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Abstract

The accurate determination of hydrodynamic loads on moving ships is important for hull

form design and optimization and structural design purposes. This is especially true at the

preliminary design stage during which time quick predictions of the forces and moments

acting on a ship advancing steadily with, and without, yaw would be extremely useful. hi

view of this, simple numerical cross-flow algorithms has been developed. The numerical

procedures are based on slender body theory, which is used to convert the three

dimensional problem into a series of two dimensional wavemaker problems in the plane of

transverse sections, marching in small steps from the bow section towards the stem.

Fluid density stratification, vortex shedding, finite water depth and nonlinear free

surface effects can be allowed for in the algorithms. A procedure for handling density

stratified flow has been developed and successfully used for the calculation of surface and

interfacial waves created by a prolate spheroid. Vortex shedding is modelled using the

discrete vortex method. A hybridization of the discrete vortex and boundary element

methods is achieved and illustrated in a test case of predicting the forces acting on an

oscillating flat plate.

The wavemaker, with the fully nonlinear free surface conditions, is used for

calculating the generated wave pattern and wavemaking resistance of a Wigley hull. The

effects of finite water depth on wavemaking resistance are calculated. The hybrid

boundary element-discrete vortex method is used for determining the hydrodynamic forces

and moments acting on a yawed Wigley hull.
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INTRODUCTION

Robust and reliable methods for determining the hydrodynamic characteristics of a vessel

or offshore structure are valuable tools for design engineers and naval architects. The

ability to fine tune designs at an early stage means an improvement to the design process

and consequently better designs. Apart from that, much cost and time savings accrue

from the reduction of required model testing and the avoidance of remedial work after

commissioning.

Ongoing research over the years, aimed at the development of better and more

efficient numerical tools of practical interest to ship designers, has resulted in numerous

innovative approaches. Despite this, numerical solutions relating to nonlinear ship wave

generation have proved elusive. A number of computational methods, mostly linearized,

were introduced in the 70s. However, as the importance of nonlinearity and viscous

effects become better understood, much work in the last decade or so has attempted to

account for both.

The objective of the present work is to use potential flow theory to study the

hydrodynamics of a slender body in calm water, including the effects of nonlinearity, yaw,

vortex shedding and fluid density stratification. Numerical implementation was achieved

using the higher order boundary element and discrete vortex methods. Slender body

approximations simplified the threc dimensional moving ship problem into a sequence of

two dimensional wavemaker problems. Working in the cross-flow plane offers many

advantages from a computational standpoint by allowing the inclusion of vortex shedding,

consideration of finite water depth, uneven seabed conditions and density stratification.



The schemes developed and reported in this thesis can conveniently be divided into three

categories, which will be described in more detail in the following sections.

Nonlinear Slender Body Procedure

The slender body formulation has been generalized to accomodute oblique motion of a

ship. This was implemented through a wavemaker approach in which the 3D ship wave

problem is converted into a series of 2D ‘wavemaker’ problems in the plane of stations,

marching in small steps starting from the bow section. This approach was used in the

study of bow wave making for an advancing wall-sided wedge.

The algorithm was then extended to include the fully nonlinear free surface

conditions and applied to the calculation of deep and shallow water wavemaking

resistance and the waves generated by an advancing Wigley hull. Vortex shedding effects

were not included in these calculations. Vorticity generated by the round bilges were

assumed unimportant in forward motion problems and hence not accounted for. This

assumption can be justified considering the success of pure potential flow ship resistance

calculation methods. The nonlinear free surface evolution was achieved using the

Eulerian-Lagrangian approach. The procedure, when extended to general hull forms can

be an invaluable tool in hull form optimization applications. Suitable ship types for such

applications are naval vessels, container ships and multi-hull vessels.

Ships in Stratified Waters

Density stratification is a common phenomenon occuring both in the oceans and inland

waters. The variation of the density with water depth is due to changes in the salinity
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and/or temperature over a region called a pycnocline. Although the density differences

may be small, ships moving slowly in the vicinity of such interfaces experience what came

to be known as deadwater effects. When the ship speed approaches that of the fastest

generated internal waves, the increase in drag over the hull is very large and the available

power from its engines may not be enough to push the ship beyond that critical speed.

This is due to energy being spent in the creation of internal waves below the free surface

and the disturbance of the flow around the ship due to these internal waves. It is also

known that a vessel loses controllability in such situations. In naval applications, fully or

partially submerged vessels could produce undesirable internal wave signatures.

The procedure given in this thesis is applicable to a slender hull moving in a two

layer fluid (although it is certainly possible to extend the application to multi-layer flows).

The ship draught is taken to be of the order of the, thickness of the upper layer. Two fluid

domains are used, the lower domain with a density slightly higher than the upper for

overall gravitational stability. The classical treatment of two dimensional internal waves

provides a condition relating to the interface between the two layers. The boundary

element method was used to obtain the transient solution by solving the lower, then the

upper domain sequentially at each time step. This algorithm is expected to be useful for

resistance prediction of submerged bodies and for the study of internal wave behaviour

without the presence of a body.

Vortex Shedding Effects

There are numerous instances in the study of fluid dynamics where vortex shedding forces

are significant and should be taken into account. A good example is in the tumerical
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prediction of the roll response of a ship with sharp corners and bilge keels where wave

damping is light and vortex effects are important. However, vortex effects are usually not

included in potential flow applications to ship dynamics. This is partly due to the complex

nature of the fluid-structure interaction which generates vortices from a hull. There is also

the difficulty of implementing vorticity calculations in wave problems without resorting to

viscous flow computations involving the Navier-Stokes equations.

A hybridization of the boundary element and discrete vortex methods has been

achieved. This hybrid method allow a simple but effective way to account for the effects

of vortex shedding in potential flow calculations. The vortex generation mechanism is

taken to be the keel. Bow and secondary vortices were not included since the complex

nature of the flow in both cases cannot be properly modelled using a simple discrete

vortex approach. The computational advantage in being able to account for vortex effects

while still working with boundary values is significant.

The hybrid method was implemented for the case of a Wigley hull in oblique

motion. Changes in wavemaking resistance and yaw forces and moments due to small

angles of attack, whether intentional or otherwise, can be studied. Such studies are of

practical interest from an operational standpoint. In addition, forces and moments in

yawed ship motion can be used to determine the so called ‘stability derivatives’, important

in the study of ship manouevring. This in turn allows systematic investigations into the

directional stability of a vessel at the design stage.
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Chapter One

Review of Relevant Literature

1.1 Boundary element method and free surface flows

The boundary element method is a much used method for solutions to fluid dynamics

problems. An advantage of this method is that for potential flow calculations only

conditions on the boundary need to be specified and calculations are carried out along the

discretized boundary only. This method is well suited for application in boundary value

potential flow simulations involving relatively complex and possibly time varying

geometries.

Much attention has been focused on finding stable numerical solutions to the

nonlinear problem. The satisfaction of the nonlinear free surface conditions at a location

which is unknown a priori has been a major stumbling block to the achievement of stable

numerical solutions in nonlinear wave making. Longuet-Higgins and Cokelet (1976) used

a mixed Eulerian-Langrangian form of the free surface conditions to trace the temporal

development of high amplitude surface waves. They assumed spatial periodicity, mapping

the domain such that only free surface variables need to be handled in the solution

procedure. Their formulation was successful in coping with the multi-valued

characteristics of an overturning wave.
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Faltinsen (1978) applied the boundary element method to the two dimensional

problem of liquid sloshing in an oscillating container in which the nonlinear free surface

boundary conditions are treated for consideration of a nodal point constrained to move in

the vertical direction only. Nakayama and Washizu (1981) also reported work on the

above problem. Although not clearly stated, it appears that this work used the kinematic

free surface boundary condition in its linearized form. Cointe (1989), using the mixed

Eulerian-Lagrangian method, studied wave diffraction from a submerged cylinder.

Pawlowski, Baddour and Hookey (1991) discussed the use of linear elements for nonlinear

wave simulation. Isaacson and Ng (1993) reported a time domain boundary element

scheme for nonlinear wave radiation from floating cylinders in sinusoidal sway, heave and

roll motion.

In the numerical simulation of nonlinear interactions involving a free surface and a

floating body, boundary conditions are to be satisfied at the instantaneous location of the

boundaries at any given time step. This requirement, when applied to the fluid-body

intersection point, results in difficulties arising from the singular behaviour of the fluid

velocities at that point. Consequently, the definition of conditions such as the velocity

potential, the direction and magnitude of the velocities, and the location of the free surface

node at the fluid-body intersection point has proved to be a challenging task for all

research into nonlinear wave simulation. Yet, the resolution of this problem is crucial for

the success of any such simulation, both in terms numerical stability and accuracy.

Vmje and Brevig (1981) used the body boundary condition at the intersection

point. The velocity potential is taken to be the unknown there and emerges as part of the
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solution. Un (1984) specified both the velocity potential and stream function value at the

intersection point in an algorithm using the Cauchy integral formulation for boundary

elements. Dommermuth and Yue (1987) used a similar technique and a boundary

regridding scheme. The regridding they used replaced the Lagrangian points to give equal

length elements on the free surface. The use of double nodes has recently emerged as a

popular idea in the fluid-body intersection problem. Grihi and Svendsend (1990), among

others, used this idea, enforcing compatibility only at the end of each time step.

Another major difficulty in numerical calculations of nonlinear wave making is the

application of the far field condition stemming from the truncation of infinite domains to

manageable dimensions. The lack of proper physical conditions governing the passage of

energy out of the computational domain has made the radiation condition for full nonlinear

problems difficult to define. The eventual reflection of waves back into the computational

domain causes errors in the solution for the region of interest. This undesirable situation is

common to all numerical methods. To cope with this, a variety of ways has been devised

which define conditions at a given cut-off boundary which is not excessively distant from

the source of the disturbance. Obviously, limiting the size of the computational domain

improves computational efficiency.

Chan (1975) used a mathematical wave damping device to remove energy of the

outgoing waves. Orlanski (1976), on the other hand, used the Sommerfeld radiation

condition, proposing a finite difference scheme to calculate a depth and time dependent

celerity, which should always be directed out of the domain. The method does not rely on

knowledge of the dispersion characteristics of the wave train and as a result may be used
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for nonlinear waves. Isaacson and Cheung (1991) obtained satisfactory results for second

order wave propagation.

Yen, Lee and Akai (1977) applied the undisturbed condition at the cut-off

boundary which is periodically expanded downstream as the propagating wave approaches

it. Apart from the fact that computational efficiency deteriorates with time as the domain

grows, the solutions reportedly became unstable after some time. In a later paper, Yen

and Hall (1981) used Orlanski’s method for nonlinear waves together with a proposal to

remove the higher frequency error due to the reflected waves having wavelengths of about

two grid intervals. This was done using two separate methods: filtering over the whole

free surface using a mathematical smoothing function and a modification of the

formulation to include dissipation and dispersion. Dommermuth and Yue (1987) matched

the inner nonlinear region by a linear outer region and reported this gave a robust

algorithm.

More recently, Tanaka and Nakamura (1992) proposed an extension to the

Orlanski scheme for application to unsteady and irregular nonlinear waves. Their method

used the nodal point nearest to the free surface-radiation boundary intersection for the

prediction of the time dependent phase velocity of the outgoing waves.

1.2 Potential flow around ships

Due to the difficulty of obtaining complete analytical solutions to the ship wavemaking

problem, a tremendous amount of work has been done on the development of numerical

methods. Hess and Smith (1967) developed a source panel method for the calculation of

potential flows around bodies of arbitrary shape. Dawson (1977) devised a method in
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which a combination of the double body Rankine source panel method and marching

scheme in the stream-wise direction produced useful information relating to. the

hydrodynamics of steady ship motion. Cheng (1989) extended the method for 3D transom

stem flows while Tahara (1992) included lifting effects in the double body potential.

Gadd’s (1976) iterative numerical procedure for ship resistance prediction was followed up

by Causal et al. (1991) for nonlinear wave calculations. The so-called Neumann-Kelvin

approximation is also popular and well reported in the literature, see t’or example the work

of Suzuki (1985).

Maruo (1982) presented a formulation based on the Neumann-Kelvin

approximation. Slender body approximations result in a simplification with the

distribution of Kelvin sources on the hull surface only. A marching procedure starting at

the bow can be used, with the source strengths at a given section being determined by the

ship normal velocity at that section and a known quantity involving data evaluated

upstream. Upon completion of the procedure, all the source strengths on the hull surface

are determined. Quantities of interest are then computed by evaluating the effects all these

sources. Song, Ikehata and Suzuki (1988) applied the method to the Wigley hull,

reporting good agreement with measured values. Calisal and Chan (1989) reported on the

use of a simple wavemaker method and slender body theory for the calculation of bow

waves produced by an advancing wall-sided wedge. Wong (1993) pointed out that using

starting conditions at the bow improves the results from slender body calculations. Grilli

(1991) used a similar approach for a cusp-ended ship-like body. More recently, Song and

Maruo (1993) described a wavemaker approach to bow impact and deck wetness studies.
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Kim and Choi (1993) calculated shallow water effects on hydrodynarnic forces acting on

various hull forms using a three dimensional iterative procedure involving the Rankine

source panel method.

1.3 Interfacial waves generated by a moving body

One of the earliest works on ship excited interfacial waves in stratified media was reported

by Ekman (1904), who was able to experimentally confirm that internal waves created by

a moving ship cause a large drag on the hull. Sabuncu (1962) calculated the Michell wave

resistance in the presence of interfacial waves in a two layer fluid. More recent interest in

the problem was fuelled by attempts to explain the long narrow V-wake left behind a ship

moving in stratified seas as sensed by radar. Tulin and Miloh (1990) used linearized

theory to obtain a solution in terms of a Green’s function. Wong and Causal (1993b) used

the cross flow approach to predict the interfacial waves excited by a prolate spheroid and

compared the results to the experimentally measured values of Ma and Tulin (1992).

Watson et a!. (1992) reported on full scale experimental work with ships traversing

a highly stratified Scottish sea loch. They concluded that interfacial wave amplitudes are

only weakly dependent on ship speed but are more sensitive to changes in fluid

stratification.

1.4 Discrete vortex methods

Flow separation occurs when the boundary layer on a body surface reaches a sharp edge

where the radius of curvature of the edge is very much smaller than the boundary layer

thickness. In two dimensional flow, the adverse pressure gradient set up results in the
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formation of an unstable shear layer which subsequently rolls up into a tight spiral and is

then shed into the flow field as a free vortex sheet. Such a vortex sheet can be

approximated by the introduction of discrete vortices at given time intervals as the flow

develops.

A persistent and yet unresolved problem in such schemes is the irregular roll-up of

the vortex sheet as well as numerical instability due to the uncharacteristically high

velocities induced when a vortex is very near to another vortex or its image. These

problems have been the focus of study in research on vortex methods since the early 70s.

The interaction between a pair of vortices in close proximity results in high

induced velocities on each. Chorin (1973) used vortices with a viscous core to model

viscous diffusion as well as to stabilize his numerical procedure. As a result, the maximum

induced velocity of a vortex is finite at a given distance from the vortex position and

decreases to zero as the centre of the vortex is approached. Clements and Maul! (1975),

to obtain stable solutions, limited the induced velocities by amalgamating any pair of

vortices that are too close together. Fink and Soh (1974) pioneered a scheme of

rediscretization in which the vortex sheet is rearranged into equidistant positions after

each time step in the numerical procedure. This same regridding scheme was adopted by

Dommermuth and Yue (1987) for the treatment of the nonlinear free surface to improve

numerical stability. The above, and many other similar, schemes help in one way or

another to give smooth vortex roll-up as well as extend the computational time span in

which calculations remain stable, Wong (1990).
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Graham (1980) applied the discrete vortex method to calculate the vortex forces

induced at a sharp edge in oscillatory motion at low Keulegan-Carpenter numbers. This

was done by regarding vortex shedding from an infinite wedge as the inner region of flow

past a large but finite body. The underlying assumption in this case is that the body length

scale is large so that the vortex shed does not affect other parts of the body which are far

away from the edge when compared to the flow length scale. Downie, Bearman and

Graham (1988) followed up on this and calculated the vortex damping forces on a rolling

rectangular barge. Wong and Causal (1993a) applied a hybrid discrete vortex-boundary

element method to the determination of the forces acting on a submerged, oscillating flat

plate. The results from that study compared well to measured values.

Comprehensive general reviews on various vortex methods can be found in

Leonard (1980), Lugt (1981) and Sarpkaya (1989).

1.5 Vortex-free surface-body interactions

The study of interactions between vortices and free surfaces, density interfaces and

moving bodies has been motivated by attempts to improve potential flow results for

situations where vortex effects were thought to be important. In particular, body

generated vorticity can result in significant influences on the hydrodytiamic forces acting

on the body.

Bradbury (1986) generated a number of rectangular transverse sections to describe

a yawed ship-like slender body for the study of hydrodynarnic effect of bilge vortices. It

was necessary, in that case, to use rectangular blocks where the submerged sharp corners

12



representing the bilges provide well-defined separation points for the vortex shedding

algorithm employed. Time marching was used to advance from one cross-flow plane to

the next. At each section, conformal mapping was used as part of an iterative procedure

for the solution. The free surface was assumed rigid for his work.

Braathen and Faltinsen (1988) applied a time stepping procedure for two

dimensional vortex shedding from rectangular sections in forced harmonic roll oscillation.

Tryggvason et al. (1991) studied the collision of a vortex pair and a vortex ring with a

sharp density interface and free surfaces.

13



Chapter Two

Formulation and Calibration

2.1 The wavemaker problem

This section summarizes the development of a ‘wavemaker’ algorithm for the computation

of flow around steadily advancing slender ships. Simplification of the three dimensional

problem is achieved using the slender body approach given in Appendix A. This reduces

the problem into a series of two dimensional ones in the cross-flow plane, solved

sequentially by marching in time from the bow in the direction of the stern. An effective

way to visualize this is to view the ship from a fixed yz planc ahead of the bow. As the

ship advances past this viewplane, different transverse sections are ‘cut’ by this plane such

that the fixed observer sees the body sections ‘opening up’ until around the midship region

and ‘closing in’ again towards the stern.

The frame of reference has the origin on the ship centreline at amidships and on the

undisturbed free surface as in Figure 2.1. The angle of incidence of the free stream

velocity, or the yaw angle, is taken to be a. Details concerning the use of slender body

theory to derive a set of equations describing the wavemaker problem is given in Appendix

A and will not be repeated here.

14



Figure 2.1: Coordinate system fixed on the body.

Ideal fluid assumptions, together with slender body approximations, result in the

two dimensional governing I.aplace equation from Equation (A.15):

Pyy + +72 0

Figure 2.2: Boundary definition for wavemaker problem.

(2.1)

AP

Notation
Length L
BeamB z
Draughtd

ZFP
Free stream
velocity (U)

Note: Origin is at undisturbed
free surface level.

z

Free suace (Sf) Free suace (S
/

/
/

Wall Wall
(Sw) /

U(YCOSU ± sina)/(1 -t-Y)5
/ (Sw)

/ /

/ IGoveming Equation : =

/

// / / // / / /
Bottom boundary (S0)
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All normal velocities were taken to be positive pointing out of the domain (see

Figure 2.2). The bottom boundary S0 is taken to be impermeable. A ‘mirror image’

technique using symmetry to satisfy the bottom condition is often used to reduce the

number of equations to be considered in the boundary value problem, see for example,

Isaacson and Cheung (1991). This can easily be done if collocation points are away from

the intersection points between the bottom boundary (S0) and the sides (Sw). However,

the present work used linear and quadratic elements, that is collocation points are found at

all boundary intersections. The additional computational book-keeping resulting from the

use of this technique erodes the savings in computational effort. Moreover, by keeping

the bottom boundary, the formulation can be extended to the more general case of uneven

and sloping seabeds. Thus, the bottom boundary was retained for all the calculations

described in this thesis.

The impermeable wall S is placed far enough (through numerical experiments)

from the ship to ensure that wave reflection does not affect the flow calculations. There

were two reasons for not imposing the radiation condition at this boundary. Firstly

computed results are to be compared to values measured in tank testing where flow is

always bounded. The other reason is that it is extremely difficult to implement the

numerical radiation condition for the mixed Lagrangian-Eulerian approach adopted in

nonlinear cases in the present work.

On the body, the normal velocity in the cross-flow plane is due to the rate of

change of the sections as the marching proceeds. The ‘wavemaker’ displacement is thus
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represented by the changing hull sectional shapes along the ship length. Normal velocities

on the hull section (negative into the fluid) at each step is defined using Equation (A.14):

a4 -U(Ycosct±sincL)
an Ji+Y

At the free surface, S, the dynamic and kinematic conditions, to be satisfied at the

instantaneous free surface location, are applicable. Using the conversion

a I a .

—= UI cosa—+sinct— (2.3)
ôt

‘
ox OyJ

assuming that U is uniform everywhere in the flow field. From Equations (A.16) and

(A.17):

atz=rl (2.4)
at OyOy z

+ +()] + =0 at z = (2.5)

The marching procedure from one cross-flow plane to the next can be viewed as a

time domain problem where the time step is the amount of time taken to traverse dx, the

spatial step along the longitudinal axis.

The hydrodynamic forces and moments are evaluated according to the following

integrals:

L12

= fcixf p.ndS (2.6)
—L/2

L/2

M
= fdxf p(rxn)dS (2.7)

-L12
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where n is the normal vector at the middle of the element dS and r is taken with reference

to the origin (0,0,0). The integration is carried out over the girth of each considered

cross-section (SB) and, after completion of the sweep, over the ship length using

Simpson’s rule. The pressure p is obtained from the Bernoulli equation:

p = P—P0 =— U(cosa+sinu)+_((.)
()2

÷gz (2.8)
ox 2Oy )

2.2 Free surface evolution for higher order elements

For the solution of the cross-flow plane boundary value problem, velocity

potentials are specified at all free surface nodes. The free surface conditions are satisfied

at its exact location for nonlinear calculations. Where linearized conditions were used, the

free surface boundary was fixed at the mean level.

In the nonlinear procedure, adopting the Lagrangian-Eulerian approach to trace

free surface particles, the two dimensional dynamic free surface condition in Equation

(2.5) can be rewritten as:

D1[(O4)2(O)2]
atz=11 (2.9)

using the substantial derivative:

(2.10)
Dt at OyOy OzOz
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The velocities on the free surface can be described by:

Di a (2.11)
Dt ôz

Dy a4
(2.12)

Dt ay

For the linear solution procedure, the kinematic and dynamic free surface conditions are

written as:

= -gq at z = 0 (2.13)

atz=O (2.14)
öt ôz on

The solution for the time marching procedures require the use of an extrapolator

to find the potential values on the free surface and its location at the next time step. In the

present work, the first order Adams-Bashforth predictor for time step size ôt was used.

(t + ôt) = (t) + [3(t) — 1(t — t)]- (2.15)

+ ôt) = q(t) + [3 (t)
—
‘q (t — ôt)}- (2.16)

In this way, values of the velocity potential (4)) and the location of the free surface (‘q) at

time (t + ôt) are predicted using Equations (2.15) and (2.16). With Neumann conditions

specified on all the other boundaries, the problem is then solved using the higher order

boundary method (Appendix B). The normal velocities on the free surface nodes emerge

as part of the solution from the boundary element method. From these, time rates of

change for the potential and the free surface location can be determined using Equations
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(2.9), (2.11) and (2.12). For linearized conditions, Equations (2.13) and (2.14) are used

instead. The values of and ij can then be corrected using the Adams-Moulton corrector,

Equations (2.17) and (2.18), and the problem solved a second time before proceeding to

the next time step.

p(t + ôt) = p(t) + [p, (t) + p((t + ôt)}. (2.17)

rl(t + ôt) = t(t)+ [r(t)+ q(t + ôt)] (2.18)

The velocities in the y- and z-directions(p and p) can be determined using the

normal and tangential velocities at each collocation node.

=cosO—sinO (2.19)ay as

- = -sinO +cosO (2.20)
az as an

where 8 is the angle of the free surface element to the horizontal (anti-clockwise positive).

The tangential derivative / aS can be found by taking finite differences, varying linearly

over each quadratic element and being constant over a linear element. Thus, for quadratic

elements, the tangential velocity is given by:

3P —4Pk÷1 + Pk+2 (2.21)as AS

where AS is the element length, and k is a nodal index increasing in the anti-clockwise

direction.

The singular behaviour at the intersection point S fl SB requires special attention.

In the present work, continuity of potential is assumed while it is recognized that the
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normal derivatives immediately to either side of the fluid-body intersection node are

different. The normal velocity on the body side is imposed for physical compatibility.

This means that the normal velocity on the body side should be identical to that of the

body at the intersection point. The normal velocity on the free surface side is linearly

extrapolated from the nearest two free surface nodes. This leaves the potential as the only

unknown at the intersection point. Details on how this is numerically implemented is

given in Appendix B.

2.3 Bow wave generated by a wall-sided wedge

The wavemaker algorithm described earlier was used for the prediction of bow waves

generated by an infinite (after body) wedge. This simple application provided an

opportunity for the calibration of the time stepping procedure. As the midship section is

undefined, the frame of reference has to be shifted to the forward perpendicular, see

Figure 2.3. The computational boundary, as shown in Figure 2.3, is similar to that given

in Figure 2.2 except for the presence of the bottom of the wedge section, on which the

normal velocity is zero (ignoring dynamic trim and sinkage effects) and the use of a

symmetry x-z plane to save computational effort. It is easily seen that as marching

proceeds, the body is seen as a steadily growing rectangle in the cross-flow plane.

For the no yaw condition (a = 0), and taking the internal angle of the wedge to be

, the normal velocity on the vertical wall of the wedge section can be expressed, using

Equation (2.2) and noting that Y,, = 0, as:

= —uy —u tan(.’i (2.22)
on \2J
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For this application, the linearized free surface conditions given in Equations

(2.13) and (2.14) were satisfied at the undisturbed level. The step size in all cases was

Figure 2.3 : Infinite wedge definition sketch

fixed at an x increment of 2.5 mm. Draughts of between 4-16 inches (10.2-40.6 cm) were

considered. The water depth and tank width were both taken to be 2 metres. Linear

elements were used throughout. Normal velocities for all boundaries except for the

vertical boundary of the wedge and the free surface were specified as zero. The Dirichiet

boundary condition was specified on the free surface through the procedure given in the

last section.

The amplitude and location of the first bow wave peak was recorded for all

computations. These results were compared to measured values for 3 = 150 (Ogilvie,

1972) and presented in Figures 2.4 and 2.5. In Figure 2.4, the bow wave amplitude

is in good agreement with experimental values. The analytical results obtained by Ogilvie

Isectional View]

Wedge Section

z

Free Surface

______lid

IPerspective View! —U

id
y
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(1972) for the bow wave amplitude, non-dirnensionalized using -- /U, showed a

constant value of 1.6, independent of the depth Froude number as well as the draught. On

the other hand, the same non-dimensionalization of all data points in Figure 2.4 gave a

range of 1.9-2.4 for the predicted results while the experimental data has a range 0.5-2.7.

The computed bow wave peak location (Figure 2.5) were consistently delayed in

all cases. This is probably due to the fact that the marching procedure was started with an

undisturbed free surface. Generally, initial conditions in the form of potentials and wave

elevations at the first cross-flow plane, that is at the bow section of the ship, can be

calculated from Dawson’s (1977) method. This method basically requires the distribution

of Rankine sources on the body and free surface, solving for the source strengths by

imposing body, free surface and radiation conditions. Evaluation of velocities and free

surface elevations rely on these source strengths. Hence, a closed body is necessary and

the Dawson method was not applicable for the above wedge which is infinite in the

longitudinal direction.
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Figure 2.5 Calculated and measured wave peak location for wedge, = 15°.

IDraupht =10.16 cml

• Present method
——Ogilvie (Expt)

•
•

Ioraught = 30.48 cml

• Present method
Ogilvie (Expt)

.

125
E
0

100
0
1:0
E 75

0

U)
0a. 25

U)a. 0
0 100 200 300 400 500

Speed of Advance (cm/s)

•

•

—. 125
E
0

100
0 •

E 75.o
C .
.2 50 •

/
• . /

a.25. •

•.CD •
0
0 100 200 300 400 500

Speed of Advance (cmls)

lDrauht = 20.32 cml

• Present method
Ogilvie (Expt)

125
E
0

100
0

E 75

C
0

U)
0a. 25
U)
U)

IDraught = 40.64 cml

• Present method
Ogilvie (Expt)

• ..

• .

• ...

• .

0

125
0

100o
•E

••.
.250 •

•
a. •

•U)
U) •a. ... ..I. .. I.... I....

0 100 200 300 400 500
Speed of Advance (cm/s)

100 200 300 400 500

Speed of Advance (cm/s)

25



Chapter Three

Slender Body in Two-Layer Medium

A ship travelling at very low Froude numbers in stratified water is known to experience

what is generally known as dead-water effects. As the ship speed approaches that of the

fastest internal waves, the increase in drag over the hull is very large and the available

power from its engines may not be enough to push the ship beyond that critical speed.

The vessel could also lose manouevrability. This is due to energy being expended in the

creation of internal waves below the free surface and the disturbance of the flow around

the ship due to these waves.

This chapter describes a numerical solution for the time domain calculation of

surface and interfacial waves generated by a body moving slowly in a gravitationally stable

dual density fluid. The wavemaker approach described in Chapter Two and Appendix A

were used. The fluid is assumed to consist of two distinct layers of slightly different

densities with a discontinuity of the Brunt-Väisälä number at their interface.

3.1 Boundary conditions

A moving frame of reference with the origin on the ship centreline at amidships and on the

undisturbed free surface as given in Figure 2.1 was adopted. A spheroid with the same

dimensions as that in Ma and Tulin (1992) was used for comparison purposes, see Figure

3.1. The normal velocity on the body boundary is given by:
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_____

on

The prolate spheroid geometry is defined by:

y = Y(x,z)= ±[(i_4
)2
_z2]

where B and L are the beam and length of the spheroid respectively.

Figure 3.1 : Prolate spheroid and dimensions.

(3.1)

(3.2)

The computational domains, one for the upper layer with density Pi and one for

the lower layer with density P2, have a common boundary at the interface, see Figure 3.2.

Such a situation is, of course, a simplification justifiable only if the depth of the pynocline

is small. Consequently, the Brunt-Väisälä number N2 = —gOp / c3z behaves like a ô

function, being infinite at the interface.

Profile Front

Length L — 43.70cm Beam B = 890cm
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Body

Figure 3.2: Definition of the computational domains.

Boundary conditions have to be defined for the other boundaries in both domains,

see Figure 3.2. The bottom is taken to be horizontal, flat and impermeable.

‘1’
= 0 at z = -h1 (3.3).

Normal velocities at ABC and FGH (Figure 3.2) are taken to be zero, simulating a solid

wall. Since very low ship speeds are considered, the surface wave generated by the hull is

expected to be small. Hence, the free surface conditions iii Equations (3.4) and (3.5) were

used:

÷gi° =0 at z=0 (3.4)

(1) (1)
I = atz=O (3.5)

öz

where i- is the surface wave elevation and g = 9.81 mIs2 is the gravitational constant.

The classical treatment of two dimensional internal waves provide a condition

relating the interface between the two layers. While normal velocities and pressures are

F

0

C

B

H

Bottom boundary
A
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taken to be unique at the interface, the velocity potentials go through a discontinuity

across that interface. Taking the normal velocity as positive pointing out of a domain, the

following two conditions can be written for an upper layer with thickness h2:

(2) (1) (2)
= atz=—h2 (3.6)at an an

ap1
= p(2) + g2)(p(2) — p(l)) at z = —h2 (3.7)

where 2) is the internal wave elevation with respect to the undisturbed level at the

interface. Nodes at the interface belonging to the upper and lower layers coincide and

may be viewed as ‘double nodes’, sharing the same physical location. The normal

velocities at these nodes are assumed identical as given in Equation (3.6). The negative

sign for the upper layer is simply due to the convention adopted, that is, normals are

positive pointing out of the domain. Equation (3.7) results from equating pressure at the

‘double nodes’. The thickness of the top layer (h2) is taken to be of the order of the ship

draught.

3.2 Numerical procedure

An overview of the numerical procedure used for this chapter is given in Figure

3.3. The lower and upper domains are solved sequentially in that order. The simulation

starts by considering the lower domain at time ( t + ôt ), which consists of three sides

where the normal velocity is zero and one side (the interface) where the potential needs to

be predicted. A symmetry plane at y=O was imposed for computational efficiency. The

first order Adams-Bashforth predictor given by Equation (2.15) is used to estimate the
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potential on the interface. Emerging from the solution are normal velocities at the

interface. On the boundary between B and G (Figure 3.2) these normal velocities are used

as input for the upper domain (see Figure 3.3).

Figure 3.3 : Overview of the numerical procedure

For the upper domain, normal velocities are again specified at all nodes except at

the free surface, at which the ABM predictor given in Equation (2.15) is again used. After

solving the upper domain, required time and space derivatives at ( t + ôt ) are to be

calculated. On the free surface, the time rate of change can be found using Equation
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(3.5). Wave elevations at all nodes for C-D and E-F are calculated using Equation (2.18).

Then Equation (3.4) can then be used to find pl) on the free surface.

At the interface, Equation (3.6) gives the rate of change of the interfacial wave

elevation. The internal wave elevations are found using Equation (2.18). For the

boundary between B and G belonging to the upper domain, the time derivative of the

potential is found using a three point difference formula in time, as follows:

= 3p(1)(t + ót)— 4p’)(t) + p°)(t — ôt)
(3 8)

2ôt

With pl) at the interface determined, Equation (3.7) is used to determine values

of p2) This completes the predictor part of the computations. The Adams-Moulton

corrector is then used on potential values on the interface and free surface using Equation

(2.17).

Using the same equations as before, time and space derivatives are found at the

end of the corrector part. The above predictor-corrector pair is repeated for all

subsequent time steps.

3.3 Numerical results

A prolate spheroid of L = 43.70 cm and B = 8.90 cm was used in the calculations. The

densimetric Froude number, a depth Froude number modified by the density difference

between the two layers, is defined as:

c

31



F1

= )h2
(3.9)

where U is the advance velocity, op is the difference in density between the two layers and

h2 is the thickness of the upper layer. Cases where the value of F1 > 1 are considered

‘supersonic’, Tulin and Miloh (1990), a term imported from aerodynamics. Note that

F1 = 1, termed the ‘critical’ densimetric Froude number, is the point where the slope of the

ship drag curve is very high.The densimetric Froude number is related to the ship Froude

number (FR ) by the following relationship:

FR = F0Ph2 (3.10)

Two cases were computed:

(1) F1 = 3.00, h2 = 6.70 cm, U = 12.86 cmJs, Op/p = 0.0028.

(2) F, = 2.95, h2 = 4.25 cm, U = 11.43 cm/s, Op/p = 0.0036.

These cases correspond to two of the experimental cases given in Ma and Tulin (1992),

which will be used for all comparisons with results obtained from the present method.

Note that Case 1 represents the situation where the draught of the body (d = 4.45 cm) is

less than the upper layer thickness while in Case 2, the body extends into the lower layer.

For the above cases, the corresponding ship Froude numbers are very small (F =

0.055 and 0.062), justifying the use of the linearized free surface condition.

A plot of the free surface displacement for Case 1 is given in Figure 3.4. The wave

elevation is small but the internal wave signature is noticeable. The interfacial
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displacement and wave field contours are plotted in Figures 3.5 and 3.6. The distinctive

features of the wave field are very similar to those measured and calculated by other

researchers. A very deep depression occurs at the interface just below the bow, followed

by an upsurge which gave rise to at least five interfacial crests in the far wake.

Crest line locations, non-dimensionalized using the upper layer depth, for the two

cases are plotted in Figures 3.7 and 3.8. Generally, good agreement with measured crest

patterns were achieved. However, the present method predicts earlier formation of the

interfacial crests. In addition, decay of the first interfacial crest for Case 2 (Case 1 data

was not available) are in excellent agreement with experimental values, see Figure 3.9.

The decay of the first interfacial crest can be described using:

(3.11)
k\h2) h2)

The value of the decay parameter a obtained using the present method was 0.96 while Ma

and Tulin (1992) gave the value of a to be approximately unity.

The influence of the upper layer depth on the behaviour of the first interfacial crest

heights can be clearly seen in Figure 3.10 to be well predicted by the present method.
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Solid symbols : Present Method
Hollow symbols: Ma & Tulin (Expt) 2 = 4.25cm
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Figure 3.7: Location of interfacial crest lines, F1 = 2.95.
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Figure 3.8 : Location of interfacial crest lines, F = 3.00.
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Figure 3.9 : Decay of first interfacial crest, F = 2.95.
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Figure 3.10: Influence of upper layer thickness on first interfacial crest.
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Chapter Four

Hybrid Boundary Element/Discrete Vortex Method

Separation from a sharp edge results in the formation of a vortex sheet issuing from the

edge. This vortex sheet can be modelled by a series of discrete vortices introduced one at

a time into the flow field at regular intervals. The motion of each vortex is traced over

time using its convection velocity. If the vortex shedding is restricted to a region close to

the edge, the discrete vortex method can be viewed as the inner region solution in the

overall boundary value problem. This inner region solution has to be matched with the

outer potential flow solution. The combination of boundary element and discrete vortex

methods provides this matching and at the same time do not require calculations inside the

domain.

It is realized that the boundary element method is compatible with the discrete

vortex model in that each discrete vortex can be treated as an internal singularity which

can be handled using an analogue of the Residue Theorem in complex analysis. Significant

computational advantages result because of the relatively simple approach to handling

separation at the sharp edges while working only with the boundary values. In this

chapter, the hybridization of the discrete vortex and boundary element methods will be

described. The hybrid method was applied to the calculation of the forces on a flat plate

oscillating in unbounded fluid (Wong 1993a).
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4.1 Discrete vortex method

The discrete vortex method is a time stepping procedure which models the shear layer

issuing from a sharp edge using discrete vortices (Wong 1990). In the formulation, an

infinite sharp wedge is mapped onto a half plane via a Schwarz-Christoffel transformation:

Z=- (4.1)

where M is a scaling constant between the physical Z and the transform planes and

= 2 — is a parameter dependent on the internal angle iS of the wedge.

Physical Plane Transform Plane

Free stream Free stream
velocity (V) / velocity (V)

[tvortexatz, [ievortexat rvoexai
st,ngthy strength strength

Figure 4.1 : The physical Z-plane and the transformed -pIane.

The non-dimensional external flow velocity, v sin(2rrt), wheret = t / T (T being the

period of oscillation) is in a direction normal to the wedge bisector. The strength of the

vortex at z and its corresponding point is given by i. see Figure 4.1. The complex

potential in the -p1ane, with n vortices in the field, is then given by:
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F()=iV÷_Lrkln (4.2)
k-O

Applying Routh’s correction (MauLl, 1979) and nomialising all variables, after Wong

(1990), result in an expression for the complex conjugate velocity at a point j in the

physical plane as follows:

w.=S.{v+ — _ )—.!L( ‘_

— )] (4.3)
j k-O,k.j j — + 2t

+ 2

where the last term on the right hand side is due to Routh’s correction. The length scales

used for the normalization were derived in terms of an attached flow velocity scale in the

physical plane. These are (from Wong 1990):

L

=(1

(D)k1(2l

L = (M)1(D)1/(2k_1)

L = (M)i(D)1/(2_1)V (4.4)

where V0 the amplitude of the oscillatory velocity and D is the maximum distance

traversed (V0T). Assuming that all vortices convect with the flow, the convection

equation in the physical plane is given by:

Zk ‘‘k (4.5)

A new vortex (called the nascent vortex) is introduced along the external wedge bisector

at the end of each time step. The distance of the nascent vortex from the sharp edge is
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taken to be a function of the time step size, the wedge angle, the free stream velocity and

the strength and location of all the other vortices already in the flow field. The expression

for the initial Location of the nascent vortex, denoted by z0, can be found through the

following equations (derived in Wong, 1990):

z0 = (KAr)tm (4.6)

where m=
2). -1

23t)3
(4.7)

where v is defined in Equation (4.10). The strength of the nascent vortex can be

obtained by satisfying the Kutta condition at the edge. The Kutta condition is satisfied

when the flow velocity at the shedding edge in the physical plane is finite. Consequently,

due to the singularity of the transformation at the shedding edge, the velocity at the

corresponding position in the transform plane is zero. As a result, the following

expressions can be obtained:

dFQ) (4.8)
d [ k-O 2rt k )j

giving •ftj V
R(;)

(4.9)

where v = nsin(2ct) — I k
Re(k) (4.10)

With the strength and location of the nascent vortex determined, the algorithm

then proceeds to the next time step. Note that the location of the first discrete vortex shed
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into the flow is defined by Equation (4.6). A vortex decay mechanism is used to account

for the vortex pairing process described in Graham (1980) and provides a model for

vortex diffusion. For this, a simple exponential rule reduces the effective strength of each

vortex to one half of its original value at the end of one time cycle (Equation 4.11). The

vortex decay mechanism is thus an attempt to simulate the loss of total vorticity through

the cancellation effects in positive and negative strength vortices coming together (in

pairing) and viscous influences, both of which are absent in the discrete vortex method.

y(t) = lo [1— exp(—0.6932 / t)] (4.11)

Although violating conservation of vorticity, this vortex decay model is successful

in maintaining computational stability over a large number of flow cycles. Also, reducing

circulation in the wake limits the magnitude of the vorticity introduced. Consequently, the

otherwise over-predicted vortex induced forces are kept at levels which are comparable to

experimental values (as reported in Wong 1990). An example of the calculated vortex

roll-up for a flat plate at t=1.O is given in Figure 4.2.

Figure 4.2: Vortex sheet rollup at t = 1.00 for a flat plate.

Second spiral

Flat Plate a

‘jo.

0.

0

o
0
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4.2 Vortex shedding in boundary elenieiit method

In this section, the inclusion of vortex shedding effects into a boundary element model is

discussed. We define a domain D bounded in S which includes branch cuts C1 and C2

and a circular path S to exclude a vortex singularity located at the point K as in Figure

4.3. The circle enclosing point K has a radius E.

For the velocity potential (p which satifies the Laplace equation, the divergence and

Green’s theorems can be used to obtain:

Figure 4.3 : Exclusion of a vortex singularity in domain D.

——G-dS=O (4.12)
S on On

The weighting source function which also satisfies the Laplace equation is taken to be

G = ln(r), r being the distance between the point under consideration and any other point

on the boundary.
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The integral involving G on SE around the vortex at K vanishes. Thus as S — 0,

the line integral around SE, in Equation (4.12), becomes:

lim k -—dS (4.13)
ufl

where y k is the strength of the vortex at K. The boundary S is discretized into N straight

line elements.

Putting H = --, the discretized form of the integral equation for the point i on

the boundary with N elements enclosing a domain with M vortices within can be written

thus:

2JHIJ +it = (4.14)
j—1 k—N+1 j—1 j

where i =1 ... N + M, ô is the Kronecker delta function and G and H1 can be found

numerically (see Appendix B).

Note that the summations involving G and H do not include the ‘elements’ around

vortex singularities (j> N) as the former need not be evaluated since (a / on)1 = 0 for

i> N while the latter can be shown to vanish as the radius £ —* 0. It is also noted that

the branch cuts C1 and C2 do not contribute to Equation (4.12). This result is expected

as the treatment of the vortex singularities is similar to the way the potentials at points

inside the domain are found. The above problem is overspecifled in that there are N+M

equations in N unknowns and only the first N equations are used.

In time domain simulations, the boundary values and vortex strengths are to be

prescribed for the next time step (t + bt) in order to march forward in time. The matrices
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G and H need to be calculated only once for a fixed boundary. The strengths and

positions of all discrete vortices in the flow at time (t + ö) were found using the discrete

vortex method described in the previous section. The potential and velocity induced by

the discrete vortices in the flow on any boundary node j is given by:

= YkOkj
(4.15)

k-i 2

(-) =

Yflj (4.16)
vj k-itkj

where O is the angular position of the node j with reference to the kth vortex. This vortex

has strength k and is at a distance Rk3 from the node j. In Equation (4.16) n is the nomial

vector at the node j.

Consequently, if we include the vortex induced normal velocities on the body,

Equation (4.14) can be rewritten in the following form:

=

+() ] — (4.17)

for i = 1 ... N. Normal velocities are prescribed on the body. The system of N equations

can be solved for the N unknowns . The dimensional hydrodynamic force per unit

depth acting on Sb at any given instant is taken to be:

Fb =p.ndS (4.18)

where p is the hydrodynamic pressure (from Bernoulli’s equation) acting on the discrete

element dS with normal vector n. The calculated value of Fb is normalized using pV02d to

give a non-dimensional force coefficient C where:
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C =--F

In the above, Fb = j23tp(V0 I T)d }F8 for non-dimensional FB.

4.3 Forces on sharp edged cylinders

(4.19)

Although this external flow problem can be solved using the discrete vortex method alone,

this example serves to illustrate the time domain implementation of the procedure given in

the last section. Published numerical and experimental results, for example those in

Graham (1980), Kudo (1981) amd Keulegan et al. (1958) could be used for comparison

purposes: not to judge the relative merits of the numerical schemes proposed by other

researchers but as a test case for the present method.

Figure 4.4 : Computational domain and boundary conditions.

The simulation of vortex shedding from a finite wedge oscillating in unbounded

fluid requires some length scale modifications since the discrete vortex method described

earlier is applicable to an infinite wedge. In other words, the vortex strengths and

Pn,

Discrete vortices
o 0

00

00
0

0 0 Discrete vortices
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positions calculated with the discrete vortex method need to be adjusted to account for

changes in Keulegan-Carpenter numbers (KJ. Graham (1980) showed that the ratio of

the length scales of the infinite and finite wedges is proportional 10 (K)’0 . The

resultant non-dimensional vortex strength (y B) and length (L8) scalings to be used for

the boundary element procedure tor finite K and body length (2d) is then given by:

Y8 =y(2K) (4.20)

k

ZB=z(2KC) (4.21)

It should be noted that the above equation is general in that the vortex shedding

edge angle 0) is embedded in the parameter k. The computational domain arid relevant

boundary conditions are given in Figure 4.4. On the body, the non-dimensional nomal

velocity is given by:

ap . o
— = sin(2tt)cos(—).n (4.22)
an 2

For this application, all the vorticity shed from a particular edge is placed at a point

very near to that edge. In other words, we ‘average’ all the vortex positons and the

influence of all discrete vortices on any given boundary node is calculated through the

relative positons of that node and the edge. With that, the value of 0 in Equation (4.15) is

taken to be ±(t/2) depending on whether the top or bottom vortex shedding edge (Figure

4.4) of the body is considered. In Equation (4.16), R is taken to be the distance from the

edge to the node under consideration. This simplification is acceptable for small K since

much of the vortex shedding effects are confined to a region near to the edge.
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Values of cF for a flat plate oscillating (ô = 0) at K = 6.6 are plotted together with

experimental results obtained by Keulegan et al. (1958) in Figure 4.5. The present method

predicted C values that are in excellent agreement with experimental results. Drag (Cd)

and inertia (C1) coefficients are found by taking Fourier integrals of Morison’s equation

over a time cycle and given thus:

3 .mn+1)
Cd

=
C sin(2rt)dt (4.23)

4nc

2K0 j.(u+l)
C5

= 2 J C cos(2mt)dt

where n is an integer representing the cycle number.

Figure 4.5 : Forces on an oscillating flat plate, iCc = 6.6.

(4.24)

Calculated drag (Cd) and inertia (C1) coefficients are presented in Figure 4.6 and

Figure 4.7. Predicted Cd for the flat plate agree well with numerical and experimental

Present method
Keulegan et at (expt)

Ea)
C)

a)
0
C-)
a)
C.)
0
LL

3.0 4.0

Number of Cycles
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results from Kudo (1981) and Keulegan et al. (1958) respectively. At K above 3.0,

predicted d appears to underestimate experimental values. However, Obasaju’s measured

data, as reported in Graham (1980), showed Cd values lower than those found using the

present method. Therefore, given the variation of prevailing conditions under which

different researchers obtained their experimental results, the present method predicts drag

forces on the normal flat plate very well.

15.000
Present Method —4—
Keulegan et al (sept) o

12,500 Kudo (nianencal) A
—

10.000

C)
7500

8
0) Oo 0

2 501)

Kc
0000 • • • I

0 5 10 15

Figure 4.6 : Drag coefficients for the flat plate.

Values of C. obtained using the present method show an upward trend with

increasing K which is similar to the numerical results presented by Kudo (1981). On the

other hand the experimental results of both Keulegan and Carpenter (1958) and Obasaju

(presented in Graham, 1985) showed an upward trend for C3 up to about K0 7 and from

there a decreasing Ca, up to K. 12 . Forced symmetric vortex shedding from the two

edges of the plate is thought to be the reason for the poor match for C3. Graham (1985)
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reported much better results when vortices are allowed to shed asymmetrically through the

introduction of a small perturbation at the initial stages of the simulation.

5.000 Present Method - + -.

Keulegan et at (sept) 0
Kudo (numericat) A — — —

4001) • _r
-.-a)

3000 —

Cl) 0

2000 8
0 0

o0

1.000 0

Kc
0.OOC....

0.0 2.5 5.0 7.5 10.0 12.5 15.0

Figure 4.7 Inertia coefficients for the flat plate.

Finally, it should be mentioned that drag and inertia coefficients become more

realistic through the incorporation of vortex shedding forces. Potential theory alone does

not give any drag and inertia values for attached flow can be shown to be Ca0 = 1.0 for the

flat plate.

Use of the same transfonn equation in the discrete vortex model for different edge

angles provide a useful and flexible tool in the investigation of a wide range of flow

problems involving sharp edge vortex shedding. Although the discrete vortex model can

be applied in conjunction with other numerical methods for the given class of problems, it

is uncertain whether such an exercise would be more fruitful than working directly with

the Navier-Stokes equations for viscous incompressible flow since the advantage of’

working only with elements on the boundary is lost.

51



Chapter Five

Applications in Nonlinear Slender Body Hydrodynamics

The wavemaker approach opens up the possibility of attaining a nonlinear solution to

wave generation problems involving slender forms in steady and unsteady motion. The

fully nonlinear free surface conditions, implemented using the Eulerian-Lagrangian

approach, was used for all the work reported in this chapter.

In the next section, the utilization of the wavemaker algorithm developed in

Chapter Two for the prediction of the waves generated and forces acting on a Wigley hull

is described. This algorithm was then extended to include the effects of vortex shedding

from the keel of the Wigley hull advancing obliquely. The computed results are presented

and assessed by comparison with experimental and numerical results of other researchers

wherever possible.

5.1 Wavemaking resistance of a slender body

The computational boundary, identical to that given in Figure 2.2, is discretized into N

quadratic elements, that is the variation of potential and normal velocity over an element

length dS is assumed quadratic (see Appendix B). The hull is described by:

y = Y(x,z)= (5.1)
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a4 —U(Ycosa±sinct)

‘/1+Yz2

U

z
y

Wigley Hull

where B, L and d are the beam, length and draught of the ship. The normal vectors on the

hull, in the slender body approximation, is given by:

(_y ,±i,y.
(n1,ny,n)=jL) (5.2)

where the subscript in Y refers to the partial derivative with respect to that variable.

Figure 5.1: Wigley hull dimensions and coordinate system.

The normal velocity on the obliquely positioned hull, with yaw angle a, is then

given by:

(5.3)

For this section, a Wigley hull advancing without yaw will be considered (a = 0).

The nonlinear free surface conditions given in Equations (2.9), (2.11) and (2.12) were

used. Neumann conditions are specified for the rest of the boundaries. At time (t+ôt), the

Length 200 cm
Beam 20cm
Draught 12.5 cm
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Adams-Bashforth predictor is used to estimate the velocity potential and elevation of the

free surface. Normal velocities on the free surface are then calculated as part of the

solution. From these, using the procedure described in Chapter Two, the wave elevation

is updated and the rate of change of the potential found using Equation (2.9). The

Adams-Moulton corrector is then applied for finding the free surface velocity potential.

Solving the problem using the corrected potentials then completes the calculations for that

time step.

There are weaknesses associated with applying a wavemaker approach without

enhancement, as seen in the advancing wedge application in Chapter Two. In the vertical

direction, the intersection between the ship side and the free surface need to be treated

with care. In addition, there is also the question of numerical accuracy as well as stability

due to the high wavemaker acceleration at the start of the time marching for most ship

types (with the possible exception of cusp-ended ships). The problem is more serious for

non-vertical ship sides. To overcome this, the normal velocity at the ship-wave

intersection point is simply extrapolated from values calculated at free surface nodes

nearby (see Appendix B for more details on the extrapolation procedure). In addition, the

evolution equations for the free surface nodes involve a finite difference approximation to

the tangential velocity component as described in Chapter Two. These gave rise to higher

frequency errors, which over time resulted in stability problems. A rediscretization

scheme was applied to the entire free surface boundary to filter out these high frequency

errors. The regridding procedure was based on linear interpolation over neighbouring

nodes returning equally spaced nodes on the free surface boundary once every time step.
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A smoothing scheme identical to that used by Longuet-Higgins and Cokelet (1976) was

applied after the rediscretization process. The value of 4 at the fluid-body intersection

node for the latest time step was used as a means of accounting for the variation of the

longitudinal velocity over the body. This modifies the free stream velocity (U) incident on

the hull to give U’ which was then applied to Equation (5.3). The following relationship,

based on the value of 4 at the fluid-body intersection, was used:

U’ = Ucosa+X(SB flS)[1_.]

ap -(U’Y1 ±Usina)
g1+y2

The principal dimensions of the Wigley hull used in all the calculations in this

Chapter are given in Figure 5.1. The impermeable far wall was placed 30 beams away

from the body. On the free surface, 60 equal length elements were used. For the free

surface plots, one sweep over the ship length was done in 50 steps. However, for the

pressure distribution and forces acting on the hull, extensive numerical experimentation on

the number of steps required (NS) per sweep resulted in the following formulae:

NS = INT[108(1.1 — FRX — 4FR)] 0.20 FR 0.25

NS = INT[54(3 — 4FR)] 0.25 <FR 0.40 (5.5)

More steps were necessary for the lower Froude numbers due to the relatively

larger variations in velocities and pressures in the longitudinal directional. In all cases, the

value of NS was limited to a range of (70 NS 200). The lower bound on NS was
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imposed to ensure adequate resolution in the length-wise pressure distribution while the

upper bound limits computation time per sweep over the hull.

Initial conditions, that is wave elevation and potential and their rates of change

with respect to x at the start of the time marching were obtained using Dawso&s (1977)

method. The Dawson method is an extension of the Hess and Smith (1976) double-body

method, handling the linearized free surface condition via a streamwise marching

technique.

The hydrodynamic forces can be found, from Equations (2.6), using the pressure

from the Bernoulli equation. Substituting p for the pressure:

p = _P[U(coscz + sina) +
+() ) + z] (5.6)

L/2

F1 = fdxf p.n1dS (5.7)
—L/2

SH

where i is the required direction (x, y or z) and 5B represents the girth of the hull section

under consideration. The wavemaking resistance and sinkage force are then F1 and F

respectively. The trim moment (corresponding to moments about the y-axis) can be found

using Equation (2.7):

L/2

M = fdxf5 p.(nz—nx)dS (5.8)
—L12

The wave profile along the ship side at Froude numbers F = 0.267 and FR = 0.316

are presented in Figures 5.2 and 5.3. For both cases, the results calculated by the pesent

method are generally in good agreement with experimental and numerical results obtained
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by other researchers. The experimental results for FR = 0.267 was obtained from the

Department of Naval Architecture and Ocean Engineering at the Yokohama National

University Hayashi and Kunishige, 1988), referred to as YNU hereafter. Measured

values for a 6m Wigley huil model reported in Maruo and Song (1990) are used in Figure

5.3, for FR = 0.316.

Figure 5.2 Wave on side of Wigley hull at F = 0.267.

The delay of the first wave peak near the bow may be due to the treatment of the

wave-body intersection point for stability reasons. Inaccuracies in the value of modified

free stream velocity given in Equation (5.4) may be another cause for the delay. These led

2’,-1/L Present method (NonlEnear)
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to the delay in the crests and troughs over the rest of the hull length. However, since the

lag is only about 1-3% of the ship length, this trade-off is deemed acceptable.

In contrast, Wong (1993) has shown that use of the simple wavemaker scheme,

with linearized free surface conditions and without the enhancements described in this

section, results in a wave profile that totally missed the variations over the middle half of

the ship length.

Figure 5.3 : Wave on side of Wigley hull at FR = 0.316.
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The contour plot of the wave field in Figure 5.4 agrees fairly well with YNU

measured data (Figure 5.5). A perspective view of the wave field for the Wigley hull at

Froude number F = 0.267 is shown in Figure 5.6.

Figure 5.4 : Contour plot of wave field for Wigley hull at FR = 0.267.

Figure 5.7 shows the distribution of the pressure, non-dimensionalized using

0.5pU2 on the hull surface for F = 0.267. The high pressure region in the bow is clearly

noticeable.

y (ciii) Level

0 5.50
0 4.50
B 3.50
A 2.50
9 1.50
8 0.50
7 -0.50
6 -1.00
5 -2.00
4 300
3 -4.00
2 -5.00
1 -6.00
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Figure 5.5 : Measured and calculated wave field (YNU) for Wigley Hull, a = 00.
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The wavernaking resistance, non-dimensionalized by O.5pU2L2, is compared to

experimental and numerical results obtained, elsewhere (Figures 5.8 and 5.9). Values

obtained using linearized free surface conditions are highly inaccurate (also reported by

Allievi, 1993). The general agreement with measured data is considered to acceptable. It

should also be mentioned that even experimental results from different towing tanks

exhibit significant variability depending on the conditions under which the data was

measured.

Aanesland (1989) showed ‘averaged’ values from towing tank databases for cases

where the Wigley hull was towed fixed and where the vessel was allowed free to turn and

squat (Figure 5.9). Aanesland’s numerical results were obtained using a three dimensional

potential flow algorithm, based on Rankine sourcç distribution and strearnwise marching

RJ(.5pU2L2) x 1 O Numerical (Maruo & Song)

Experimental

(YNU)
0.50

________

Wave cut analysis ‘Nu)
Present method (Nonlinear)

0.40

0.30 ‘ .

,.

0.20

. -, /
/

0.10

FR
.1... .1.. ..I

0.15 0.20 0.25 0.30 0.35 0.40 0.45

Figure 5.8 : Wavemaking resistance against YNU results.
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schemes similar to that of Dawson. Kelvin sources, distributed in the outer region, were

matched to the inner region (in the vicinity of the hull) to yield a radiation condition at the

interface between the inner and outer regions. Calculated results from the present method

are cast among these in Figure 5.9, showing the present results to be within the range

‘acceptable’ values.

Average

free (Expt)

Average

fixed (Expt)
v Aanesland (Numerical)

• Present method (Nonlinear)

Figure 5.9 : Wavemaking resistance against Aanesland (1989).

Sinkage and trim for various Froude numbers are shown in Figure 5.10. Sinkage is

non-dimensionalized using U2 / 2g and trim is given as a percentage of the ship length.

These results are compared to averaged measured values and those calculated by

Aanesland (1989). The non-dimensional sinkage calculated by the present method are in

RJ(.5pU2S) x 1O
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good agreement with experimental data but tend to underestimate at the higher end of the

Froude number range. On the other hand, the non-dimensional trim tends to be over

estimated in the Froude number range of 0.27 to 0.35.
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Figure 5.10 Computed and measured trim and sinkage for Wigley hull.
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5.2 Wavemaking resistance in shallow water

The present algorithm was also used in the calculation of wavemaking resistance,

sinkage and trim characteristics of a Wigley hull in water of finite depth. The hull and tank

dimensions used were identical to those in the previous section. However, the number of

steps required (NS) was modified to reflect the fact that higher resolution is necessary for

shallower water. Hence, with NS defined in Equation (5.5), the required number of steps

(NS*) is given by:

NS* = 6 NS)
H/d <6.0, 70 NS* 400 (5.9)

Hid

In Equation (5.9), H and d are the water depth and draught of the ship

respectively. Note that no modification to the value of NS was done for Hid 6.0.

Results for Froude number 0.316 are compared to those obtained by Kim and Choi

(1993), who used a 3D iterative nonlinear approach, in Figure 5.11. As expected, the

increase in wavemaking resistance near the critical depth Froude number of

FH = U / JiT = 1.0 (corresponding to Hid = 1.60, where H is the water depth) is large.

The occurrence of the maximum wavemaking resistance turned out to be at a depth

Froude number of slightly above the critical value (at 1.07 where H/d = 1.4). In any case,

the two sets of results in Figure 5.11 are generally in good agreement except that the

present method predicted a slower decline in wavemaking resistance with increase in

water depth. The effect of shallow water on squat and trim are plotted in Figure 5.12.
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Figure 5.11 : Wavemaking resistance for Wigley hull in shallow water at FR = 0.316.
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Figure 5.12 : Effect of water depth on squat and trim for Wigley hull at FR = 0.316.
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5.3 hybrid method in yawed ship calculations

The steady motion of an advancing ship generates vorticity. The strength of the vortices

shed determines their significance in the computation of the forces and moments acting on

the ship. The influence of vortex shedding is, in general, not very important in the cases

involving a ship in steady forward motion in calm water. This is exhibited by the useful

results emerging from pure potential flow methods, for example those from Dawson’s

(1977) method. However, for a ship advancing with a yaw angle, vorticity shed from the

bilge keels and keel is not necessarily neglible.

In the context of the slender body approximation, the translation of the body

sections in the cross-flow plane as the marching proceeds presents a vortex shedding sharp

edge at the keel. The influence of such vortex shedding on the forces and moments acting

on a yawed Wigley hull and the effects on the free surface wave field will be evaluated in

this section. However, before using the hybrid discrete vortex-boundary element method

described in Chapter Four, it is first necessary to explain the vortex generation mechanism

and derivation of the length scales involved in the vortex shedding algorithm.

Generally, vortices were taken to be shed from the keel of the yawed hull only.

Bilge vortices were not accounted for since separation points cannot be conveniently

defined and the method described in Chapter Four cannot be applied. Also, vortices

occuring at the bow were not modelled. In addition, secondary vortex shedding was

ignored. In other words, the vortex shedding procedure was started at the commencement

of the time step marching for the wavemaker algorithm. The introduction of potential

vortices into the flow field results in their influence on the potential and normal velocity at
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each boundary node. On the other hand, the assumption that dissipation does not occur in

the overall flow allows the use of Equation (2.8) for the evaluation of pressure on the hull

boundary.

Before the start of the marching procedure, it was assumed that there are no

vortices in the cross-flow plane. As the time marching proceeds, the hull transverse

section changes in shape and the keel can be viewed to be translating in the horizontal

direction. From the ship reference frame, a lateral velocity of constant maiitude V

(given in Equation 5.10) is seen at the keel. A growing spiral vortex hence emits from the

keel as the marching proceeds towards the stern. This spiral can be modelled through the

introduction of discrete vortices, at increments of one per cross-flow plane. It was

necessary to substitute the oscillatory velocity in the discrete vortex algorithm (Chapter

Four) with the constant velocity V. In addition, the ‘wedge’ was taken to be a flat plate.

This means that, although the internal angle bounded by the body section at the keel varies

along the x-direction, the vortex shedding edge was taken to be of zero internal angle.

This is consistent with the slender body approximation.

At each step, the vortex influence on the boundaries were evaluated. These were

then inserted into the modified system of equations (given in Equation 4.17 ) and the

solution of the boundary value problem obtained.

The ‘free stream’ velocity for the vortex shedding algorithm, as seen by the keel, is

taken to be the translatory velocity of the body section such that:

V=Usinct (5.10)
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where V here refers to the free stream velocity in the vortex shedding model in Chapter

Four.

Length and time scales are required to extract the necessary vortex positions and

strengths from the self-similar vortex produced by the discrete vortex method. This can

be done by defining the scaling factors, using Equation (4.4), and defining M = 1., D =

I.sin a and V0 = U sin a. Therefore, the length scales for this application becomes:

L = (Lalna)M21)

= (Lsina)21)

= (Lsina)hI(2?_1)Usina (5.11)

The non-dimensional time step size for the discrete vortex method is given by:

dr=
dx (5.12)

L cos a

From the above, the non-dimensional positions and strengths of each vortex in the

cross-flow plane can be dimensionalized for the solution of the overall problem in the

following manner:

YV_YB+Im(ZV)LZ

z, =—d—Re(Z)L

= FL (5.13)

where Z is the complex variable Z, = X,, + iY in the vortex physical plane and f is the

non-dimensional strength of any given vortex. In Equation (5.13), yo and d refer to the

lateral location of the ship’s keel and the ship draught respectively. The hybrid method
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can then be used, through Equation (4.17), for the solution in the cross-flow plane. The

potential and normal velocity induced by a vortex on a mid-element node are given by the

following pair of equations:

(5.14)

(oP’
_. 1k sin (5.15)

\nJk k-l2’kj

where O and R113 are defined in Figure 5.13, M is the total number of vortices in the field

and 3 is the difference between the angle of the vortex induced velocity and the element

angle. For nodes at the ends of elements, the angle can be taken as the average of the

two neighbouring elements. Note that the angle 3 is simply given by t3 - (0 + /2).

V

RkI

Vortex

0

Figure 5.13 : Vortex induced normal velocity on a boundary element.
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The far wall was taken to be 30 beams away, with 60 free surface elements on

each side of the body. The number of steps required (NS) for one sweep over the hull

length was determined by Equation (5.5). Yaw angle is takçn positive in the anti-

clockwise direction from the negative x-axis, resulting in the bow being at y = -(112) sin a.

The keel thus traverses from that position to y = (L/2) sin a at the stem. The yaw

moment is given by:

1/2

M= fdxf p.(nyx_ny)iS (5.16)
—1/2

B

Figure 5.14 compares the calculated free surface profile, with and without vortex

shedding, along the side of the Wigley hull at FR = 0.267 with the measured profiles from

Hayashi and Kunishige (1988) and calculated ones from Maruo and Song (1990). The

influence of the keel vortices on the free surface profile were minimal. Here, the influence

of the longitudinal velocity variations are more important than for the no yaw case.

Consequently, the resulting wave profile in Figure 5.14 is less accurate than if there was

no yaw (compare with Figure 5.2). It is noted that the wave profiles were not corrected

for heel, caused both by the potential tiow as well as the vortex shedding, which may be

significant for a ship in yawed motion. The calculated wave field is presented as a contour

plot in Figure 5.15. This is in good agreement with measured data from YNU, see Figure

5.16.

A perspective view of the wave field, with the z-scale exaggerated, is presented in

Figure 5.17, while the pressure distribution on the hull surface is given in Figure 5.18.

Plots in Figures 5.15, 5.17 and 5.18 are derived from results for the Wigley hull at a = 100
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and with vortex shedding from the keel. A typical computer run, with 248 boundary

elements and marching in 100 steps over the hull length, requires approximately 2 hours

on a 486 DX2 66 Mhz personal computer, 19 minutes on a HP 715 (75 Mhz) and slightly

under a minute on the Fujitsu VPX24O/10 supercomputer. Most of the developmental

work on the programs described in this chapter was carried out on the Fujitsu

supercomputer.

Present method (With vortex shedding)
2ii, L Present method (No vo,tøx shedding)

• Measured (YNU)
0.08 Maruo&Song (1990)

0.06

002

Windwardsiindwardside
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Figure 5.14 : Wave profile on sides of Wigley hull at FR = 0.267, a = 100.
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Figure 5.16: Measured wave field (YNU) for Wigley Hull, a =
lO
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Figure 5.19 : Forces and moments for yawed Wigley hull.

Calculated values of longitudinal and lateral forces (F1 and F) and the yaw

moment (M1) with, and without vortex shedding, for various angles of attack are non

dimensionalized and plotted in Figure 5.19. Also plotted in Figure 5.19 are the numerical

results obtained by Maruo and Song (1990), using a Kelvin source based slender body

algorithm (linear and without vortex shedding). The present method gave non

dimensionalized longitudinal forces that are comparable to those of Maruo and Song

(1990) at small angles only, being much larger as the yaw angle increases. On the other

hand, the present method returned values of lateral forces and yaw moments which are
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consistent with those of Maruo and Song.. There is, unfortunately, no published

experimental data available for assessment of the calculated forces and moments.

As would be expected, the influence of vorticity on F is not significant. However,

the vortex effects on the lateral forces and yaw moments are obvious from Figure 5.19.

Vortex shedding induced forces which augment the lateral forces predicted when no

vortices were included. This can be clearly seen in Figure 5.19 where the lateral forces are

higher with vortex shedding for all yaw angles, the difference increasing to about 33% at

20 degrees leeway. As for the yaw moment, the influence of vorticity increases as the

leeway angle increases, the difference being 34% at 20 degrees. Yaw moment is taken to

be positive in the anti-clockwise direction. Due to the higher rate of change of total

circulation with respect to x forward of amidships (see Figure 5.20), the predicted yaw

moment for the vortex shedding cases were higher. In Figure 5.20, it can be seen that the

growth of the total vortex strength is rapid near the bow and levels off towards the stern

region.

Figure 5.20 Development of total vortex strength over the hull length.
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Figures 5.21 and 5.22 show the keel vortex evolulion at 8 sections over the length

of the Wigley hull at FR = 0.267, a = 10°. The sequence shows a representation of the

vortex roll-up process as the keel traverses laterally.

Figure 5.21 : Keel vortex evolution for Wigley hull, a = 100 (forward).

The hybrid method just described produced significant vortex effects on the forces

and yaw moment acting on a slender body advancing obliquely, especially at higher leeway

angles. Assessment of the accuracy of the computed values by comparing with measured

data cannot be carried out due to the unavailability of the latter. However, the resulting

lateral force coefficients are of the same order of magnitude as the experimental data given

by Bradbury (1986) for a simplified ship-like geometry.
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Figure 5.22: Keel vortex evolution for Wigley hull, a = 100 (aft).
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Chapter Six

Conclusions and Recommendations

6.1 Conclusions

The present study on numerical fluid dynamics has resulted in novel and practical

approaches which can generally be categorized into the following three areas.

6.1.1 Slender body formulation and implementation

—‘The slender body formulation has been used to transform the three dimensional steady ship

wave problem into a series of two dimensional wavemaker problems. This algorithm was

generalized for application to ships advancing at small yaw angles. The method was first

applied to the study of the bow waves generated by an advancing wedge in homogeneous

fluid, then to a spheroid in a dual-density medium, and finally to an advancing Wigley hull.

Numerical implementation was achieved through the boundary element method, using

linear and quadratic elements. This relatively straightforward approach gave results that

compared very well with published experimental and numerical data.

The fully nonlinear free surface conditions were successfully implemented for the

case of a Wigley hull advancing in deep and shallow water in Sections 5.1 and 5.2

respectively. The fluid-body intersection singularity problem was avoided using an

extrapolation procedure which modifies the influence matrix (Appendix B). A

discretization scheme was devised to redistribute free surface collocation points. As a

result, the stability of the nonlinear free surface evolution was maintained. A criterion,

based on extensive numerical experimentation, was developed for the determination of the
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required step size for the marching procedures used. Finally, the calculated wavemaking

resistance, sinkage and trim are in good agreement with published measured values.

6.1.2 ships in density stratified water

A novel procedure which is able to handle dual (and in principle multi-) density media was

developed and presented in detail. This scheme was successfully utilized in the study of

the interfacial waves generated by a body moving slowly near and in a density interface.

The computed results were in excellent agreement with experimental data. Because of the

relatively small influence of the free surface, it appears that the slenderness ratio constraint

of the method could be relaxed somewhat. This was apparent in the results given in

Chapter Three where a prolate spheroid of B/L = 0.20 was used with success. This

procedure is general in that it can also be applied to the study of internal wave problems

without the presence of a moving body.

6.1.3 Hybrid discrete vortex-boundary element method

A hybridization of the discrete vortex and boundary element methods was achieved. This

method was first tested on the forces acting on an oscillating flat plate, producing results

that are in good agreement with other numerical and measured data.

The simplicity of the hybrid method accounts for some viscous effects in the flow

without having to discretize and compute large amounts of data inside the control volume.

The inclusion of vortex shedding in the flow while handling only boundary elements in the

overall numerical algorithm represents significant benefits in terms of computational

efficiency.
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The hybrid method was successfully used in a nonlinear wavemaker program for a

Wigley hull travelling in yaw. Forces and yaw moments were calculated and presented in

Chapter Five. Lack of experimental data did not allow an objective assessment of the

forces and moments predicted by the present method. However, these results were

plotted together with published calculated data (from a method using slender body

approximations to the Neumann-Kelvin problem). The present method predicted higher

values of longitudinal and lateral forces and yaw moments when vortex shedding was

included.

The general wavemaker algorithm using nonlinear free surface conditions and the

hybrid vortex-boundary element method provides an efficient and fast method for the

computation of the wavemaking characteristics and resistance of a slender body advancing

at small leeway angles. The reduction of the ship problem into a two dimensional one

permits a host of possibilities, which is the real motivating factor behind the development

of such a scheme. The method can thus be regarded as a base method with a number of

potential applications in the areas of ship motions and manouevring. Shallow water ship

resistance and irregular or sloping seabed effects studies are also considered to be possible

applications. The algorithms given in Chapter Five may be used to study the effects of

demi-hull configuration on the wavemaking resistance of multi-hull vessels. In addition,

the numerical study of yawed multi-hull hydrodynamics is merely a straightforward

extension of these algorithms.
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6.2 Recommendations

Although the wavemaker algorithm has been shown to be a useful tool in the calculation

of hydrodynamic forces and moments on a moving ship, a number of refinements are

recommended for the enhancement of its accuracy and capabilities.

The slender body approximation neglects velocity variations in the longitudinal

direction near the bow and the stern. This was accounted for in the present work through

a simple parabolic variation of the perturbed x-velocity with depth. Also, even for cusp

ended ships, the initial step of the marching procedure starts with a finite width transverse

section, thus violating the slender body assumption in the local sense. The highly

accelerated flow at the bow and stern give rise to singularities at the fluid-body

intersections. This problem was circumvented in the present work through an

extrapolation scheme. Consequently, the wave elevation near the hull and wetted surface

area are sensitive to the length of the free surface elements. This in turn affects the

accuracy of the pressure distribution on the hull surface. In addition, it was observed that

there are errors in the prediction of the bow wave peak location and lack of recovery of

the free surface elevation near the stern. Further study on the stability of impulsively

started wavemaker flow in relation to the above problems is likely to enhance the accuracy

of the method.

All slender body calculations reported in this thesis were carried out with the body

fixed. It is known, from experimental work, that allowing the body the freedom to heel,

squat and trim makes a significant difference in the measured resistance (see for example

Aanesland, 1989). In the wavemaker approach, this could probably be achieved by
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marching through the length of the body more than once, with heel, trim and sinkage

values from the previous sweep imposed in the following sweep.

Boundary layers created by the ship are likely to alter the effective boundary

location and hence the normal velocities required in the wavernaker algorithm. These

effects were not considered in this thesis.

Another area that deserves attention is the determination of the effects of round

bilge vortex shedding. The difficulty in accounting for such effects in the hybrid method

as it stands is due to the fact that separation points are not well defined for rounded

bodies. A practical method for the determination of the separation points in general

rounded surfaces would be most useful. This would in turn remove the limitation of the

present hybrid method to sharp edge vortex shedding.

Finally, model testing for the yawed Wigley hull would be extremely useful for the

validation of the results given in Chapter 5.

Extension of the present work for use in general hull forms would necessarily be

the next stage of the research. This would, however, require computer routines for the

determination of hull geometrical parameters such as slopes and normals at any desired

transverse section.
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Nomenclature

AP After perpendicular of the ship
B Beam of the ship
Ca Vortex induced inertia coefficient
Cd Vortex induced drag coefficient
CF Vortex induced force coefficient
C Pressure coefficient p/(.5pU2)
DIDt Material derivative of a variable
d Draught of the ship
F1 Densimetric Froude number relating to stratified flow problem
FP Forward perpendicular of the ship
FR Ship Froude number
G Free space Green function ln(r)
g Gravitational constant, 9.81 rn/s2
H Water depth
h2 Depth of the upper layer in two layer fluid
K Keulegan-Carpenter number
L Length of the ship
L Length scale in the physical plane in discrete vortex method
I_c Length scale in the transformed plane in discrete vortex method
L. Strength scaling in the physical plane in discrete vortex niethod
M Moments about the axes x,y,z (i = 1,2,3)
NS Number of steps to march over the length of the hull
n Normal vector of a point
p Pressure from the Bernoulli equation
R Wavemaking resistance in newtons
r,R Distance between a source point and a field point
S0 Bottom boundary in wavemaker problem

Far wall in wavemaker problem
S Free surface boundary in wavemaker problem
S8 Body boundary in wavemaker problem
T Period of oscillatory flow in seconds
t Dimensional time in seconds
U Uniform advance velocity of the ship
Vo Free stream velocity amplitude in discrete vortex method
w Complex velocity of a discrete vortex
x Longitudinal axis in coordinate system fixed on the ship
Y Offset distance of the body surface from the centreline
y Lateral axis in coordinate system fixed on the ship
Z Complex variable in physical plane in discrete vortex method
z Vertical axis in coordinate system fixed on the ship
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a Yaw angle of the ship in degrees
Internal angle of infinite wedge in degrees

o Internal angle of wedge in discrete vortex method
E Slenderness parameter B/L
Op Difference in density between the upper and lower layers
AS,OS Length of a boundary element
t,Ot Time step size in seconds

Elevation of the free surface from the undisturbed level
Perturbed velocity potential
Total velocity potential in advancing ship problem
Wedge angle parameter in discrete vortex method

p Fluid density
0 Relative angle between a discrete vortex and a nodal point

Non-dimensional time in discrete vortex method
Complex variable in transformed plane in discrete vortex method
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Appendix A

Slender body theory and the wavemaker

The following analysis is given to show how the three dimensional problem of a slender

body advancing at a velocity U is approximated by a series of two dimensional problems.

The total potential is given by:

P= Uxcosa÷Uysinct+4)(x,y,z) (A.1)

where the free stream velocity U is incident on the body at an angle a and 4) is the

perturbation potential. Relevant variables are non-dimensionalized (the non-dimensional

form being denoted by a (-), such that:

4) — UB4)

= Bj

Notation
Length L
Beam B
[au9ht d

Free stream
velocity (U

AP

Note : Origin is at undisturbed
free surface level.

Figure A.1 : Frame of reference and notation.
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Y=BY

x=L

y = B

z = B (A.2)

where r is the wave elevation and Y describes the body boundary. The ship beam and

length are B and L and the hull offset is defined by y = Y(x,z). The spatial coordinates x,

y, z are defined in Figure A.i. Since the boundary conditions require information about

spatial derivatives as well, it is necessary to express these as:

a_i a
— L a
a_i a

— B a3

(A.3)
ôz Baz

The fluid is taken to be inviscid and incompressible and flow is assumed

irrotational. With these assumptions, the governing Laplace equation is:

(A.4)
ox2 0y2 0z2

where is the velocity potential. From Equations (A.2) and (A.3) and assuming that

derivatives with respect to non-dimensional variables do not change in order of magnitude,

the Laplace equation can be written:

+ + =0 (A.5)
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If the slenderness ratio B / L = e is small (limited to about 0.15), the 3D Laplace equation

can be expressed in the two dimensional form in the plane of the hull sections:

+ = 0 (A.6)

The 3D impermeable hull boundary is:

‘1),n1 +(1).,n +(I)n =0 (A.7)

In non-dimensional form this is rewritten as:

—cosaY —-4Y ±(sinct + = 0 (A.8)

from which the term of order c2 is eliminated to give:

—ecosaY ±(sina+p)+4Y =0 (A.9)

The kinematic free surface condition can be written as (in non-dimensional form and then

eliminating the term in ):

(e cosa+e2 + (na + — = 0

(Ecosa)j +(sinct+)j —p = 0 (A.10)

The non-dimensional form of the dynamic free surface condition for steady potential flow,

eliminating the terms in 2, is given in the development of Equation (A. 11) below.

--[i +i i-t_u2]+g9=o

+2Ucosa1 +4 +2Usina +4j+g=o

€cosa +sina ÷‘[E22 +2j+j
= 0
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e cos + sin + ![ + j + =0 (A. ii)

To maintain the last term in the dynamic free surface condition, it is necessary to have

O(gB IU) 0(e). Here, the draught (d) at which the body floats is taken to be of the

order of the beam (B). Therefore in this application, the draught Froude number

(Fd =U/.J) is taken to be

An expression can be obtained, using the slender body approximation, for the

normal velocity on the body. Equation (A.9) is written in its dimensional form as follows:

—UcosaY ±(Usina+p)+Y =0 (A.12)

where the normal vectors on the body are given by:

—Y +1Y
(n,n,n)= Z’ Z (A.13)

.J1 + +Y2

where Y = 0(e) and Y = 0(1). Elimination of the term Y3, the normal velocity

(positive pointing out) of the body in the cross-flow plane can be written, using Equations

(A.13) and (A.14):

+
= u(Y cosa ± sin a)

on the hull (A.14)
an .iJl+Yz2

Putting Equations (A.5), (A.10) and (A.11) back into dimensional form and rearranging,

the following can be obtained:

+4 = 0 in the domain A.15)

Ucosat +(usina+p)q —• =0 at (A.16)
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u(p1 cosa+p na)÷--[p +p]+g’j =0 at z= i (A.17)

This set of equations (A.14) to (A.17), together with impermeable bottom and wall

boundary conditions, are identical to those used for Ihe numerical modeling of a two

dimensional wave tank in the time domain. The only difference here is that the motion of

the wave paddle is replaced by the geometric change of the ship hull in the longitudinal

direction.
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Appendix B

Higher order boundary element method

The following description on the boundary element method applies to two dimensional

potential flow problems only. We start with Green’s second formula:

—GdS=O (B.1)
S an on

where the weighting source function is taken to be:

G = --ln( (B.2)
2t ‘sr!

Both G and i satisfy the governing Laplace equation. The boundary can be

discretized into N number of elements. Collocation points are placed at the ends of linear

elements, where the variation of the potential and its normal derivative over the elements

are assumed linear. If the potential and its normal derivative are taken to be varying

quadratically over an element, then the collocation points (nodes) are placed at both the

ends and at the middle of an element. Substituting the normal derivative of G with H, the

potential at a nodal point on the boundary can be thus be written:

=
—pHdf (B.3)

Equation (13.3) can be rewritten by inserting the term in into the summation sign such

that:
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fdljHujdE’ = (B.4)

Note that in Equation (B.4), the term H includes the factor ot 1/2 from Equation (B.3).

In the expression for G, the variable r represents the distance between the node i and a

given point on the element j. Dirichiet or Neumann boundary conditions are specified at

each node. All unknowns in Equation (B.4) can then be gathered such that the system of

N equations in N unknowns to be solved for X can be written as (for more details see

Brebbia and Domnguez, 1989):

[AJX]=[Bj (B.5)

The evaluation of the matrices [A] and [B] involves numerical integration for the G

and H terms in Equation (B 4). For collocation nodes located between two elements, the

contributions to the integrals in G and H come from the two adjacent elements.

=——f xiln()dr+----f X2l11()dF2t’ r r

H..
=

x1—-Iln(-ldF + X24ln(ldF
(B.6)

“ 2t ‘ on L \rJJ 231 F On L \rJJ

Equations (B.7) and (B.8) for the value of apply to linear and quadratic elements

respectively.

Xi
(B.7)

X2(11)

Xi 2 (B.8)

X2
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In the above, each element is parameterized into = —1 to = 1 between the end nodes.

In quadratic elements, the mid-element node G and H integrals contain only one term

where:

XL =(‘—X’÷) (B.9)
X2 = 0

The integrals in Equation (B.6) are evaluated using standard Gaussian and

logarithmic numerical integration quadratures (see for example, Brebbia and Dorninguez,

1989).

While potential values are taken to be continuous at the collocation nodes, normal

velocities need not be so. This is evident, for example, at the intersection between the free

surface and a body or wall. The normal velocities immediately on the two sides of such

nodes are taken to be different, requiring a split of the integral G at these ‘double nodes’.

Thus, the integral is evaluated such that the adjacent free surface element contributes only

to G for the free surface normal velocity and the adjacent body element contributes only to

G for the body side normal velocity.

Finally, the procedure for the extrapolation of the normal velocity on the free

surface side of the fluid-body intersection point requires some explanation. Linear

variation of the normal velocity over the three free surface nodes (see Figure B. 1) adjacent

to the fluid-body intersection point is assumed. Hence the normal velocity at the

intersection point is given by:

(4 =2( —
(B.10)

\iln!A ‘\ônJB \Jc
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4,n

Figure B.1 : Intersection point and normal velocities.

The above eliminates the need to evaluate the normal velocity for the free surface side of

the node at the intersection point. There, the velocity potential is then taken to be the

unknown. Another consequence of the extrapolation is that G integrals at points B and C

are modified follows:

018 = B +
(B.11)

Free surface e’ements

Node A
Node B

Node C
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