
UC Davis
IDAV Publications

Title
SLIC: Scheduled Linear Image Compositing for Parallel Vollume Rendering

Permalink
https://escholarship.org/uc/item/25w8p1nr

Authors
Lum, Eric
Ma, Kwan-Liu
Ahrens, James
et al.

Publication Date
2003
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/25w8p1nr
https://escholarship.org/uc/item/25w8p1nr#author
https://escholarship.org
http://www.cdlib.org/


SLIC: Scheduled Linear Image Compositing for

Parallel Volume Rendering

Aleksander Stompel Kwan-Liu Ma Eric B. Lum

University of California at Davis

{stompel,ma,lume}@cs.ucdavis.edu

James Ahrens John Patchett

Los Alamos National Laboratory

{ahrens,patchett}@lanl.gov

Abstract

Parallel volume rendering offers a feasible solution to the
large data visualization problem by distributing both the
data and rendering calculations among multiple computers
connected by a network. In sort-last parallel volume render-
ing, each processor generates an image of its assigned subvol-
ume, which is blended together with other images to derive
the final image. Improving the efficiency of this compositing
step, which requires interprocesssor communication, is the
key to scalable, interactive rendering. The recent trend of
using hardware-accelerated volume rendering demands fur-
ther acceleration of the image compositing step. This paper
presents a new optimized parallel image compositing algo-
rithm and its performance on a PC cluster. Our test re-
sults show that this new algorithm offers significant savings
over previous algorithms in both communication and com-
positing costs. On a 64-node PC cluster with a 100BaseT
network interconnect, we can achieve interactive rendering
rates for images at resolutions up to 1024×1024 pixels at
several frames per second.

CR Categories: C.4 [Computer Systems Organiza-
tion]: Performance of Systems—; F.2.2 [Theory of Compu-
tation]: Analysis of Algorithms and Problem Complexity—
Nonnumerical Algorithms and Problems; I.3.2 [Computer
Graphics]: Graphics Systems—Distributed graphics

Keywords: high-performance computing, image com-
positing, parallel rendering, PC clusters, visualization, vol-
ume rendering

1 Introduction

Many scientific and medical investigations can produce high-
resolution volume data sets that cannot be rendered at in-
teractive rates on a single computer. A viable solution is
to make use of a cluster of PCs to distribute both the vol-
ume data and the rendering calculations. Sort-last parallel
volume rendering [Molnar et al. 1994] requires a final com-
positing step which involves inter-processor communication.

Several parallel image compositing algorithms have been de-
veloped to address this need [Ma et al. 1994; Lee et al. 1996;
Ahrens and Painter 1998; Yang et al. 2001]. These algo-
rithms worked quite well until recently as the increased use
of hardware accelerated rendering and the increased inter-
est in building low-cost graphics clusters demand more ef-
ficient software algorithms. Hardware-accelerated rendering
enables realtime rendering rates but in a parallel render-
ing setting the compositing step, if done in software, could
become the performance bottleneck. That is, the scalabil-
ity of the parallel rendering is determined by the parallel
compositing, rather than the rendering calculations. Using
a high-speed network interconnect and hardware composit-
ing devices [Moll et al. 1999; Gordon et al. 2001; Muraki
et al. 2001] is an effective but very expensive solution. This
paper presents a new parallel image compositing algorithm
designed with the goal to achieve significant improvement
over previous algorithms. Our performance study on a 64-
node PC cluster shows that with this new algorithm it is
possible to use a low-cost network interconnect to build high-
performance volume graphics PC clusters.

2 Parallel Image Compositing

Among parallel image compositing algorithms developed for
sort-last distributed parallel volume rendering, the direct
send, binary swap, and parallel pipeline algorithms are rep-
resentative. Except direct send, most of the previous image
compositing algorithms were designed for and only work well
on specific types of network interconnect. In this section, we
briefly review these three image compositing algorithms and
recent development of compositing hardware devices.

2.1 Software Algorithms

All image compositing algorithms are concerned with par-
titioning the image space for compositing job assignments,
delivering pixels, each of which stores RGBA values, from
rendering of each subvolume to the designated composit-
ing nodes, and computing final pixel values by composit-
ing multiple pixels in depth order. Each compositing node
is assigned some image areas to perform the corresponding
compositing task. The image space assignments should be
done in such a way that overloading a few particular com-
positing nodes will never happen. Rendering nodes produce
pixels which are delivered to the compositing nodes respon-
sible for the image areas to which these pixels contribute.
In most settings, each processor switches between being the
rendering node and the compositing node.

The simplest compositing technique is the direct send
method, which has each processor send pixels directly to
the processor responsible for compositing them. This ap-



proach has been used in [Hsu 1993; Neumann 1994; Ma and
Interrante 1997] because its simplicity and ease of imple-
mentation. With direct send compositing, in the worst case
there are n(n− 1) messages to be exchanged among n com-
positing nodes. For low-bandwidth networks care should be
taken so that fewer nodes send messages to the same node
at the same time.

Lee et al. [Lee et al. 1996] introduce a parallel composit-
ing algorithm to avoid link contention on a mesh network.
For an m×l mesh, compositing is first performed along the
column direction and then along the row direction (or vice
versa) in a pipelined fashion such that a total of m + l − 2
steps are taken. For each direction, the images (as well as
their z-buffers for polygon rendering) are split into subim-
ages each which is forwarded to the a processor on the same
row (or column) in turn. Link contention is avoided because
there is never two processors sending messages to the same
processor at the same time. Further optimization can be ob-
tained by using boundary box, pixel forwarding, static load
balancing, and task switching, as discussed in [Lee et al.
1996].

A conceptually simple method is binary tree compositing
which pairs up processors in order of compositing. One pro-
cessor in each pair sends its image data to the other one
for compositing so each disjoint pair of processor produces
a new partial-image. Then the processors holding the new
partial-images pair up for the next level compositing. Con-
tinuing this fashion, after log n stages where n is the total
number of processors used, the final image is obtained. The
problem with binary tree compositing is that at each stage
of compositing half of the processors become idle. Finally, at
the top of the compositing tree, only one processor is active,
doing the final compositing for the entire image. When a
massively parallel computer with hundreds to thousands of
processors is used, compositing this fashion would become a
serious bottleneck.

Ma, et al [Ma et al. 1994] improve binary tree composit-
ing by keeping all processors actively participating in the
whole course of a binary tree compositing process. The key
idea is that in each stage rather than having only one node
from each pair composite the whole image plane, the im-
age plane is split into two pieces, and each node takes re-
sponsibility for one of the two pieces. Since a swapping of
the pieces between the two nodes is needed the algorithm is
called binary swap. In the early stages each node needs to
composite a large portion of the image area, but the portion
becomes smaller further up the compositing tree. Then af-
ter exactly log n stages, compositing is completed and each
node holds 1

n
of the final image. Binary swap can also bet-

ter exploit parallelism. Especially, when a tree or hypercube
network is used, it can take advantage of nearest neighbor
communication. Since as the compositing proceeds the im-
age each processor handles becomes smaller, it is beneficial
to swap large images during earlier stages of the compositing
between processors that are physically next to each other.
Similarly, additional optimizations such as bounding box,
compression [Ahrens and Painter 1998], etc., can be incor-
porated into binary swap. However, like any binary-tree
based methods, binary swap is limited to using power of two
processors.

2.2 Hardware Designs

Several specialized hardware architectures and devices have
been developed to support real-time image compositing for
demanding graphics applications using a cluster of graphics-

enhanced PCs. Both Sepia [Moll et al. 1999], lightning-
2 [Gordon et al. 2001], and Metabuffer [Blanke et al. 2000]
were developed for the construction of large display subsys-
tems for distributed clusters. Sepia is a commodity-based
architecture implemented by custom PCI cards connected
to a high speed network for image acquisition, compositing,
and display. It supports pipelined associative blending op-
erations in a sort-last configuration. The second generation
of Sepia [Lombeyda et al. 2001] incorporates a high speed
network interface, Servernet-2. Lightning-2 is a hardware
system that employs scanline based pixel mapping and pro-
vides a DVI-to-DVI interface which delivers pixel data from
graphics accelerators to remote tiled displays. It scales in
both the number of rendering nodes and the number of dis-
plays supported, and allows any pixel data generated from
any node to be dynamically mapped to any location on any
display. Metabuffer, based on a mesh interconnect, is simi-
lar to Lightning-2 in supporting a rich set of viewport map-
pings but it also offers multiresolution support. Another
compositing hardware design is based on binary-tree com-
positing [Muraki et al. 2001] resulting in reduced circuitry
and scalable performance. While some of these hardware
solutions have become commercially available they can be
prohibitively expensive for the building of larger systems.

3 Scheduled Linear Image Compositing

SLIC is essentially a highly optimized direct send method.
The optimizations are achieved by refining the direct send
method based on the following observations. First, image
space partitioning for compositing tasks is crucial to load
balancing. A simple way to ensure load balancing without
runtime overheads is to statically assign each processor im-
age areas scattering the whole image space. An example
is scanline interleaving. In this way, each processor’s com-
positing load becomes less view dependent. In addition, fine-
grain partitioning, generally giving more flexibility in load
distribution, should be used. Second, after local rendering
is done by each processor, there are three types of pixels:
background pixels, pixels in the nonoverlapping areas, and
pixels in the overlapping areas. Background pixels can be
ignored. Pixels in the nonoverlapping areas can be delivered
directly to the host or display device. Only the pixels in
the overlapping areas need to be sent to the processors re-
sponsible for compositing the corresponding areas. Figure 1
shows pixels classification as a result of a particular projec-
tion. Once pixels are classified, an optimized compositing
schedule for all processors and respective assignments can
be computed. Note that each processor is assigned within
the image space it renders into. With direct send or binary
swap, a processor could be assigned compositing regions that
it was not involved with in rendering, which results in addi-
tional sends. Lastly, it is generally true that communication
is more expensive than computation. This is the case even
more so since we aim to develop a low-cost solution such
that expensive network interconnect is not required. It is
thus desirable to perform additional computation for mini-
mizing communication as much as possible.

To simplify the presentation of the SLIC and performance
study, we assume rendering and compositing are completely
separated. That is, the rest of the discussion is independent
of the rendering method used. However, we do assume that a
block partitioning scheme, as suggested in [Neumann 1994],
is used to distribute the volume data among the nodes, and
that an unambiguous, front-to-back order of the blocks can
be straightforwardly determined. Consequently, each node



Figure 1: Left: Projection of the bounding boxes of eight
subvolumes. Right: The image space is partitioned into ar-
eas according to the number of overlaps. In addition to the
background, there are areas with no overlap (blue), one over-
lap (green), two overlaps (orange), three overlaps (red), etc.

starts with some pixels that correspond to the projection of
the block of volume data the node renders, and ends with
some image data to be delivered to the host node. Each
node needs to perform three tasks: computing a compositing
schedule, exchanging pixels with other nodes according to
the schedule, and finally compositing the pixels. We use the
word ’schedule’ not in a temporal sense, but rather as a list
that indicates how the task of compositing is distributed.

3.1 Computing the Compositing Schedule

Each node first computes a schedule independent of other
nodes. The schedule is determined based on the overlapping
relations between the projection of the local blocks of volume
and the projection of other blocks. Because a regular data
partitioning is used, each node also knows the exact projec-
tion of nonlocal blocks. Specifically, each node performs the
following steps:

1. project corner vertices of each block based on the cur-
rent view and constructing its convex hull,

2. traverse through the overlapped convex hulls in scanline
order to identify compositing tasks in terms of spans,
and

3. assign each span to a node in an interleaving fashion.

The convex hull defines the exact projected area of the block
in the image space. A scanline algorithm similar to polygon
scan-conversion is then used to process the edges of the over-
lapped convex hulls, as shown in Figure 2. Note that each
node only needs to scan the projected bounding edges of the
local blocks. In Figure 3, the color area shows the result
of applying the scanline algorithm. However, the projected
bounding edges of nonlocal blocks are used to determine the
number of overlaps.

The edges that each scanline intersects break the scan-
line into multiple spans, which can be classified into: back-
ground spans, no-overlap spans, one-overlap spans, two-
overlap spans, etc. Background spans are never generated.
No-overlap spans are sent directly to the host node. The
rest of the spans are either kept locally or delivered to other
nodes by following Step 3. In our current implementation,
the node assignment is determined by (((x + y)×p) mod n)
where x and y are the coordinates of the starting position

Figure 2: Scanline-order processing of the bounding edges of
blocks to generate spans of compositing tasks for a two-block
case. The green span is generated twice, once by the node
rendering the left block and the other by the node rendering
the right block.

Figure 3: To compute a schedule, each node only needs to
process the projected area of its local block (color zones) but
the projected bounding edges of nonlocal blocks (gray dotted
lines) are also needed to compute the number of overlaps.

of the span, p is a large prime number, and n is the to-
tal number of compositing nodes used. Figure 4 shows the
distribution of the compositing tasks to eight processors for
the rendering of a CT mouse dataset. The pixels in the gray
area are directly sent to the host computer because there is
no overlap. The same color spans are delivered to the same
processor.

The scanline-based algorithm works because the bounding
edges break the scanlines in exactly the same way across all
nodes. As a result, if two spans created by different nodes
would overlap, they must completely overlap; that is, the
two spans have the same starting and end screen positions,
as illustrated in Figure 5. Because all blocks are presorted in
depth order, each span can be assigned a compositing order,
which simplifies the actual compositing calculations. Other
information stored with each span includes a sequence of
RGBA values and the starting and end screen coordinates
of the span.

This preprocessing step to compute a compositing sched-
ule for each view introduces very low overhead, generally
under 10 milliseconds for up to 64 processors with a 1 GHz
Pentium III CPU. When more nodes are used, since the pro-
jected image area of local blocks decreases the cost does not
increase. So in general the cost of computing the schedule
is independent of the number of nodes used. With the re-
sulting schedule, the total amount of data that must be sent
over the entire network to accomplish the compositing task
is minimized.



Figure 4: The left image illustrates the distribution of the
compositing tasks to eight processors for parallel volume ren-
dering of a CT mouse dataset. The pixels in the gray area
are directly sent to the host computer because there is no
overlap. The resulting image is shown on the right.

Figure 5: In 2D, the four blocks are processed by four dif-
ferent nodes but the spans mapping to the same image area
must completely overlap because all nodes compute the com-
positing schedule by using the same set of projected bound-
ing edges. For example, since there are two overlaps in the
volume space corresponding to the yellow area, the same
size spans are created independently by three different nodes.
According to SLIC, one of the nodes will be assigned to com-
posite these three spans. Note that 0 1 2 2 1 0 are number
of overlaps.

3.2 Comparisons with Other Algorithms

Providing a block data distribution is used, the approximate
depth overlap per pixel is n(1/3) where n is the number of
processing nodes used. Consequently, if p is the total number
of pixels in the final image there are a total of n(1/3)p im-
age pixels and the approximate number of pixels per node
is n(−2/3)p. With direct send, Neumann [Neumann 1994]
assumes that the image space subdivision is done in an in-
terleaved fashion to ensure load balancing. The result is that
the pixels each node produces are distributed among all n
nodes, and about (n(−2/3)p)/(n− 1) = n(1/3)p(1− 1/n) pix-
els must be transmitted. Since we do not make any assump-
tion on the image space partitioning, on average the pix-
els each node produces are distributed among fewer nodes,
about n1/3. Consequently, each node needs to send approx-
imately (n(−2/3)p(1 − p−(1/3)) pixels to some other nodes,
and thus the total number of pixels to be transmitted is
n1/3p(1 − n−(1/3)). Asymptotically, this is comparable to

both direct send’s n1/3p(1 − 1/n) [Neumann 1994] and bi-

nary swap’s 2.43n1/3p [Ma et al. 1994].
Direct send could require sending n(n−1) messages while

binary swap sends exactly n log n messages. SLIC requires
transmitting about n(4/3) (with a small constant factor) mes-
sages. This number is derived based on the observation that
in SLIC the spans generated by each node are assigned to
only those nodes sharing the same projected area of the lo-
cal block. When 1024 or fewer processors are used, SLIC
is comparable to binary swap for the number of messages
a node must send to distribute the spans. However, SLIC
is optimized to reduce the number of pixels that must be
transmitted. Therefore, when the network is bandwidth lim-
ited, SLIC would perform better, especially for large images.
When the network is latency limited, the compositing per-
formance is determined more by the number messages that
must be sent.

4 Test Results

We have done a set of tests on a 64-node PC cluster oper-
ated at the Los Alamos National Laboratory. Each node has
a single 1GHz CPU, 512MB RAM, and a 100BaseT inter-
connect. Our objective was to study both the behavior and
performance of the algorithm with a focus on the 100BaseT
network interconnect because our strong interest in deriving
a low-cost solution. Two data sets were used for our study.
As shown in Figure 6 one is a CT scan of a Microsoft mouse
with 205×205×259 voxels, and the other is a confocal micro-
scopic ganglion dataset with 600×800×129 voxels. The size
of a data set has very little impact on the performance of the
image composition. Our study isolates the image composi-
tion timing, so we chose these smaller data sets to reduce
the overall time needed to perform a large number of tests.

Figure 7 presents average compositing time of rendering
from 36 different view points using from 2 to 64 processors
for three different image sizes (5122, 10242, and 20482 pix-
els). SLIC, direct send, and binary swap were tested to
compare. The time plotted for SLIC includes including the
time to compute the schedule, distribute the spans, com-
pute the alpha compositing, and deliver the image data to
the host computer. As the graphs show, SLIC outperforms
both direct send and binary swap in all cases. Independent
of the number of processors used, with SLIC the composit-
ing time stays about the same, unlike using direct send or
binary swap.



Figure 6: Top: CT mouse data, 205×205×259 voxels. Bot-
tom: Confocal microscopic ganglion data, 600×129×800
voxels.

Table 1: Average compositing time (in seconds) with SLIC
for rendering the mouse data.

#nodes 256×256 512×512 1024×1024 2048×2048
2 0.03 0.120 0.474 1.887
4 0.03 0.141 0.552 1.984
8 0.03 0.104 0.541 1.594

16 0.03 0.105 0.742 1.764
32 0.03 0.149 0.677 1.618
64 0.04 0.097 0.792 1.632

Table 1 shows the compositing cost using SLIC for four
different image sizes. For rendering small images, SLIC al-
lows for 10-30 frames per second. For 1024×1024, about 1-2
frames per second can still be achieved. These numbers also
show that with SLIC the compositing cost does not increase
as more processors are used. On the other hand, SLIC does
not scale on the 100BaseT network interconnect.

Figure 8 compares the performance of SLIC with the other
two compositing methods with the optimization that run-
length encoding of transparent image regions is used. That
is, the image data that is entirely transparent are not trans-
mitted. This optimization does improve the performance of
SLIC since it makes use of image segments that are tightly
bound to the projected volume to begin with. As the graphs
show, SLIC still outperforms direct send and binary swap in
all cases.

Figure 9 shows timing results of using SLIC and both the
optimized and unoptimized versions of direct send and bi-
nary swap for rendering from six different views. Timing
results are plotted from left to right on the graph for render-
ing using increasingly close-up views. For the closest views,

Figure 7: Comparing the performance of SLIC, direct send,
and binary swap. Each graph plots the compositing time for
images of resolutions at (top) 512×512, (middle) 1024×1024,
and (bottom) 2048×2048 pixels using each compositing
method. The time plotted is the average time of rendering
from 36 different views, and includes the time to compute the
schedule, deliver the spans, calculate the alpha compositing,
and deliver the image data to the host. Up to 64 PCs were
used for compositing.



Figure 8: Comparing the performance of SLIC, direct send,
and binary swap. Runlength encoding was used for direct
send and binary swap. Each graph plots the compositing
time for images of resolutions at (top) 512×512, (middle)
1024×1024, and (bottom) 2048×2048 pixels using each com-
positing method. Up to 64 PCs were used for compositing.

Figure 9: Compositing costs for each of six selected views
using different compositing methods on 64 processors. Top:
1024×1024 pixels. Bottom: 2048×2048 pixels.

since there is little or no empty space, more pixels must be
transmitted so the cost of compositing using SLIC increases.

In the 1024×1024 pixels case (top graph), for the first
three views, the optimized binary swap (with runlength en-
coding) performs slightly better than SLIC because mes-
sage overhead is the bottleneck. For close-up views, SLIC
yields better performance. For the very large images like
2048×2048 pixels, SLIC is better for all cases.

The favorable performance of SLIC is due to the use of
a compositing schedule, which can be computed quickly by
each node independently. As shown in Figure 10, the cost is
very small (several milliseconds), even with a large number
of processors.

Figure 11 displays the average number of spans each node
produces for each of 120 different views, and Figure 12 shows
the total number of spans generated for each view. It is clear
the results are highly view dependent. While the difference
in the number of spans that must be processed can be quite
large the difference in the overall compositing time is negli-
gible.

Finally, Figure 13 shows the compositing time breakdown
for each of the 32 processors for rendering the ganglion data
to 512×512 pixels from a particular view. The cost of trans-
ferring the spans dominate the overall cost, which suggests
that a faster network such as Myrinet would help to signifi-



Figure 10: The time (in milliseconds) to compute the com-
positing schedule for different numbers of processors. Note
that we can derive these numbers without actually using a
large cluster because computing the compositing schedule is
independent of the rendering nor the data size or content.
The cost for each processor size would be the same for the
same image resolution, in this case 512×512, and the same
view point.

Figure 11: Average number of spans generated by a node
for each of 120 different views. Note that we can derive
these numbers because computing the schedule (and thus
the number of spans) is independent of the rendering and
volume data properties.

Figure 12: Total number of spans generated by all processors
for each of 120 different views.

Figure 13: Overall compositing time breakdown for each of
the 32 processors for rendering the ganglion data to 512×512
pixels from a particular view.

cantly reduce the compositing cost.
SLIC outperforms the optimized direct send and binary

swap methods when high image resolutions are desired. Fig-
ure 14 displays the estimated “cross-over” line where SLIC
outperforms the other optimized methods for the rendering
of the mouse data . Without using runlength encoding for
direct send and binary swap, the line stays between 300×300
and 500×500 suggesting that SLIC is favorable for any image
resolution above 500×500.

5 Conclusions

We have presented a new image compositing algorithm,
SLIC, optimized for reducing pixel coimmunication by us-
ing a compositing schedule computed on-the-fly. The cost
of computing the schedule is very small and only depends
on the image resolution and the number of processors used.
Unlike binary swap, SLIC is not limited to using a number
of processors that is a power of two. Furthermore, SLIC is
especially efficient for the rendering of large images, which
are required for the increasingly used large display spaces.



Figure 14: Estimated “cross-over” performance line for SLIC
when compared with other methods. The shade area rep-
resents resolutions for which the optimized direct send or
binary swap (with compression) outperforms SLIC.

According to our test results, it is clear that now we can
build low-cost graphics PC clusters without using expensive
network interconnect. However, those realtime graphics ap-
plications requiring above 30 frames per second display rates
would still have to adopt hardware support. We have also
tested SLIC on large clusters using up to 512 processors, and
the test results show that the compositing cost stays almost
constant even as more processors are used.

Acknowledgments

This work has been sponsored in part by the U.S. National
Science Foundation under contracts ACI 9983641 (PECASE
award), ACI 9982251 (the LSSDSV program), and ACI
0222991; the U.S. Department of Energy under Memoran-
dum Agreements No. DE-FC02-01ER41202 (SciDAC pro-
gram) and No. B523578; the National Institute of Health
through the Human Brain Project, and a United States De-
partment of Education Government Assistance in Areas of
National Need (DOE-GAANN) grant P200A980307. The
authors would especially like to thank John Owens at UCD
and the anonymous reviewers for their comments on this
paper.

References

Ahrens, J., and Painter, J. 1998. Efficient sort-last rendering
using compression-based image compositing. In Proceedings
of the 2nd Eurographics Workshop on Parallel Graphics and
Visualization, 145–151.

Blanke, W. J., Fussell, D. S., Bajaj, C., and Zhang, X.

2000. The metabuffer: A scalable multiresolution multidis-
play 3-d graphics system using commodity rendering engines.
Tech. Rep. Technical Report No. 2000-16, University of Texas
at Austin.

Gordon, S., Eldridge, M., Patterson, D., Webb, A.,

Berman, S., Levy, R. Caywood, C., Taverira, M., Hunt,

S., and Hanrahan, P. 2001. A high performance display sub-
system for PC clusters. In Proceedings of SIGGRAPH 2001,
141–148.

Hsu, W. M. 1993. Segmented ray casting for data parallel volume
rendering. In Proceedings of 1993 Parallel Rendering Sympo-
sium, 7–14.

Lee, T.-Y., Raghavendra, C. S., and Nicholas, J. B. 1996.
Image composition schemes for sort-last polygon rendering on
2d mesh multicomputers. IEEE Transactions on Visualization
and Computer Graphics 2, 3, 202–217.

Lombeyda, S., Moll, L., Shand, M., Breen, D., and Heirich,

A. 2001. Scalable interactive volume rendering using off-the-
shelf components. In Proceedings of 2001 Symposium on Par-
allel and Large-Data Visualization and Graphics, 115–121.

Ma, K.-L., and Interrante, V. 1997. Extracting Feature Lines
from 3D Unstructured Grids. In Proceeding of Visualization
’97 Conference (to appear).

Ma, K.-L., Painter, J., Hansen, C., and Krogh, M. 1994. Par-
allel volume rendering using binary-swap compositing. IEEE
Computer Graphics and Applications 14, 4 (July), 59–67.

Moll, L., Heirich, A., and Shand, M. 1999. Sepia: Scalable
3-d compositing using PCI pamette. In Proceedings of IEEE
Symposium on FPGAs for Custom Computing Machines, 146–
155.

Molnar, S., Cox, M., Ellsworth, D., and Fuchs, H. 1994.
A sorting classification of parallel rendering. IEEE Computer
Graphics and Applications 14, 4 (July), 23–32.

Muraki, S., Ogata, M., Ma, K.-L., Koshizuka, K., Kajihara,

K., Liu, X., Nagano, Y., and Shimokawa, K. 2001. Next gen-
eration visual supercomputing using PC cluster with volume
graphics hardware devices. In Proceedings of Supercomputing
2001 Conference.

Neumann, U. 1994. Communication costs for parallel volume-
rendering algorithms. IEEE Computer Graphics and Applica-
tions 14, 4 (July), 49–58.

Yang, D.-L., Yu, J.-C., and Chung, Y.-C. 2001. Efficient com-
positing methods for the sort-last-sparse parallel volume ren-
dering system on distributed memory multicomputers. The
Journal of Supercomputing 18, 2 (February), 201–220.


