since a processor pipeline deepens as a pipelined cache deepens, cache pipelining may

incur increased branch delays and load delays due to control hazards and data hazards.

A branch delay occurs when a branch instruction is inserted into a pipeline and a branch

prediction scheme is not used; thus, the following instructions have to wait until the branch

target is resolved, which is a control hazard. In a pipelined processor as shown in Figure 41,

the number of waiting cycles, called branch delay cycles, will increase if the IF stage uses

a pipelined I-cache. For example, in Figure 41(a), the branch target is resolved in EX and

thus the following instruction, if no branch prediction scheme is used, needs to wait for
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two extra cycles. If the IF stage is expanded as shown in Figure 41(b), the next instruction

(after the branch) needs to wait for three extra cycles.

When a load instruction is fetched and fed into a pipeline such as Figure 41(a), subse-

quent instructions which are dependent on the load instruction cannot proceed to the EX

stage until the load instruction fetches data: this is a data hazard due to a load delay. If

added, an extra MEM2 stage for a pipelined D-cache induces extra load delay penalties.

For example, if a load instruction is in MEM in Figure 41(a), the dependent instruction

in the ID stage needs to wait, causing a one cycle delay. If the MEM stage is expanded

as shown in Figure 41(b), the load instruction fetches data at the end of MEM2, and thus

the next dependent instruction may have to wait for up to two cycles. A pipelined cache

architecture reduces clock cycle time yet at the same time increases branch and load delay

penalties. Therefore, there apparently exists an optimal depth of pipeline cache stages that

can maximize performance under particular conditions [52].

Although the pipelined cache technique is introduced to improve performance, alterna-

tively we use the reduced delay to trade off for reduced power consumption. In the next

section, we explain how we use the pipelined cache to save power consumption.

8.2 Low-Power Pipelined Cache Architecture

In this section, we explain the basic idea of the low-power pipelined cache. Furthermore,

we study the issues related to cache pipelining, such as implementation of pipelining and

pipelining penalties.

8.2.1 Low-power pipelined cache energy savings

Our motivation for an LPPC mainly comes from the EDR paradigm discussed in Sec-

tion 4.2.2. If we apply the EDR paradigm when designing a pipelined processor, minimum

power consumption is achieved when the ratio of energy and delay of each stage are the

same. We assume that each pipeline stage is area already optimized and thus no surplus
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slack exists. Our strategy is to add slack by splitting power hungry stages into two or more

as needed. Such a split stage will have surplus slack. Since caches are power hungry mod-

ules in a processor, we provide surplus slack to cache access stages (i.e., IF and MEM)

using pipelined caches.

We assume for our base case a pipelined processor that has 5-stages, a non-pipelined I-

cache and a non-pipelined D-cache as shown in Figure 41(a). We further assume that each

stage of the datapath is optimized to a given cycle time restriction. If we now pipeline the

caches without altering the existing cycle time, the pipelined caches will have surplus slack,

the difference between the cycle time and the delay of the particular stage. Then, we can use

the slack to lower the supply voltage of caches for power reduction purposes. Therefore, in

Figure 41(b), Vdd(Cache) will use a lower supply voltage Vddl while Vdd(Non − Cache)

remains the same. We can lower the cache supply voltage in Figure 41(b) as long as the

delay of each pipelined cache stage is less than the existing cycle time. Since we achieve

power savings from lowering the Vdd for the caches, we expect that the power savings of

a processor in our proposed architecture is dependent on the ratio of cache power con-

sumption over total processor power consumption. This means that a processor with power

hungry caches will benefit more from our LPPC.

Example 2: Let us take an example of saving energy with a pipelined cache architecture as

shown in Figure 42, in which Vdd is supply voltage; CL is load capacitance; f is frequency; E.T. is

execution time; and E is energy consumption. In Figure 42(a), the base case has 4.3 ns cycle time

since we find that cache delay is 4.3 ns with Vdd = 2.25V . Then, the clock frequency f is 233MHz,

and we assume E.T. = 1sec. Therefore, E of the base case becomes 0.589mJ. In Figure 42(b),

the pipelined cache for high performance halves cycle time by splitting the stage and thus double

frequency (466 MHz) as well as half E.T. (0.5 sec) are achieved (energy consumption remains

the same). Instead our pipelined cache for low power consumption in Figure 42(c) maintains the

cycle time of the base case after splitting the stage into two; thus, there exists 2.15 ns extra slack.
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(b) Pipelined cache 
for high-performance

delay/2

cycle time = 2.15 ns

Vdd = 2.25V, CL=1pF

f = 466MHz, E.T. = 0.5 sec

E = ½ x 1pF x 2.252 x 466MHz x 0.5sec
= 0.589mJ

delay/2

cycle time = 4.3 ns

(a) Base case

Vdd = 2.25V, CL=1pF

f = 233 MHz, E.T. = 1 sec
E = ½ x 1pF x 2.252 x 233MHz x 1sec

= 0.589mJ

delay

*Energy saving = 78.3%

delay/2 slack

(c) Low-power pipelined cache

cycle time = 4.3 ns

Vdd = 1.05V,  CL=1pF

f = 233MHz, E.T. = 1sec

E = ½ x 1pF x 1.252 x 233MHz x 1sec
= 0.128mJ

delay/2 slack

Figure 42: Illustration of energy of a pipelined cache

Therefore, now we can use the slack to lower the supply voltage as far as possible until the delay

increases so much that it equals the initial cycle time. In this example, Vdd could be lowered to

1.05V so that the pipelined cache for low power would achieve 78.3% energy saving compared to

the base case. ✷

Ideally, we can save significant power using the low-power pipelined cache. However,

two issues need to be explored properly when we use the pipelined cache for the power

reduction purposes. The following two sections (Sections 8.2.2 and 8.2.3) covers the two

pipelining issues.

8.2.2 Pipelining techniques for LPPC

We observe significant power savings in Example 1. The power savings vary according

to the method used to implement such a pipelined cache structure. Two typical ways are
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as follows. One way is to place latches between pipeline stages, which is called conven-

tional pipelining. Modern processors use this method for datapath pipelining. The main

advantage of conventional pipelining is ease of implementing pipeline structures since the

latches between pipeline stages are synchronized to a common clock. However, latches

and additional clock distribution consume extra power. Furthermore, a cache structure

may not pipeline evenly since modules such as bitlines cannot be pipelined [2]. The

uneven distribution of delay restricts lowering the supply voltage of an LPPC. The other

pipelining implementation uses existing gates as a virtual storage element instead of in-

termediate latches: this is called wave-pipelining (or virtual pipelining). Since wave-

pipelining does not use latches, extra power consumption due to latches and clock dis-

tribution may be saved. Furthermore, we can distribute delay evenly over pipeline stages,

although the number of waves in a stage is restricted by the delay variation of logic paths

in a pipeline stage. In short, we may wave-pipeline caches to be able to use a supply

voltage lower than latch-pipelined caches. Proper timing (for all paths) and testing are

not easy problems in designing a wave-pipelined processor. However, since the simplicity

of SRAM structure makes wave-pipelining easier, wave-pipelining is well suited for de-

signing SRAM [10]. For example, UltraSPARC-IV uses a wave-pipelined SRAM design

targeting 90nm technology [68], and Hitachi designed a 300-MHz, 4-Mbit wave-pipelined

CMOS SRAM [31]. As a result, while a pipelined processor must use latches to split the

IF and MEM stages (in-between IF1–IF2 and MEM1–MEM2 in Figure 41(b)), we com-

pare two different cache pipelining methods (i.e., wave-pipelining and latch-pipelining) to

implement pipelined caches (I-cache1–I-cache2 and D-cache1–D-cache2 in Figure 41(b)).

8.2.3 Pipelining penalties and solutions for LPPC

Another issue with pipelining a cache is pipeline penalties due to branch delay and load

delay as described in Section 8.1. These two penalties should be handled properly in a

pipelined cache processor, otherwise the processor may lose performance as the number
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of pipelined cache stages increases. General techniques that minimize control hazards and

data hazards in a pipelined processor can also be applied to a pipelined cache architecture.

However, since some of the techniques are not adequate for low power processor design,

we re-evaluate techniques that tackle control hazards and data hazards in term of power

dissipation before choosing suitable techniques for our LPPC.

Control hazards have been mostly tackled with instruction speculation techniques, which

predict the next instruction before a branch target is resolved. In these techniques, if a

branch target is mispredicted, some instructions are unnecessarily fetched and thus must

be wiped out. A deeper pipelining of the I-cache may cause a higher number of such

penalties as explained in Section 8.1. The instruction speculation techniques can be classi-

fied as hardware based or software based techniques. A typical hardware technique uses a

Branch Target Buffer (BTB). A BTB is a kind of cache that stores target branch addresses

accessed previously. The software based speculation technique typically uses compilers to

fill branch delay cycles with useful instructions if possible. Apparently, hardware based

techniques consume additional power, which is less than 5% in the case of an Intel Pen-

tium Pro processor [9]. However, a BTB shows better branch prediction accuracy [51],

which is important not only from a performance point of view but also from an energy

point of view because a processor with an inaccurate branch prediction scheme would con-

sume extra energy due to flushed instructions when a misprediction occurs. In addition,

the compiler based technique uses instruction replication; thus, the expanded code causes

extra power consumption in an I-cache [51]. Therefore, BTB is widely used for modern

pipelined processors (e.g., Intel XScale, Intel Pentium 4, and IBM PowerPC all use BTBs).

Data hazards have been also tackled using hardware based or software based tech-

niques. A typical hardware technique is an out-of-order execution method used by a su-

perscalar architecture, while software based techniques rearrange instructions to separate

a load instruction as far as possible from its dependent instructions. Although a hardware
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based technique shows better results, an out-of-order execution method requires a compli-

cated structure. Furthermore, the extra hardware may cause cycle time to increase [51].

For our LPPC, while we adopt a BTB (a hardware technique) to minimize control haz-

ards, and we utilize instruction scheduling of a compiler (a software based technique) to

reduce data hazards. We save cache power consumption by adopting LPPC and lower-

ing the supply voltage of caches although latches in-between the IF stage (IF1–IF2) and

the MEM stage (MEM1–MEM2) still consume extra power. A deeper pipelined I-cache

also dissipates extra power used to fetch unnecessary instructions when a branch is mis-

predicted. The lengthened execution time due to a deeper pipeline also increases leakage

power. We measure execution time and power/energy consumption to find out an optimum

LPPC depth for our target benchmarks and VLSI technology. We estimate dynamic power

and energy dissipation targeting 0.25µ technology, and the result will be presented in the

next section (please note that in Chapter 10, we combine LPPC and sleepy stack SRAM to

save static power consumption).

8.3 Summary

In this chapter, we introduced Low-Power Pipelined Cache (LPPC), a new low-power tech-

nique. Previously, a pipelined cache is used to reduce cache access delay and thus reduce

cycle time. Instead, LPPC uses the reduced cache access time to lower supply voltage. By

using the same cycle time before and after cache pipelining, a pipelined cache can gen-

erate excess slack, which we can use to save power consumption. We discuss two cache

pipelining techniques: one uses buffers between pipelined stages, while the other, wave-

pipelining, use existing gates as virtual storage. Although wave-pipelining is not easy to

implement, it has advantages over the buffer-pipelined cache. Furthermore, thanks to the

regular structure of a cache, implementing wave-pipelining in a cache is relatively easy

(compared to the rest of the microprocessor) and widely used. The two pipelining tech-

niques will be compared in terms of delay in next chapter. We finally considered possible
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pipelining penalties. Branch and load delays are explored. Our study shows that a BTB and

a compiler optimization are prominent solutions for the branch delay and the load delay,

respectively.

In the next chapter, we will explain the experimental results of LPPC.
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CHAPTER IX

LOW-POWER PIPELINED CACHE (LPPC)

EXPERIMENTAL SETUP AND RESULTS

In this chapter, we evaluate LPPC in terms of performance and power consumption. We

setup an architectural infrastructure which can vary the number of pipeline stages as well

as vary the supply voltage. Then we explain the cache delay model which is used to ob-

tain resulting delaying due to lowering the supply voltage value of the cache. Finally, we

provide experimental results that show the effectiveness of LPPC.

9.1 Experimental Setup

The LPPC experimental setup can measure execution cycles and power consumption of

benchmarks while varying the number of pipelined cache stages and cache supply voltage.

We use both a cycle accurate high level processor simulator as well as a Register Transfer

Level (RTL) processor model to achieve both simulation speed and accuracy. We target an

ARM-like architecture to verify our LPPC because the ARM architecture has been widely

used in the embedded systems area [4][29]. We model a pipelined cache architecture by

changing the target pipeline structure and buffer (latch) power consumption in-between the

split IF and MEM stages. We choose Vddl for a low voltage pipelined cache according to

the cycle time of a pipelined cache that we measure. LPPC is evaluated using benchmarks

selected to target embedded systems.
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9.1.1 Processor Model

This section explains the processor model used to measure performance and power con-

sumption of our low-power pipelined cache architecture. We describe the detailed experi-

mental infrastructure and power modeling and measurement methodology.

9.1.1.1 Simplescalar/ARM+Wattch

We use Simplescalar/ARM for the performance evaluation of our target processor [61].

Simplescalar/ARM is a widely used processor model with a cycle accurate performance

evaluation tool targeting an ARM processor. Since Simplescalar/ARM uses non-pipelined

caches, we modified Simplescalar/ARM to simulate pipelined cache performance and power

consumption; consequently, the modified Simplescalar/ARM increases branch and load de-

lays as the pipelined I-cache and D-cache, respectively, deepen. However, these penalties

can be reduced by using techniques explained in Section 8.2.3, which we propose.

Since Simplescalar/ARM did not have a power estimation tool at the time we down-

loaded it to perform this research, we integrated Simplescalar/ARM and the power model

of Wattch, which is a widely used power estimation tool based on Simplescalar [9]. We fur-

ther modified Simplescalar/ARM to calculate global clock power consumption according

to the pipeline depth.

9.1.1.2 Buffer power model using MARS

We then added a buffer power consumption model using a synthesis based power estima-

tion method, which is depicted in the left branch of Figure 43. Note that buffers inserted

between split pipeline stages consume extra power as explained in Section 8.2.2. The

core of the synthesis based power estimation method is MARS, which is a cycle-accurate

Verilog model of a 5-stage ARM-like processor obtained from the University of Michi-

gan [67]. The five stages of MARS are typical stages in the DLX architecture, i.e., IF, ID,

EX, MEM and WB [27]. MARS has a non-pipelined I-cache and a non-pipelined D-cache.
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Figure 43: Performance and power simulation infrastructure

MARS uses a Backward-Taken Forward Not-taken (BTFN) branch prediction scheme to

hide branch delay penalties. We use the original MARS for case (i) a non-pipelined cache

architecture in Figure 41(a) in Section 8.1.

We modified MARS to obtain case (ii) described in Figure 41(b): a processor with

two-stage pipelined instruction and data caches. For case (ii), we first modified the branch

prediction scheme as explained in Section 8.2.3. We found that BTFN in MARS is not

adequate for the pipelined I-cache because BTFN in MARS predicts the next instruction in

the ID stage (not in the IF stage), where a datapath recognizes a branch instruction. (Please

note that although implementing BTFN that predicts a next instruction in the IF stage is

possible, we did not put in the extra effort to do so. Instead, we use a BTB which per-

forms better than BTFN.) Although the BTFN can hide some of the branch delay penalties,

BTFN still has non-zero branch delay penalties even when the prediction is correct. Unlike

BTFN in MARS, since a Branch Target Buffer (BTB) enables a processor to predict the

next instruction during the IF stage, we can potentially have a zero branch penalty if the

BTB predicts always correctly [27]. As a result, we added a 128-entry BTB, which we use

for Simplescalar/Wattch simulations, to MARS. The BTB has branch instruction addresses,
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branch target addresses and a 2-bit counter for branch prediction [62]. Once the BTB mis-

predicts, the BTB table is updated while the pipeline wipes out mispredicted instructions

from the pipeline.

Next, we expanded the pipeline of MARS. One extra stage (IF2) is inserted between

IF (changed to IF1) and ID for the pipelined I-cache using a buffer. Another extra stage

(MEM1) is inserted between EX and MEM (changed to MEM2) for the pipelined D-cache.

Then, we modified branch control logic such that it calculates its target Program Counter

(PC) value according to the newly added IF2 stage. In addition, we added one more data

forwarding path from the MEM1 stage to the EX stage on top of the existing data forward-

ing paths (EX-to-EX and MEM2-to-EX).

Now, we explain the simulation procedure to extract buffer power consumption using

MARS. First, we compile benchmarks using GNU-gcc ARM cross compiler version 2.95.2.

Three benchmarks are used for buffer power modeling: (i) SORT INT, a sorting program

for integers; (ii) MATMUL, a matrix multiplication program; and (iii) FACTORIAL, a

factorial calculation program. Each benchmark is compiled to relocatable ARM assembly

code using the aforementioned GNU-gcc ARM cross compiler, then a binary executable

targeted toward MARS is generated using a GNU cross-assembler. Second, we translate

the binary into an ASCII format, called Verilog HeX (VHX), which is a suitable input

format for MARS. Third, for each benchmark, the switching activities (i.e., pt for each

wire in the processor – see Chapter 3) of MARS and cache statistics (specifically, numbers

of I-cache and D-cache accesses) are collected through Synopsys VCS simulation [65].

We use a synthesis based methodology to develop a power model for submodules be-

longing to the datapath. Submodules consist of the fetch unit, decode unit, register file,

arithmetic logic unit, D-cache access unit and write-back unit. The synthesis infrastruc-

ture employs two software tools from Synopsys Inc.: Design Compiler and Power Com-

piler [65]. Design Compiler generates a gate level netlist from the hardware description of

the submodules given as Verilog RTL description. The netlist is generated using the TSMC
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0.25µ library from LEDA systems [39]. The technology details include features such as

the transistor width, transistor length, gate capacitance, drain capacitance, rise time and fall

time of each transistor. During the synthesis process, maximum delay is set to 10 ns, and

maximum area is fixed to infinity in order to achieve the fastest implementation. In our

case, the modules are synthesized to operate at 100 MHz (i.e., 10 ns cycle time). Power

Compiler is used to estimate the power of the processor core. Switching activities collected

from VCS simulation are fed to Power Compiler as input. Power Compiler reports the

dynamic power dissipation of the technology chosen (i.e., 0.25µ technology).

We obtain buffer power from Power Compiler and translate the buffer power into av-

erage energy consumed per buffer access. We use the calculated buffer access energy to

calculate buffer power consumption when we measure pipelined cache processor power us-

ing Simplescalar/ARM+Wattch. Simplescalar/ARM+Wattch calculates buffer power con-

sumption by multiplying the buffer access energy by the number of buffer accesses. Fur-

thermore, we scale the buffer access energy according to the Vdd values used in Sim-

plescalar/ARM+Wattch.

9.1.1.3 Power overheads

In multiple voltage supply circuits, the effect of level converters needs to be considered.

Usami et al. reported that the level converters employed in a particular media processor

number more than 5000 and consume 8% of total processor power [70]. Unlike [70],

our LPPC needs level converters in the connections between I-cache2–IF2 and D-cache2–

MEM2 in Figure 41(b). If we consider the width of the data bus, i.e., 32 bits, the required

number level converters in LPPC are 1∼2% of the number used in Usami’s media proces-

sor. Since the power consumption of our level converters is very small, we do not consider

the power overhead of level converters in our power and energy evaluations. In addition,

our calculations do not include the extra overhead of multiple supply voltage generation
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since we assume that the board already has the multiple supply voltages needed. For ex-

ample, the “Skiff” Personal Server Board from HP/Compaq [28] has 2 Volt, 3.3 Volt and

5 Volt power supplies. In addition, the StrongARM SA-110 processor operates at 3.3V for

the I/O interface and in-between 1.65V and 2.0V for the processor core [29]. Therefore, it

is reasonable to assume that our system has at least three supply voltages readily available

and that the processor is capable of operating at dual voltages.

We explained the processor performance and power measuring methodology in this

section. In next section, we present the cache delay model, which calculates the cache

voltage level of our low-power pipelined cache.

9.1.2 Cache Delay Model

LPPC saves power consumption by lowering a cache Vdd, which is chosen as the low-

est voltage level that can achieve the same smaller cycle time than the cycle time before

pipelining in a given pipeline depth. To estimate the cycle time of a cache as Vdd scales

down, we use CACTI cache model version 2.0 [57], which is a well-known cache model

that integrates timing and power estimation. CACTI 2.0 has a detailed model of the wire

and transistor structure of on-chip memories and provides very detailed capacitance values

for each circuit component which are verified by HSPICE. CACTI can also measure the

cycle time of a wave-pipelined cache.

Table 17: Cache configuration parameters

Descriptions Parameters

Cache size 32KB

Block size 32 bytes

Associativity 4-way

Number of tag word line 1

Number of tag bit line 2

Number of data word line 2

Number of data bit line 2

Number of input/output port 1

Table 17 shows parameters used in our CACTI simulation. The original CACTI model
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optimizes the number of wordlines and bitlines in a given cache size and CMOS technol-

ogy. To compare the cycle time in our CACTI simulation without changing the number of

wordlines and bitlines, we fixed the number of wordlines and bitlines to the optimized val-

ues that are given by CACTI with 32KB cache size, 32 byte block size, 4-way associativity

and 0.25µ CMOS technology. The original CACTI model uses an RC based timing model.

Instead, we use delay model Equation 14 in Chapter 3, so that we can evaluate the impact

of supply voltage scaling in a give CMOS technology.

Decoder

Tag array &

sense amp

Comparator

MUX driver
Output driver

Data array & 

sense amp

Group1 Group2 Group3 Group4

Figure 44: Latch-based cache pipelining

We apply the two different pipelined cache implementation schemes mentioned in Sec-

tion 8.2.2. One is latch-pipelining. First, we break CACTI into four different functional

groups considering the delay of each functional group as shown in Figure 44. The four

groups would be pipeline stages for a 4-stage pipelined cache. Then, we decide 2-stage,

3-stage and 4-stage pipelined cache structures by merging adjacent groups such that the

delay of each stage is as even as possible. The delay overhead due to latches is considered

using delay values from [64]. For the wave-pipelined cache, we collect cache access time

reported by CACTI while varying the number of wave pipeline stages.

Using LPPC, we lower the supply voltage instead of reducing the cycle time as shown

in Figure 42. This means that we can choose the lowest Vdd for a pipelined cache while the

cycle time of a pipelined cache is equal to or smaller than the cycle time of a non-pipelined

cache. To obtain the lowest Vdd for LPPC, we measure the delay variations of CACTI by

varying supply voltages and depth in a pipelined cache as shown in Figure 45. We assume

that caches in a processor function properly to as low as 0.7V (please note that, however,
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Figure 45: Delay of a latch-pipelined(left) and wave-pipelined(right) cache

as did not design sense amplifiers for each supply voltage). A lower supply voltage for a

pipelined cache can be chosen from this graph. The following example shows how to select

the Vdd of LPPC using Figure 45.

Example 2: Consider a processor with a non-pipelined cache of 2.25V supply voltage using

the cache configuration parameters in Table 17. The delay of the cache is 1.97 ns from Figure 45.

The non-pipelined cache is replaced with a multi-stage pipelined cache. If LPPC adopts a 2-stage

latch-pipelined cache, we can lower the Vdd of the 2-stage pipelined cache to as low as 1.65V with-

out increasing the cycle time. If LPPC adopts a 2-stage wave-pipelined cache, we can use 1.05V

Vdd. Furthermore, we can use a 0.75V Vdd if we use a 3-stage wave-pipelined cache instead of a

non-pipelined cache with a 2.25V Vdd. This lowered supply voltage directly impacts on the energy

savings of a cache. As such, the 2-stage and 3-stage wave-pipelined cache can save 78% and

89% of energy consumed in a cache, respectively. ✷

The delay of a cache is not reduced linearly as the pipeline deepens as shown in Fig-

ure 45. This sub-linear delay reduction is caused by uneven pipelining in the case of a
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latch-pipelined cache. In the case of a wave-pipelined cache, delay reduction from 1-

stage to 2-stage is different from the reduction from 2-stage to 3-stage because the wave

pipelining of CACTI is restricted by delay of each block in Table 44; thus, the delay time of

the CACTI cache model cannot be smaller than each logic stage delay. We do not discuss

latch-pipelined caches in the later sections of this chapter since a wave-pipelined cache

outperforms a latch-pipelined cache as shown in Figure 45.

9.1.3 Architecture Configurations and Benchmarks

The Simplescalar/ARM+Wattch configuration is modeled after the Intel StrongARM mi-

croarchitecture. Since StrongARM does not use a branch target buffer (BTB), the BTB

configuration follows the Intel XScale configurations [25]. The memory system consists

of two levels. The first level is L1 caches (one instruction cache and one data cache), and

the second level is off-chip main memory. We assume that benchmark programs fit into the

main memory. The detail configuration is shown in Table 18.

Table 18: Simplescalar configurations

Execution type In-order

Fetch queue 2

Branch predictor 128 entry BTB,

8K bimodal

Block Fetch & Decode width 1

Functional Units 1 int ALU, 1 FP ALU

1 FP mult

L1 I-cache 32KB, 4-way

L1 D-cache 32KB, 4-way

L2 cache None

Memory bus width 4

Memory latency 12

Clock speed 233MHz

Vdd (Core) 2.25V

Vdd (Cache) 2.25V, 1.05V, 0.75V

We use a TSMC 0.25µ technology library from LEDA systems to estimate buffer power

as explained at the beginning of this section. Therefore, Simplescalar/ARM+Wattch and
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CACTI are scaled to 0.25µ technology. A clock speed of 233 MHz is used since it is

the fastest clock speed used in StrongARM-110 [29]. Simplescalar/ARM+Wattch uses a

2.25V supply voltage when Simplescalar/ARM+Wattch is targeted 0.25µ technology [9].

Therefore, the supply voltage for the datapath (without caches) of the processor is fixed

to 2.25V. The cache uses different voltages according to the depth of the pipelined cache

stages. The 1-stage cache uses the same supply voltage as the datapath, 2.25V. The 2-

stage, 3-stage and 4-stage pipelined caches use 1.05V, 0.75V and 0.7V respectively, which,

as shown in Figure 45, are the lowest voltages that have equal or smaller delay time than a

1-stage (i.e., unpipelined) cache.

Table 19: Benchmarks
Name Category Characteristics

DIJKSTRA Network calculating the shortest path between every pairs

in a tree structure using Dijkstra algorithm

DJPEG Consumer decompressing images using JPEG algorithm

GSM Telecom decoding a voice using the Global Standard

for Mobile (GSM) standards

QSORT Automotive and sorting large array of strings with

industrial control quick sort algorithm

SHA Security producing 160-bits message

digest for a given input

STRINGSEARCH Office searching for given words

using a case insensitive algorithm

MPEG2DEC N/A decoding MPEG2 video file

We evaluate our LPPC with benchmarks from embedded systems domains, which

include the MiBench benchmark suit [25] and the software MPEG2 decoder v1.1 from

MPEG Software Simulation Group [44]. MiBench is a set of benchmarks targeting embed-

ded system performance evaluations. MiBench classifies embedded system applications

into six categories. We chose one benchmark from each category. The MPEG2 decoder

decodes an MPEG2 video file of 170(width)x128(height)x3(frames). Table 19 shows the

benchmarks and functionalities that we chose.

A compiler optimization is used to minimize data hazards as explained in Section 8.2.3.
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Each benchmark is compiled using ARM-LINUX-GCC cross compiler version 2.95.2 with

-fschedule-insns2 and -O3 options. The -fschedule-insns2 option combined with -O3 re-

orders instructions to avoid stalls due to unavailable data if possible [71]. These two options

optimize instructions to reduce load delay penalties.

The LPPC model is simulated using the benchmark programs explained in this section.

The next section studies the experimental results in terms of performance and power.

9.2 Experimental Results

Our proposed Low Voltage Pipeline Cache (LPPC) saves power and energy by lowering

the Vdd of caches and maintains system throughput by pipelining the caches as described

in Section 8.2. We evaluate the power efficiency of our LPPC in comparison with the non-

pipelined cache architecture using the experimental environment and benchmarks from

embedded system domains described in Section 9.1. The two architectures are compared

in terms of execution cycles, power consumption and energy consumption. We take the

clock gate mode 3 from Simplescalar/ARM+Wattch for power and energy estimations [9].

9.2.1 Performance results

In this section, we compare execution cycles of non-pipelined cache and pipelined cache

architectures. We use 2-stage, 3-stage and 4-stage pipelined caches for both the I-cache

and the D-cache of the baseline architecture; we always keep both caches at equal pipeline

depth (e.g., both a 3-stage pipelined I-cache and a 3-stage pipelined D-cache). The perfor-

mance simulation results are shown in Table 20. We simulate seven different benchmark

programs from the embedded system domain. The 1-stage cache result in column 1 is the

result of the non-pipelined cache. Each pipelined cache result has four columns: the col-

umn “cycles” indicates execution cycles used in running each benchmark on the processor

pipeline associated with a particular cache; the column “Total” means total cycle increase

compared to non-pipelined cache architecture; and the column “Icache” and “Dcache” each
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refer to increase in execution cycles due to the pipelined I-cache and the pipelined D-cache,

respectively.

From the results, we can notice that using a pipelined cache is not free because increas-

ing pipelining depth increases pipelining penalties even though we use techniques to hide

the pipelining penalties. The result shows 4.14%, 11.53% and 14.42% of execution cycle

increment for 2-stage, 3-stage and 4-stage pipelined cache processor, respectively, on aver-

age. The performance penalty due to increased pipelining shows different results according

to the benchmarks. Some benchmarks such as the GSM and SHA benchmarks show incre-

ments less than 2% with a 2-stage pipelined cache. In contrast, the DIJKSTRA benchmark

increases execution cycles more than 9% due to the increased pipeline depth. More detailed

explanations can be found by examining the “Icache” and “Dcache” columns. From the av-

erage for a 2-stage pipelined cache, we can see that the D-cache accounts for 77% of the

total increase in number of clock cycles needed to execute the benchmarks. Even though

the DIJKSTRA increases 9.4% due to the 2-stage pipelined caches, the majority of the

cycle increase is due to the pipelined D-cache. The pipelined I-cache increases execution

cycles only 1.13% with the DIJKSTRA benchmark. The STRINGSEARCH benchmark

Table 20: Execution cycles

Total Icache Dcache Total Icache Dcache

DIJKSTRA 100,437,638 N/A N/A N/A 109,881,681 9.40 1.13 8.27

DJPEG 10,734,606 N/A N/A N/A 11,380,700 6.02 0.34 5.68

GSM 21,522,735 N/A N/A N/A 21,859,916 1.57 0.46 1.11

MPEG2DEC 28,461,724 N/A N/A N/A 29,398,489 3.29 0.28 3.01

QSORT 90,206,190 N/A N/A N/A 93,280,904 3.41 1.91 1.50

SHA 17,533,248 N/A N/A N/A 17,600,241 0.38 0.34 0.04

STRINGSEARCH 6,356,925 N/A N/A N/A 6,668,413 4.90 2.13 2.77

Average 4.14 0.94 3.20

Total Icache Dcache Total Icache Dcache

DIJKSTRA 127,199,801 26.65 2.38 24.26 141,488,147 30.11 5.11 25.00

DJPEG 12,243,399 14.06 0.74 13.32 13,091,913 15.41 1.84 13.57

GSM 23,078,322 7.23 1.03 6.19 24,173,369 11.08 1.59 9.49

MPEG2DEC 31,741,379 11.52 1.27 10.25 33,969,889 15.87 2.37 13.50

QSORT 97,111,275 7.65 4.10 3.55 100,787,822 10.08 6.74 3.34

SHA 18,014,403 2.74 0.74 2.00 18,413,569 4.98 1.14 3.84

STRINGSEARCH 7,048,747 10.88 4.58 6.31 7,409,552 13.40 6.94 6.46

Average 11.53 2.12 9.41 14.42 3.68 10.74

Benchmark

Benchmark

3-stage pipelined cache 4-stage pipelined cache

cycles

Increase (%)

cycles

Increase (%)

1-stage cache 2-stage pipelined cache

cycles

Increase (%)

cycles

Increase (%)
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has the largest influence from the pipelined I-cache increasing, 2.13% of execution cycle.

The negative impact of the pipelined I-cache is small or negligible for six other benchmarks

while the impact of the pipelined D-cache shows a huge variation.

9.2.2 Impact of instruction distribution on performance
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Figure 46: Dynamic instruction distribution

We analyze dynamic instruction distribution to explore pipelining overhead of each

benchmark. The instructions are classified in four categories–branch, store, load and ALU

instructions. The branch category represents flow control instructions. The store and load

categories contain memory store and load instructions, respectively. The ALU category in-

cludes floating point and integer ALU operations. Figure 46 shows the dynamic instruction

distribution of each benchmark.

Our architectural setup hides branch penalties using a BTB as explained in Section 8.2.3.

However, a large number of branch instructions in a benchmark potentially incur higher

chances of branch misprediction, which leads to increased branch penalties. We can ob-

serve this relationship by comparing Figure 46 and Table 20. For example, the DJEPG,
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MPEG2DEC and SHA benchmarks have smaller numbers of branch instructions and thus

show smaller increases in execution cycles due to the pipelined I-cache. Meanwhile, the

GSM benchmark increases small number of cycles although having relative large amount

of branch instructions. We observe a similar result with the DIJKSTRA benchmark, which

has small penalty cycles due to a pipelined I-cache than the QSORT benchmark in spite of

the large number of branch instructions. Therefore, we may say a BTB is well suited for

the GSM and DIJKSTRA benchmarks.

Similar to the branch instructions, the number of load instructions affects the execution

cycles increase due to the pipelined D-cache. The GSM and SHA benchmarks experience

a small performance loss due to a pipelined D-cache thanks to the small number of load in-

structions in GSM and SHA. The QSORT benchmark has small performance overhead even

though QSORT contains a large percentage of load instructions; DIJKSTRA and DJPEG

benchmarks, on the other hand, show relatively large performance loss with a percentage

of load instruction similar to QSORT. Compared to the number of branch instructions, the

given pipelined cache architecture experiences relatively large performance loss. This re-

sult confirms that the static scheduling technique we use is not as effective as the dynamic

scheduling we consider. However, we use static scheduling to hide load use delays because

dynamic scheduling such as found in a superscalar architecture requires significant power

budget and may not be adequate for embedded systems domains that we evaluate.

9.2.3 Cache power results

Now we analyze power consumption of the different pipelined cache architectures. We

measure power consumption of the whole processor model: the entire microprocessor as

well as each pipelined cache used by the microprocessor.

Figure 47 shows normalized cache power consumption of each benchmark with various

pipelined cache stages. By lowering the supply voltage from 2.25V to 1.05V, the 2-stage

pipelined cache achieves a 70% cache power reduction on average. The 3-stage and 4-stage
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Figure 47: Normalized cache power consumption according to the cache pipeline stage

pipelined caches save 82% and 85% in average cache power, respectively. Power savings

increments achieved using 3- and 4-stage pipelined caches are relatively small compared

with the initial power savings of the 2-stage pipelined cache because we can lower only

an incrementally small additional amount from the supply voltage: 0.3V and 0.05V for 3-

and 4-stage pipelined caches, respectively. The power savings from the pipelined cache are

limited by the supply voltage reduction.

I-cache

25%

D-cache

12%

Core

63%
Core

85%

D-cache

5%

I-cache

10%

(a) Non-pipelined cache processor (b) 2-stage pipelined cache processor

Figure 48: Processor power distribution

The reduction in total power consumption of the pipelined cache processor depends
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on the contribution of the cache power consumption out of the total processor power con-

sumption. The Simplescalar/ARM+Wattch processor model shows that 37% of the total

processor power is consumed by the non-pipelined caches as shown in Figure 48(a). This

proportion is reasonable if we consider that cache power of a StrongARM 110 processor

comprises 43% of the total chip power [42]. Figure 48(b) is the power breakdown of the

2-stage pipelined cache processor. Thanks to the 70% cache power reduction, the 2-stage

pipelined caches comprises only 15% total processor power consumption.

9.2.4 Processor power results
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Figure 49: Normalized processor power consumption according to the cache pipeline stage

Figure 49 show normalized total processor power consumption. The 2-, 3- and 4-stage

pipelined cache processors achieve 23.55%, 27.21% and 26.21% average power savings,

respectively. Although the 4-stage pipelined cache saves 3% more cache power consump-

tion compared to the 3-stage pipelined cache, the 4-stage pipelined cache processors con-

sumes more power than 3-stage pipelined cache processor because pipelining overhead is

larger than power reduction. Therefore, a 4-stage pipelined cache is not as power efficient
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as a 3-stage nor as performance efficient as 3-stage in the given architecture we consider.
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Figure 50: Normalized Processor energy consumption according to the cache pipeline

stage

The power savings of the benchmarks do not represent the full effect of the pipelined

cache correctly because the performance loss not accounted for in the power savings num-

bers. For example, the DIJKSTRA benchmark gains the largest power savings yet also ex-

periences the largest increase in execution cycles. Therefore, energy savings are more im-

portant than power savings for understanding the results. Figure 50 shows the normalized

energy consumption of each benchmark with different cache stages. The 2-stage pipelined

cache processor achieves 20.43% average energy saving. However, the 3-stage pipelined

cache saves only 19.03%. In short, we find that each extra pipeline stage (beyond two)

in the caches results in reduced energy savings when compared to the 2-stage case. The

2-stage pipelined cache is the most energy effecient.

Although our proposed LPPC achieves 20.43% average energy savings with 4.14%

average execution cycle increase, since some embedded systems must maintain exact exe-

cution time constraints, we investigate eliminating the performance loss due to execlusively
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Cycle time (nS) Vdd (datapath) Vdd (cache) Power (W)

DIJKSTRA 4.29 2.25 2.25 3.573

DJPEG 4.29 2.25 2.25 3.709

GSM 4.29 2.25 2.25 3.669

MPEG2DEC 4.29 2.25 2.25 3.571

QSORT 4.29 2.25 2.25 3.255

SHA 4.29 2.25 2.25 3.833

STRINGSEARCH 4.29 2.25 2.25 3.426

Average 3.577

Cycle time (nS) Vdd (datapath) Vdd (cache) Power (W) % Total power savings

DIJKSTRA 3.92 2.49 1.15 3.185 10.87

DJPEG 4.05 2.40 1.15 3.190 14.00

GSM 4.23 2.29 1.15 3.034 17.30

MPEG2DEC 4.16 2.33 1.15 3.012 15.67

QSORT 4.15 2.33 1.15 2.727 16.23

SHA 4.28 2.26 1.15 3.110 18.87

STRINGSEARCH 4.09 2.37 1.15 2.937 14.27

Average 3.028 15.32

Non-pipelined cache architecture

Benchmark

2-stage low power pipelined cache architecture

Benchmark

Figure 51: Pipelined cache adjusted power consumption

scaling voltage. To maintain execution time, we reduce the cycle time (and thus increase

the supply voltage over our current results). When we scale up required supply voltages

for the non-cache circuits using Equation 14, in which α is set to 1.5 [43] , we choose ad-

justed Vdd for caches using Figure 45 and calculate power consumption using Equation 13

as well. Table 51 shows (i) the cycle time needed to maintain the throughput, (ii) required

Vdd to speed up non-cache and (iii) requiring Vdd to speed up the cache and (iv) result-

ing power consumption. As a result, the adjusted 2-stage LPPC in Table 51 achieves the

same execution time as our initial 1-stage cache architecture. Although the increased sup-

ply voltage increases power consumption (i.e., 5.11%), LPPC achieves 15.32% of average

power saving without performance loss.

9.3 Summary

In this chapter, first we explained our experimental setup to evaluate LPPC. We use Sim-

plescalar/ARM for the performance estimation of a processor. We added Wattch to Sim-

plescalar/ARM to estimate power consumption of Simplescalar/ARM. We also modified
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Simplescalar/ARM+Wattch so we can evaluate architectures each with a different num-

ber of cache stages. To model the power consumption of buffers between broken pipeline

stages, we use the MARS Verilog processor model. We increase the number of pipeline

stage in MARS; then, using a synthesis based power estimation, we model the buffer power

and feed the power model into Simplescalar/ARM+Wattch.

Accurate cache delay modeling is very important because we decide the supply voltage

of the cache based on cache delay. We modify CACTI to obtain cache delay while chang-

ing cache supply voltage. We considered conventional pipelined caches as well as wave-

pipelined caches and find that the wave-pipelined cache performs best; thus, we consider

only wave-pipelined caches for our experiments.

We evaluate LPPC by comparing to a base non-pipelined cache architecture. We con-

sider 2-, 3- and 4-stage pipelined caches. While using a processor configuration targeting

an embedded processor, we find that 2-stage LPPC shows the best results in terms of power.

The 2-stage LPPC achieves 23.55% power reduction and 20.43% energy reduction.

In the next chapter, we will explain a sleepy stack pipelined cache, which combines the

sleepy stack SRAM and LPPC.
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CHAPTER X

SLEEPY STACK PIPELINED CACHE

In this chapter, we combine our two low-power techniques, which are the sleepy stack

SRAM and Low Power Pipelined Cache (LPPC) explained in Chapters 5 and 8. The sleepy

stack technique achieves ultra-low leakage power consumption. However, increase of delay

is a bottleneck to use the sleepy stack technique in a system that should maintain perfor-

mance. To overcome this bottleneck, we apply LPPC to the sleepy stack SRAM, and thus

we achieve low-leakage power consumption while maintaining performance.

10.1 Approach

In this section, we explain our design approach to combine the sleepy stack SRAM and

LPPC.
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Figure 52: Non-pipelined and sleepy stack pipelined cache architectures
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Figure 52 depicts our sleepy stack pipelined cache compared to a conventional non-

pipelined cache. The base case in Figure 52(a) has two non-pipelined caches, which are

leaky but fast conventional SRAM. Meanwhile, our approach in Figure 52(b) applies sleepy

stack pipelined SRAM to the processor pipeline. The sleepy stack SRAM explained in Sec-

tion 6.2 increases delay compared to the conventional cache, and thus the cache may not

be accessed in one cycle unlike the conventional cache. To overcome this problem, we

pipeline the sleepy stack SRAM. This approach is similar to LPPC in Chapter 8. How-

ever, at this time, we apply the sleepy stack technique instead of lowering supply voltage.

Therefore, the processor pipeline is expanded along the pipelined cache. The decreased

cache access delay can allow the pipeline in Figure 52(b) to achieve the same cycle time

as Figure 52(a) even though the delay of a cache in Figure 52(b) is larger than the delay

of a cache in Figure 52(a). In Chapter 9, a wide variety of processor/cache pipeline struc-

tures (number of stages, etc.) are explored, and Figure 52 seems to provide a high-impact

tradeoff; thus, we focus exclusively on Figure 52’s tradeoff in this chapter.

We discussed issues related to pipelining penalties and pipeline implementation in

Chapter 8. Similar to LPPC in Chapter 8, we use a Branch Target Buffer (BTB) to tackle

branch delay and a compiler technique to tackle load delay. We also use wave-pipelining

to implement cache pipelining. However, at the circuit level, at which we are to imple-

ment a sleepy stack pipelined cache, the wave pipelining design should satisfy two timing

constraints [10]. First, the number of wave pipelining stages N needs to satisfy:

Tmax

Tclk

< N <
Tmin

Tclk

+ 1, (24)

where Tmax is the maximum delay, Tmin is the minimum delay, and Tclk is the cycle time.

Second, another constraint is that next earliest wave should not arrive at a gate input until

the latest wave has propagated through. We will address these two issues when we imple-

ment the sleepy stack pipelined cache.

In the next section, we explain the detailed design methodology of the sleepy stack

pipelined cache described in this section.
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10.2 Design methodology

In this section, we explain the design methodology of our proposed low-power pipelined

cache using sleepy stack SRAM. We first design our SRAM, then estimate delay and power

consumption. The estimated values are fed into the pipelined processor simulation model

to estimate power consumption using benchmark programs.

10.2.1 Sleepy stack SRAM
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Figure 53: SRAM structure

We design 32KB SRAM with four 8KB subblocks as shown in Figure 53. The SRAM

mainly consists of the decoder and the SRAM core. The decoder enables one of the SRAM

rows according the address input. The decoder further consists of the pre-decoder and the

row-decoder. Each subblock is selected using a global wordline, and a row of a subblock

is selected using a local wordline from the pre-decoder (please note that there are more

than one local wordline wires in Figure 53 even though only one wire is shown for

simplicity). The row-decoder enables one row of the selected subblock by combining the

global wordline and local wordline [3]. The line size of our subblock is 32B, and each

subblock has 256 rows. A column of a subblock consists of precharge logic, SRAM cells,
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and column select logic. Eight columns share a sense amplifier, write enable logic, and data

input logic. The column select logic selects one column out of eight columns. This column

select method is generally used in SRAM design to save area and power consumption of

the sense amplifier and the write enable logic. Instead of starting from scratch, we use the

CACTI model for the SRAM structure and transistor sizing [57], and scale down to the

target process, i.e., 0.07µ.

We first design a base case SRAM that uses conventional CMOS techniques. Then

we design sleepy stack SRAM by applying sleepy stack to the conventional SRAM. In the

decoder, we do not apply sleepy stack to the global wordline decoder driver because

degradation of its driving power degrades performance significantly. Also, in the SRAM

cell array, we apply the sleepy stack only to the SRAM cell, i.e., the precharge logic,

column select logic, and write enable logic are intact. Although the intact components also

consume considerable amounts of leakage power, changing all components may reduce

performance significantly.

Also, we consider low-Vdd LPPC for the purposes of comparison. In nanoscale technol-

ogy, low-Vdd LPPC can save dynamic power as well as static power since low-Vdd degrades

the Drain Induced Barrier Lowering (DIBL) effect. We use a supply voltage value of 0.7V

for a low-Vdd LPPC.

To evaluate the SRAM design, we mainly use a simulation based methodology utilizing

HSPICE. We design the SRAM (targeting 0.07µ technology) using gate-level netlists in

HSPICE with which we can use the 0.07µ Berkeley Predictive Technology Model [7].

The SRAM models are simulated to measure active power, static power and SRAM access

time. We use 1.0V as supply voltage of the base case. The active power is measured

while accessing SRAM cells. We also derive per-access energy consumption by dividing

measured power consumption by maximum clock frequency. The static power is measured

while stopping all input transitions. During static power measurement, we turn off sleep

transistors of the sleepy stack SRAM (i.e., we assume we are in sleep mode). To avoid
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leakage power measurement biased by a majority of ‘1’ versus ‘0’ (or vice-versa) values,

half of the cells are randomly set to ‘0,’ with the remaining half of the cells set to ‘1.’

SRAM propagation delay is also measured along the critical path from the input address to

the sense amplifier output driver.

10.2.2 Pipelined cache model

We use modified Simplescalar/ARM [61], which we use in Chapter 9, for the performance

evaluation of our target processor. Therefore, the modified Simplescalar/ARM processor

has increased branch and load delays (i.e., proportional to the pipeline depth of the I-cache

and D-cache, respectively). However, these penalties are reduced by a Branch Target Buffer

(BTB) and compiler optimization explained in Section 8.2.3. The Simplescalar/ARM con-

figuration is modeled after the Intel StrongARM as well as Intel XScale microarchitectures

similar to the Low-Power Pipelined Cache (LPPC) experiment in Chapter 8. However, at

this time we use direct mapped caches instead of 4-way caches to achieve fast cache ac-

cess time. The memory system consists of two levels. The first level is L1 caches (one

instruction cache and one data cache), and the second level is off-chip main memory. We

assume that benchmark programs fit into the main memory. We also use the seven bench-

mark programs used in Table 19 in Section 9.1.3. The detailed configuration is shown in

Table 21.

We assume that the critical path of the base case pipeline in Figure 52 (a) lies in the

cache access stages, i.e., IF and MEM, and other stages are optimized based on the feasible

cycle time of IF and MEM stages. This assumption is reasonable because caches are often a

bottleneck to reduce cycle time, and a pipelined cache is typically introduced to overcome

this bottleneck. A clock speed of 833 MHz in 0.07µ technology is used since it is the

fastest clock speed that can be achieved from the SRAM that we design. Furthermore, we

use the before and after cache cases shown in Figure 52. We measure execution cycle time

using the non-pipelined cache processor and the sleepy stack pipelined cache processor.
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Table 21: Simplescalar configurations for sleepy stack SRAM

Execution type In-order

Fetch queue 2

Branch predictor 128 entry BTB,

8K bimodal

Block Fetch & Decode width 1

Functional Units 1 integer ALU, 1 FP ALU

1 FP mult

L1 I-cache 32KB, 1-way

L1 D-cache 32KB, 1-way

L2 cache None

Memory bus width 4

Memory latency 12

Clock speed 833MHz

Vdd (Cache) 1.0V, 0.7V

We feed measured per-access energy of the SRAM into Simplescalar/ARM, then SRAM

power consumption is estimated by combining the per-access energy and the cache access

ratio.

We design the sleepy stack pipelined SRAM, the base case SRAM, and the low-Vdd

LPPC described in this section. The three SRAM designs are simulated and compared in

terms of power and performance in the next section.

10.3 Results

In this section, we compare the three SRAM designs explained in Section 10.2. We first

study power consumption of the three designs. Then we explore the performance results at

the architectural level.

10.3.1 SRAM power consumption

Table 22 shows HSPICE simulation results of SRAM in 0.07µ technology using BPTM [7]

(note that Figures 54(a) and 54(b) show the same results with graphs). We measure active

power, static power and delay. The sleepy stack SRAM achieves 17X static power reduction

compared to the base case SRAM. Although the sleepy stack technique shows more than
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Table 22: SRAM power consumption

Active power (W) Static power (W)

Decoder 4.78E-03 4.15E-04

SRAM 5.28E-02 4.78E-03

Total 5.76E-02 5.20E-03

Decoder 2.07E-03 1.18E-04

SRAM 2.17E-02 1.66E-03

Total 2.38E-02 1.78E-03

Decoder 4.35E-03 5.84E-05

SRAM 7.38E-02 2.48E-04

Total 7.82E-02 3.07E-04

Basecase

Sleepy stack

pipelined

cache

Low-Vdd

pipelined

cache
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Figure 54: SRAM performance comparison

two orders of magnitude leakage power reduction for generic logic circuits and SRAM cells

in Chapter 7, the overall SRAM leakage reduction is smaller due to the circuits (i.e., global

wordline driver, sense amplifiers, and write enable logic) using conventional CMOS in

both cases (before and after); only the SRAM cells are changed in SRAM subblocks and

every gate except the global wordline driver in the decoder. Meanwhile, the sleepy stack

SRAM shows a 36% active power increase. Delayed switching of the sleepy stack SRAM

cell increases the sense amplifier and write enable circuitry unstable time, which increases

short-circuit power during switching. Low-Vdd LPPC reduces active power by 59% and

static power by 3X. The active power reduction of low-Vdd LPPC is an advantage over

the sleepy stack SRAM. However, compared to the sleepy stack SRAM, leakage power
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reduction of low-Vdd LPPC is small.

Table 23: SRAM delay

Decoder
SRAM

subblock
Rise/fall time

SRAM

external
Total

Basecase 4.61E-10 3.24E-10 7.10E-11 3.44E-10 1.20E-09

Low-Vdd

pipelined

cache

6.61E-10 5.61E-10 4.25E-10 3.44E-10 1.99E-09

Sleepy stack

pipelined

cache

(longest path)

7.89E-10 3.90E-10 7.17E-11 3.44E-10 1.59E-09

Sleepy stack

pipelined

cache

(shortest path)

7.86E-10 3.61E-10 9.50E-11 3.44E-10 1.59E-09

Delay (ns)

Table 23 shows SRAM delay (note that Figure 54(c) shows the same results with

graphs). Decoder delay is from the address input to the wordline driver output. SRAM

subblock delay is from wordline select to the sense amplifier output driver. Rise/fall time

is switching delay of the sense amplifier driver. Therefore, SRAM internal delay consists

of decoder delay, SRAM subblock delay, and rise/fall time. We assume that the required

cycle time (1.2ns) includes SRAM internal delay as well as SRAM external delay, e.g.,

address calculation circuitry delay in IF and MEM stages. The SRAM internal delay of

the base case is 0.856ns, and thus SRAM external delay is 1.20ns − 0.856ns = 0.344ns;

note that in our comparison, the “SRAM external delay” is common for both the base case

and the sleepy stack SRAM. Based on this assumption, we now calculate the longest path

delay of the sleepy stack SRAM. The longest path delay of the sleepy stack SRAM passes

though the global wordline decoder, and thus the longest path delay of the sleepy stack

SRAM is 1.59ns as shown in Table 23. Meanwhile the shortest path delay passing through

local wordline is 1.59ns. From Equation 24, we can find that possible number of wave

pipelining stages is two. Although the sleepy stack SRAM increases internal delay by 46%,
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we can potentially achieve 1.2n cycle time by pipelining the sleepy stack SRAM. The in-

creased delay of low-Vdd LPPC, which is 92%, is also hidden using pipelining. We assume

the SRAM design satisfies the second wave-pipelining constraint in Section 10.1 because

SRAM inputs are balanced and easy to control [10].

10.3.2 Pipelined cache performance

Table 24: Pipelined cache active power per benchmark

ICache DCache Total

CJPEG 45,689,751 3.73E-02 1.36E-02 5.10E-02

DIJKSTRA 101,478,228 3.58E-02 1.47E-02 5.05E-02

DJPEG 11,060,173 3.48E-02 1.67E-02 5.14E-02

GSM_ENC 21,551,339 4.09E-02 9.25E-03 5.02E-02

MPEG2DEC1 29,280,102 3.18E-02 1.58E-02 4.77E-02

QSORT 91,810,948 2.76E-02 1.47E-02 4.23E-02

SHA 17,533,451 4.31E-02 1.11E-02 5.42E-02

STRINGSEARCH 6,983,598 3.08E-02 1.16E-02 4.24E-02

Average 3.53E-02 1.34E-02 4.87E-02

CJPEG 47,300,053 1.49E-02 5.45E-03 2.04E-02

DIJKSTRA 110,896,835 1.36E-02 5.55E-03 1.91E-02

DJPEG 11,703,670 1.36E-02 6.51E-03 2.01E-02

GSM_ENC 21,888,764 1.67E-02 3.77E-03 2.04E-02

QSORT 30,212,689 1.28E-02 6.35E-03 1.91E-02

MPEG2DEC1 94,873,589 1.10E-02 5.87E-03 1.69E-02

SHA 17,600,173 1.78E-02 4.57E-03 2.23E-02

STRINGSEARCH 7,287,217 1.22E-02 4.61E-03 1.68E-02

Average 1.41E-02 5.33E-03 1.94E-02

CJPEG 47,300,053 4.90E-02 1.79E-02 6.69E-02

DIJKSTRA 110,896,835 4.45E-02 1.82E-02 6.27E-02

DJPEG 11,703,670 4.46E-02 2.14E-02 6.60E-02

GSM_ENC 21,888,764 5.47E-02 1.24E-02 6.71E-02

QSORT 30,212,689 4.19E-02 2.08E-02 6.27E-02

MPEG2DEC1 94,873,589 3.62E-02 1.93E-02 5.54E-02

SHA 17,600,173 5.83E-02 1.50E-02 7.33E-02

STRINGSEARCH 7,287,217 4.00E-02 1.51E-02 5.51E-02

Average 4.61E-02 1.75E-02 6.37E-02

Active cache power (W)Execution

Cycles
BenchmarkTechnique

Base case

Low-voltage

pipelined cache

Sleepy stack

pipelined

We measure execution cycles and active power consumption of the conventional non-

pipelined cache and the sleepy stack two-stage pipelined cache using our simulation en-

vironment. From the results of the seven different benchmarks, the result shows that the
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pipelined cache increases cycle time by 4% on average compared to the non-pipelined

cache; and the average I-cache and D-cache miss rates are 0.18% and 0.98%, respectively.

Although the cycle time of the sleepy stack is increased, this is remarkable improvement if

we consider the delay overhead of the sleepy stack SRAM (46%).

Unfortunately, the sleepy stack SRAM increases active power by an average of 31%,

and this is consistent with the result in Section 10.3.1. Since the active power increase

is non-negligible, we need to consider the tradeoffs between active power overhead and

static power savings. The active power overhead is 15.0mW, and reduced leakage power

saving from the two sleepy stack SRAMs (I-cache and D-cache) is 9.78mW. Therefore,

if the sleep mode is 3 times larger than active mode, overall energy saving of the sleepy

stack SRAM is larger than the conventional SRAM with a small execution cycle overhead.

Compared to low-Vdd LPPC, the active power overhead of the sleepy stack pipelined cache

is 44.3mW, and leakage power saving is 2.94mW. Therefore, if the sleep mode is 3 times

larger than active mode, overall energy saving of the sleepy stack SRAM is larger than the

conventional SRAM with a small execution cycle overhead. If we recall the cell phone

calling time scenario in Chapter 2, our sleepy stack SRAM has an edge over the base case

as well as low-Vdd LPPC.

Due to the additional transistors and complex structure, the sleepy stack SRAM incurs

some area overhead as explained in Chapter 7. However, since our sleepy stack SRAM has

some parts that use conventional style CMOS design, e.g., a decoder global wordline

driver, precharge logic, sense amplifier, write enable logic, we estimate that overall area

overhead is less than 100% (i.e., the sleepy stack SRAM is less than 2X the original area).

(Please note that we assume the area overhead is paid for in term of increased chip cost;

i.e., we do not halve the L1 cache sizes in this sleepy stack case.)

Clearly, the specific quantitative results presented here will vary as more accurate 0.07µ

models become available and more accurate processor modeling/design is done. Neverthe-

less, we expect the high level trend/tradeoff identified in this paper to hold true in general:
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sleepy stack pipelined caches provide much lower standby (leakage) power consumption

at a cost of increased active power consumption and area.

10.4 Summary

In this Chapter we introduce a new low-leakage technique by combining two low power

techniques we have pioneered: sleepy stack and LPPC. The sleepy stack pipelined SRAM

can achieve low-leakage power consumption while almost maintaining the architectural

performance with a potentially small 4% cycle time increase. The leakage power reduction

is more than 17X compared to the conventional non-pipelined cache SRAM design and

more than 5.6X Compared to low-Vdd LPPC. Although our combined technique incurs

31% dynamic power increase, our technique can be well applied a system that has short

operation time (long sleep time) on average.
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CHAPTER XI

CONCLUSION

In nanometer scale CMOS technology, subthreshold leakage power is compatible to dy-

namic power consumption, and thus handling leakage power is a great challenge. In this

dissertation, we present a new circuit structure named “sleepy stack” to tackle the leakage

problem. The sleepy stack has a combined structure of two well-known low-leakage tech-

niques, which are the forced stack and sleep transistor techniques. However, unlike the

forced stack technique, the sleepy stack technique can utilize high-Vth transistors with-

out incurring large delay overhead. Also, unlike the sleep transistor technique, the sleepy

stack technique can retain exact logic state while achieving similar leakage power savings.

In short, our sleepy stack structure achieves ultra-low leakage power consumption while

retaining state.

Since the sleepy stack technique can retain logic state, we can use the sleepy stack

technique for both generic logic circuits as well as memory, i.e., SRAM. When applied to

generic logic circuits, the sleepy stack technique achieves up to 200X leakage reduction

compared the forced stack technique with -6%∼7% delay variations and 51%∼118% area

overhead. When applied to SRAM, the sleepy stack SRAM cell with 1.5xVth achieves 5X

leakage reduction with 32% delay overhead compared to the best prior approach, a high-Vth

SRAM cell. Alternatively, the sleepy stack SRAM cell achieves 2.49X leakage reduction

with the same delay as the high-Vth SRAM cell. As such, the sleepy stack SRAM cell

provides new Pareto points which were not known before.

We also propose a new low power architectural technique called Low-Power Pipelined

Cache (LPPC). Our LPPC provides a new way to save power consumption of a cache

with small performance overhead. By pipelining a cache into multiple stages, we provide
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extra slack. Although a conventional pipelined cache uses this extra slack to reduce cache

access time, alternatively, we use this slack to lower cache supply voltage and thus achieve

cache power savings. Using a specific processor performance and power evaluation setup

for LPPC, we observed that 2-stage pipelined cache achieves the best results among two,

three, and four stage pipelined caches. We achieve 70% of cache power savings (20.43%

of processor energy saving) with 4.14% of average execution cycle increase. Although

evaluated with an embedded processor model, LPPC can be applicable to generic pipeline

processors with caches.

Finally, we combine the two proposed low power cache techniques, sleepy stack SRAM

and LPPC. Although sleepy stack SRAM achieves ultra-low leakage power consumption,

increase of delay could be a bottleneck for a system that does not allow any delay increase.

For our target system sleepy stack pipelined SRAM achieves 17X leakage power reduction

while increasing execution cycle by 4% on average. Although this combined technique

increases 33% active power consumption, this technique is well suited for products whose

usage results in most of the time spent in sleep mode.

In conclusion, we have explored a high-impact and heavily researched area: low-power

VLSI design. Two major discoveries - sleepy stack and LPPC - have been shown to have

significant impact. For systems spending a large percentage of time in sleep mode yet

requiring ultra-fast wakeup, sleepy stack provides the best solution currently known in

VLSI design, typically resulting in approximately two orders of magnitude less leakage

power over the best of all prior known state-saving VLSI design approaches.
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APPENDIX A

CHAIN OF FOUR INVERTERS LAYOUT

In Appendices A, B, C, and D, we present layouts we design in this thesis. The layouts

include logic circuits explained in Section 6.1 and SRAM cells explained in Section 6.2. We

design target benchmark circuits using Cadence Virtuoso, a custom layout tool [11], and

the North Carolina State University (NCSU) Cadence design kit targeting TSMC 0.18µ

technology [48].

First, we present logic circuit layouts using five different techniques, i.e., base case,

sleep, zigzag, forced stack, and sleepy stack. Second, we present SRAM cell design using

three different techniques, i.e., base case, forced stack and sleepy stack.

Now we present chain of 4-inverters layouts in the rest of this appendix (Appendix A.
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Figure 55: Base case 4 inverters
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Figure 56: Sleep approach 4 inverters
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Figure 57: Zigzag approach 4 inverters
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Figure 58: Forced stack approach 4 inverters
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Figure 59: Sleepy stack approach 4 inverters
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APPENDIX B

FULL ADDER LAYOUT

In this appendix, we present 1-bit full adder layouts using five different techniques, i.e.,

base case, sleep, zigzag, forced stack and sleepy stack.
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Figure 60: Base case full adder
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Figure 61: Sleep approach full adder
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Figure 62: Zigzag approach full adder
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Figure 63: Forced stack approach full adder
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Figure 64: Sleepy stack approach full adder
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APPENDIX C

NAND AND NOR LAYOUT

In this appendix, we present NAND and NOR layouts, which are parts of a 4:1 multiplexer,

using five different techniques, i.e., base case, sleep, zigzag, forced stack and sleepy stack.

Figure 65: Base case NAND

Figure 66: Base case NOR
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Figure 67: Sleep approach NAND

Figure 68: Sleep approach NOR

Figure 69: Zigzag approach NAND with pull-up sleep
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Figure 70: Zigzag approach NAND with pull-down sleep

Figure 71: Zigzag approach NOR with pull-up sleep

Figure 72: Zigzag approach NOR with pull-down sleep
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Figure 73: Forced stack approach NAND

Figure 74: Forced stack approach NOR
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Figure 75: Sleepy stack approach NOR
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APPENDIX D

SRAM CELL LAYOUT

In this appendix, we present SRAM cell layout using three different techniques, i.e., base

case, forced stack and sleepy stack. For the forced stack and the sleepy stack SRAM cells,

we consider four different SRAM cell structures for each technique. The result is we show

PD forced stack SRAM cell; PD, WL forced stack SRAM cell; PU, PD forced stack SRAM

cell; PU, PD, WL forced stack SRAM cell; PD sleepy stack SRAM cell; PD, WL sleepy

stack SRAM cell; PU, PD sleepy stack SRAM cell; and PU, PD, WL sleepy stack SRAM

cell.

Figure 76: 6-T conventional SRAM cell
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Figure 77: PD sleepy stack SRAM cell

Figure 78: PD, WL sleepy stack SRAM cell
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Figure 79: PU, PD sleepy stack SRAM cell

141



Figure 80: PU, PD, WL sleepy stack SRAM cell
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Figure 81: PD forced stack SRAM cell

Figure 82: PD, WL forced stack SRAM cell

143



Figure 83: PU, PD forced stack SRAM cell

Figure 84: PU, PD, WL forced stack SRAM cell
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