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Abstract—Computer vision applications have come to rely
increasingly on superpixels in recent years, but it is not always
clear what constitutes a good superpixel algorithm. In an effort to
understand the benefits and drawbacks of existing methods, we
empirically compare five state-of-the-art superpixel algorithms
for their ability to adhere to image boundaries, speed, memory
efficiency, and their impact on segmentation performance. We
then introduce a new superpixel algorithm, simple linear iterative
clustering (SLIC), which adapts a k-means clustering approach
to efficiently generate superpixels. Despite its simplicity, SLIC
adheres to boundaries as well as or better than previous methods.
At the same time, it is faster and more memory efficient, improves
segmentation performance, and is straightforward to extend to
supervoxel generation.

Index Terms—Superpixels, segmentation, clustering, k-means.

I. INTRODUCTION

Superpixel algorithms group pixels into perceptually mean-

ingful atomic regions, which can be used to replace the rigid

structure of the pixel grid. They capture image redundancy,

provide a convenient primitive from which to compute image

features, and greatly reduce the complexity of subsequent

image processing tasks. They have become key building blocks

of many computer vision algorithms, such as top scoring multi-

class object segmentation entries to the PASCAL VOC Chal-

lenge [9], [29], [11], depth estimation [30], segmentation [16],

body model estimation [22], and object localization [9].

There are many approaches to generate superpixels, each

with its own advantages and drawbacks that may be better

suited to a particular application. For example, if adherence to

image boundaries is of paramount importance, the graph-based

method of [8] may be an ideal choice. However, if superpixels

are to be used to build a graph, a method that produces a more

regular lattice, such as [23], is probably a better choice. While

it is difficult to define what constitutes an ideal approach for all

applications, we believe the following properties are generally

desirable:

1) Superpixels should adhere well to image boundaries.

2) When used to reduce computational complexity as a pre-

processing step, superpixels should be fast to compute,

memory efficient, and simple to use.

3) When used for segmentation purposes, superpixels

should both increase the speed and improve the quality

of the results.

We therefore performed an empirical comparison of five

state-of-the-art superpixel methods [8], [23], [26], [25], [15],

evaluating their speed, ability to adhere to image boundaries,
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Fig. 1: Images segmented using SLIC into superpixels of size 64, 256,
and 1024 pixels (approximately).

and impact on segmentation performance. We also provide

a qualitative review of these, and other, superpixel methods.

Our conclusion is that no existing method is satisfactory in all

regards.

To address this, we propose a new superpixel algorithm:

simple linear iterative clustering (SLIC), which adapts k-

means clustering to generate superpixels in a manner similar

to [30]. While strikingly simple, SLIC is shown to yield state-

of-the-art adherence to image boundaries on the Berkeley

benchmark [20], and outperforms existing methods when used

for segmentation on the PASCAL [7] and MSRC [24] data

sets. Furthermore, it is faster and more memory efficient than

existing methods. In addition to these quantifiable benefits,

SLIC is easy to use, offers flexibility in the compactness and

number of the superpixels it generates, is straightforward to

extend to higher dimensions, and is freely available1.

II. EXISTING SUPERPIXEL METHODS

Algorithms for generating superpixels can be broadly cat-

egorized as either graph-based or gradient ascent methods.

Below, we review popular superpixel methods for each of

these categories, including some that were not originally de-

signed specifically to generate superpixels. Table I provides a

qualitative and quantitative summary of the reviewed methods,

including their relative performance.

A. Graph-based algorithms

Graph-based approaches to superpixel generation treat each

pixel as a node in a graph. Edge weights between two nodes

are proportional to the similarity between neighboring pixels.

Superpixels are created by minimizing a cost function defined

over the graph.

NC05 – The Normalized cuts algorithm [23] recursively

partitions a graph of all pixels in the image using contour

and texture cues, globally minimizing a cost function defined

on the edges at the partition boundaries. It produces very

1Cross-platform executables and source code for SLIC superpixels and
supervoxels can be found at http://ivrg.epfl.ch/research/superpixels
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TABLE I: Summary of existing superpixel algorithms. The ability of a superpixel method to adhere to boundaries found in the Berkeley data set [20]
is measured and ranked according to two standard metrics: under-segmentation error and boundary recall (for ∼500 superpixels). We also report
the average time required to segment images using an Intel Dual Core 2.26 GHz processor with 2GB RAM, and the class-averaged segmentation
accuracy obtained on the MSRC data set using the method described in [11]. Bold entries indicate best performance in each category. Ability to
specify the amount of superpixels, control their compactness, and ability to generate supervoxels is also provided.

Graph-based Gradient-ascent-based

GS04 NC05 SL08 GCa10b GCb10b WS91 MS02 TP09b QS09 SLIC

[8] [23] [21] [26] [26] [28] [4] [15] [25]

Adherence to boundaries

Under-segmentation error (rank) 0.23 0.22 - 0.22 0.22 - - 0.24 0.20 0.19

Boundary recall (rank) 0.84 0.68 - 0.69 0.70 - - 0.61 0.79 0.82

Segmentation speed

320× 240 image 1.08sa 178.15s - 5.30s 4.12s - - 8.10s 4.66s 0.36s

2048× 1536 image 90.95sa N/Ac - 315s 235s - - 800s 181s 14.94s

Segmentation accuracy (using [11] on MSRC) 74.6% 75.9% - - 73.2% - - 62.0% 75.1% 76.9%

Control over amount of superpixels No Yes Yes Yes Yes No No Yes No Yes

Control over superpixel compactness No No No Nod Nod No No No No Yes

Supervoxel extension No No No Yes Yes Yes No No No Yes

aReported time includes parameter search. bConsiders intensity only, ignores color. c NC05 failed to segment 2048 × 1536 images, producing “out of memory” errors.
dConstant-intensity (GCa10) or compact (GCb10) superpixels can be selected.

regular, visually pleasing superpixels. However, the boundary

adherence of NC05 is relatively poor and it is the slowest

among the methods (particularly for large images), although

attempts to speed up the algorithm exist [5]. NC05 has a

complexity of O(N
3

2 ) [15], where N is the number of pixels.

GS04 – Felzenszwalb and Huttenlocher [8] propose an alter-

native graph-based approach that has been applied to generate

superpixels. It performs an agglomerative clustering of pixels

as nodes on a graph, such that each superpixel is the minimum

spanning tree of the constituent pixels. GS04 adheres well to

image boundaries in practice, but produces superpixels with

very irregular sizes and shapes. It is O(N logN) complex and

fast in practice. However, it does not offer an explicit control

over the amount of superpixels or their compactness.

SL08 – Moore et al. propose a method to generate superpixels

that conform to a grid by finding optimal paths, or seams, that

split the image into smaller vertical or horizontal regions [21].

Optimal paths are found using a graph cuts method similar

to Seam Carving [1]. While the complexity of SL08 is

O(N
3

2 logN) according to the authors, this does not account

for the pre-computed boundary maps, which strongly influence

the quality and speed of the output.

GCa10 and GCb10 – In [26], Veksler et al. use a global

optimization approach similar to the texture synthesis work

of [14]. Superpixels are obtained by stitching together over-

lapping image patches such that each pixel belongs to only

one of the overlapping regions. They suggest two variants of

their method, one for generating compact superpixels (GCa10)

and one for constant-intensity superpixels (GCb10).

B. Gradient-ascent-based algorithms

Starting from a rough initial clustering of pixels, gradient

ascent methods iteratively refine the clusters until some con-

vergence criterion is met to form superpixels.

MS02 – In [4], mean shift, an iterative mode-seeking pro-

cedure for locating local maxima of a density function, is

applied to find modes in the color or intensity feature space

of an image. Pixels that converge to the same mode define the

superpixels. MS02 is an older approach, producing irregularly

shaped superpixels of non-uniform size. It is O(N2) complex,

making it relatively slow and does not offer direct control over

the amount, size, or compactness of superpixels.

QS08 – Quick shift [25] also uses a mode-seeking segmen-

tation scheme. It initializes the segmentation using a medoid

shift procedure. It then moves each point in the feature space to

the nearest neighbor that increases the Parzen density estimate.

While it has relatively good boundary adherence, QS08 is quite

slow, with an O(dN2) complexity (d is a small constant [25]).

QS08 does not allow for explicit control over the size or

number of superpixels. Previous works have used QS08 for

object localization [9] and motion segmentation [2].

WS91 – The watershed approach [28] performs a gradient

ascent starting from local minima to produce watersheds, lines

that separate catchment basins. The resulting superpixels are

often highly irregular in size and shape, and do not exhibit

good boundary adherence. The approach of [28] is relatively

fast (O(N logN) complexity), but does not offer control over

the amount of superpixels or their compactness.

TP09 – The Turbopixel method progressively dilates a set

of seed locations using level-set based geometric flow [15].

The geometric flow relies on local image gradients, aiming

to regularly distribute superpixels on the image plane. Unlike

WS91, TP09 superpixels are constrained to have uniform size,

compactness, and boundary adherence. TP09 relies on algo-

rithms of varying complexity, but in practice, as the authors

claim, has approximately O(N) behaviour [15]. However, it is

among the slowest algorithms examined and exhibits relatively

poor boundary adherence.

III. SLIC SUPERPIXELS

We propose a new method for generating superpixels

which is faster than existing methods, more memory efficient,
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exhibits state-of-the-art boundary adherence, and improves

the performance of segmentation algorithms. Simple linear

iterative clustering (SLIC) is an adaptation of k-means for

superpixel generation, with two important distinctions:

1) The number of distance calculations in the optimization

is dramatically reduced by limiting the search space to a

region proportional to the superpixel size. This reduces

the complexity to be linear in the number of pixels N
– and independent of the number of superpixels k.

2) A weighted distance measure combines color and spatial

proximity, while simultaneously providing control over

the size and compactness of the superpixels.

SLIC is similar to the approach used as a preprocessing step

for depth estimation described in [30], which was not fully

explored in the context of superpixel generation.

A. Algorithm

SLIC is simple to use and understand. By default, the

only parameter of the algorithm is k, the desired number

of approximately equally-sized superpixels.2 For color images

in the CIELAB color space, the clustering procedure begins

with an initialization step where k initial cluster centers

Ci = [li ai bi xi yi]
T are sampled on a regular grid spaced

S pixels apart. To produce roughly equally sized superpixels,

the grid interval is S =
√

N/k. The centers are moved to

seed locations corresponding to the lowest gradient position

in a 3 × 3 neighborhood. This is done to avoid centering a

superpixel on an edge, and to reduce the chance of seeding a

superpixel with a noisy pixel.

Next, in the assignment step, each pixel i is associated with

the nearest cluster center whose search region overlaps its

location, as depicted in Fig. 2. This is the key to speeding up

our algorithm because limiting the size of the search region

significantly reduces the number of distance calculations, and

results in a significant speed advantage over conventional k-

means clustering where each pixel must be compared with all

cluster centers. This is only possible through the introduction

of a distance measure D, which determines the nearest cluster

center for each pixel, as discussed in Section III-B. Since

the expected spatial extent of a superpixel is a region of

approximate size S × S, the search for similar pixels is done

in a region 2S × 2S around the superpixel center.

Once each pixel has been associated to the nearest cluster

center, an update step adjusts the cluster centers to be the mean

[l a b x y]T vector of all the pixels belonging to the cluster.

The L2 norm is used to compute a residual error E between

the new cluster center locations and previous cluster center

locations. The assignment and update steps can be repeated

iteratively until the error converges, but we have found that

10 iterations suffices for most images, and report all results

in this paper using this criteria. Finally, a post-processing

step enforces connectivity by re-assigning disjoint pixels to

nearby superpixels. The entire algorithm is summarized in

Algorithm 1.

2Optionally, the compactness of the superpixels can be controlled by
adjusting m, which is discussed in Section III-B.

� �

��

(a) standard k-means searches (b) SLIC searches
the entire image a limited region

Fig. 2: Reducing the superpixel search regions. The complexity of SLIC
is linear in the number of pixels in the image O(N), while the conven-
tional k-means algorithm is O(kNI) where I is the number of iterations.
This is achieved by limiting the search space of each cluster center in the
assignment step. (a) In the conventional k-means algorithm, distances
are computed from each cluster center to every pixel in the image.
(b) SLIC only computes distances from each cluster center to pixels
within a 2S × 2S region. Note that the expected superpixel size is only
S × S, indicated by the smaller square. This approach not only reduces
distance computations but also makes SLIC’s complexity independent
of the number of superpixels.

Algorithm 1 SLIC superpixel segmentation

/∗ Initialization ∗/

Initialize cluster centers Ck = [lk, ak, bk, xk, yk]
T by

sampling pixels at regular grid steps S.

Move cluster centers to the lowest gradient position in a

3× 3 neighborhood.

Set label l(i) = −1 for each pixel i.

Set distance d(i) = ∞ for each pixel i.

repeat

/∗ Assignment ∗/

for each cluster center Ck do

for each pixel i in a 2S × 2S region around Ck do

Compute the distance D between Ck and i.
if D < d(i) then

set d(i) = D
set l(i) = k

end if

end for

end for

/∗ Update ∗/

Compute new cluster centers.

Compute residual error E.

until E ≤ threshold

B. Distance measure

SLIC superpixels correspond to clusters in the labxy color–

image plane space. This presents a problem in defining the

distance measure D, which may not be immediately obvious.

D computes the distance between a pixel i and cluster center

Ck in Algorithm 1. A pixel’s color is represented in the

CIELAB color space [l a b]T, whose range of possible values

is known. The pixel’s position position [x y]T, on the other

hand, may take a range of values that varies according to the

size of the image.

Simply defining D to be the five-dimenensional Euclidean

distance in labxy space will cause inconsistencies in clustering
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behavior for different superpixel sizes. For large superpixels,

spatial distances outweigh color proximity, giving more rela-

tive importance to spatial proximity than color. This produces

compact superpixels that do not adhere well to image bound-

aries. For smaller superpixels, the converse is true.

To combine the two distances into a single measure, it is

necessary to normalize color proximity and spatial proximity

by their respective maximum distances within a cluster, Ns

and Nc. Doing so, D′ is written

dc =
√

(lj − li)2 + (aj − ai)2 + (bj − bi)2

ds =
√

(xj − xi)2 + (yj − yi)2

D′ =

√

(

dc

Nc

)2

+
(

ds

Ns

)2

. (1)

The maximum spatial distance expected within a given cluster

should correspond to the sampling interval, NS = S =
√

(N/K). Determining the maximum color distance Nc is

not so straightforward, as color distances can vary significantly

from cluster to cluster and image to image. This problem can

be avoided by fixing Nc to a constant m so that Eq. 1 becomes

D′ =

√

(

dc

m

)2

+
(

ds

S

)2

, (2)

which simplifies to the distance measure we use in practice

D =

√

dc
2 +

(

ds
S

)2

m2. (3)

By defining D in this manner, m also allows us to weigh the

relative importance between color similarity and spatial prox-

imity. When m is large, spatial proximity is more important

and the resulting superpixels are more compact (i.e. they have

a lower area to perimeter ratio). When m is small, the resulting

superpixels adhere more tightly to image boundaries, but have

less regular size and shape. When using the CIELAB color

space, m can be in the range [1, 40].
Equation 3 can be adapted for grayscale images by setting

dc =
√

(lj − li)2. It can also be extended to handle 3D

supervoxels, as depicted in Figure 3, by including the depth

dimension to the spatial proximity term of Eq. 3

ds =
√

(xi − xj)2 + (yi − yj) + (zi − zj)2. (4)

C. Post-processing

Like some other superpixel algorithms [8], SLIC does not

explicitly enforce connectivity. At the end of the clustering

procedure, some “orphaned” pixels that do not belong to the

same connected component as their cluster center may remain.

To correct for this, such pixels are assigned the label of the

nearest cluster center using a connected components algorithm.

D. Complexity

By localizing the search in the clustering procedure, SLIC

avoids performing thousands of redundant distance calcula-

tions. In practice, a pixel falls in the neighborhood of less than

eight cluster centers, meaning that SLIC is O(N) complex.

In contrast, the trivial upper bound for the classical k-means

algorithm is O(kN ) [17], and the practical time complexity

t =0 t =20 t =40 t =60 t =80 t =100 t =120 t =140

��
�
�

Fig. 3: SLIC supervoxels computed for a video sequence. (top) frames
from a short video sequence of a flag waving. (bottom left) A volume
containing the video. The last frame appears at the top of the volume.
(bottom right) A supervoxel segmentation of the video. Supervoxels with
orange cluster centers are removed for display purposes.

is O(NkI) [6], where I is the number of iterations required

for convergence. While schemes to reduce the complexity of

k-means have been proposed using prime number length sam-

pling [27], random sampling [13], local cluster swapping [12],

and by setting lower and upper bounds [6], these methods

are very general in nature. SLIC is specifically tailored to

the problem of superpixel clustering. Finally, unlike most

superpixel methods and the aforementioned approaches to

speed up k-means, the complexity of SLIC is linear in the

number of pixels, irrespective of k.

IV. COMPARISON WITH STATE-OF-THE-ART

We performed a quantitative comparison of SLIC and five

state-of-the-art superpixel methods using publicly available

source code. These algorithms include GS043, NC054, TP095,

QS096, and two versions of the algorithm proposed in [26],

GCa10 and GCb107. Examples of superpixel segmentations

produced by each method appear in Fig. 7.

A. Adherence to boundaries

Arguably, the most important property of a superpixel

method is its ability to adhere to image boundaries. Boundary

recall and under-segmentation error are standard measures for

boundary adherence [15], [26]. In Fig. 4(a) and (b), SLIC,

GS04, NC05, TP09, QS09, and GC10, are compared using

these measures on the Berkeley database [20]. In addition, a

baseline performance obtained by segmenting the image into

uniform squares is denoted as “Squares”. The Berkeley data set

contains three-hundred 321× 481 images, and approximately

10 human-annotated ground truth segmentations correspond-

ing to each image.

Boundary recall measures what fraction of the ground truth

edges fall within at least two pixels of a superpixel boundary.

The boundary recall of each method is plotted in Fig. 4(a)

3http://people.cs.uchicago.edu/∼pff/segment/
4http://www.cs.sfu.ca/∼mori/research/superpixels/
5http://www.cs.toronto.edu/∼babalex/turbopixels supplementary.tar.gz
6http://www.vlfeat.org/download.html
7http://www.csd.uwo.ca/faculty/olga/Code/superpixels1pt1.zip
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(a) Boundary Recall
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(b) Under-segmentation Error
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Fig. 4: Boundary adherence and segmentation speed. (a) Boundary
recall measures the fraction of the ground truth edges that fall within
at least two pixels of a superpixel boundary. While GS04 demonstrates
the best boundary recall, reducing m from the default value increases
the boundary recall of SLIC over that of GS04. (b) Under-segmentation
error measures the amount of superpixel “leak” for a given ground truth
region. SLIC outperforms the other methods, showing the lowest under-
segmentation error for most of the useful operating regime. (c) Time
required to generate superpixels for images of increasing size. SLIC is
the fastest superpixel method, followed closely by GS04, and then a
significant gap. NC05 is not plotted due to its particularly slow speed.

for increasing numbers of superpixels. A high boundary recall

indicates that very few true edges were missed. Superpixels

generated by SLIC and GS04 demonstrated the best boundary

recall performance. If we reduce SLIC’s compactness m from

its default value of 10, SLIC shows superior performance to

GS04.

Under-segmentation error, shown in Fig. 4(b), is another

measure of boundary adherence. Given a region from the

ground truth segmentation gi and the set of superpixels re-

quired to cover it, sj |sj
⋂

gi, it measures how many pixels

from sj “leak” across the boundary of gi. If |.| is the size of a

segment in pixels, M is the number of ground truth segments,

and B is a minimum number of pixels in sj overlapping gi,
under-segmentation error is expressed as

U =
1

N





M
∑

i=1





∑

sj |sj
⋂

gi>B

|sj |



−N



 . (5)

B is set to 5% of |sj | in our experiments to account for

ambiguities in the ground truth. Superpixels that do not tightly

fit the ground truth result in a high value of U .

B. Computational and memory efficiency

Superpixels are often used to replace the pixel-grid to

help speed up other algorithms. Thus, it is important that

superpixels can be generated efficiently in the first place.

In Fig. 4(c), we compare the time required for the various

superpixel methods to segment images of increasing size on

an Intel Dual Core 2.26 GHz processor with 2GB RAM.

SLIC, with its O(N) complexity, is the fastest superpixel

method, and its advantage increases with the size of the image.

While GS04 is competitive with O(N) logN complexity, the

remaining methods show a significant gap in processing speed.

It is also important that a superpixel algorithm is memory

efficient in order to handle large images. SLIC is the most

memory efficient method, requiring only N floats to store

the distance from each pixel to its nearest cluster center.

Other methods have comparatively high memory requirements:

GS04 and GC10 require 5N floats to store edge weights and

thresholds for 4-connectivity (or 9N for 8-connectivity).

C. Segmentation performance

Superpixels are commonly used as a pre-processing step in

segmentation algorithms. A good superpixel algorithm should

improve the performance of the segmentation algorithm that

uses it. We compared the segmentation resulting from SLIC,

GS04, NC05, TP09, QS09, and GC10 on the MSRC data

set [24]. These results were obtained using the method of [11],

which uses superpixels to compute color, texture, geometry,

and location features. It then trains classifiers for the 21 object

classes and learns a CRF model. The results appearing in Table

I show that SLIC superpixels yield the best performance. SLIC

also reduces the the computational time by a factor of over

500 over NC05, the method used in [11]. Example images

segmented using SLIC are shown in Fig. 5.

We also tested on the PASCAL VOC 2010 data set [7] using

the approach of [10]. As shown in Table II, SLIC provided a

boost in segmentation accuracy over QS09 and reduced the

time spent generating superpixels by an order of magnitude.

D. Discussion

In addition to the properties discussed above, other consider-

ations should factor into the quality of a superpixel algorithm.

One such consideration is the ease of use. Superpixel methods

with many difficult-to-tune parameters can result in lost time
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TABLE II: Multi-class object segmentation on the PASCAL VOC 2010 data set. Results for the method of [10], using SLIC and QS09 superpixels
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original image

ground truth

segmentation of [11] using SLIC

Fig. 5: Multi-class segmentation. (top) Images from the MSRC data set.
(middle) Ground truth annotations. (bottom) Results obtained using SLIC
superpixels in place of NC05, following the method proposed in [11].

or poor performance. Another consideration is the ability to

specify the amount of superpixels, which not all methods

provide. Finally, the ability to control the compactness of

the superpixels is important. Compact, regular superpixels are

often desirable because their bounded size and few neighbors

form a more interpretable graph and can extract more locally

relevant features. However, compactness comes at the expense

of boundary adherence, and the ability to control this trade-off

can be useful. In the following, we review the performance of

each superpixel method with respect to boundary adherence,

speed, memory efficiency, segmentation quality, parameter

tuning, ability to specify the amount of superpixels, and ability

to control superpixel compactness.

TP09 – while TP09 produced some of the most compact and

consistently sized superpixels, it fared the worst among all

methods in both boundary recall and under-segmentation error.

TP09 also suffers from a slow running time, and resulted

in poor segmentation performance. Next to NC05, it is the

slowest superpixel algorithm, it is almost 100 times slower

than SLIC for a 2048 × 1536 image, taking 800s. On the

other hand, TP09 has only 1 parameter to tune and offers

direct control over the number of superpixels.

NC05 – Normalized cuts showed only a small improvement

over TP09. The superpixels produced by NC05 are even

more compact than those of TP09, making them attractive for

graph-based applications. However, the boundary adherence is

very poor, ranking 6th in boundary recall and 5th in under-

segmentation error. Despite this, the segmentation quality was

surprisingly high. The running time of NC05 is prohibitively

slow, and the method failed to segment 2048× 1536 images,

producing “out of memory” errors.

GCa10 and GCb10 – these two methods showed similar per-

formance despite their differences in design (compact vs. con-

stant intensity superpixels). GCb10’s “compact” superpixels

are more compact than GCa10, though much less than TP09

and NC05. In terms of boundary recall, GCa10 and GCb10

ranked in the middle of the pack, 5th and 4th, respectively.

Their standing improved slightly for under-segmentation error

(3rd and 4th). While GCa10 and GCb10 are faster than NC05

and TP09, their slow run-time still limits their usefulness

(requiring 235s and 315s, respectively), and they reported

one of the worst segmentation performances. GC10 has 3

parameters to tune, including patch size, which can be difficult

to set. On the positive side, GC10 allows for control of the

number of superpixels, and can produce supervoxels.

QS09 – QuickShift performed well in terms of under-

segmentation error and boundary recall, ranking 2nd and 3rd

overall. However, QS09 showed relatively poor segmentation

performance, and other limitations make it a less-than-ideal

choice. It has a slow run-time (181s), requires several non-

intuitive parameters to be tuned, and does not offer control

over the amount or compactness of superpixels. Finally, the

source code fails to ensure that superpixels are completely

connected components, which can be problematic for subse-

quent processing.

GS04 – adheres well to image boundaries, although the

superpixels are very irregular. It ranks 1st in boundary recall,

outperforming SLIC by a small margin. It is the second fastest

method, segmenting a 2048× 1536 image in 18.19s (without

performing a parameter search). However, GS04 showed rela-

tively poor segmentation performance and under-segmentation

error, likely because its large, irregularly shaped superpixels

are not suited to segmentation methods such as [11]. Lastly,

GS04 does not allow the number of superpixels or compact-

ness to be controlled with its three input parameters.

SLIC – Among the superpixel methods considered here, SLIC

is clearly the best overall performer. It is the fastest method,

segmenting a 2048×1536 image in 14.94s, and most memory

efficient. It boasts excellent boundary adherence, outperform-

ing all other methods in under-segmentation error, and is

second only to GS04 in boundary recall by a small margin

(by adjusting m, it ranks first). When used for segmentation,

SLIC showed the best boost in performance on the MSRC and

PASCAL datasets. SLIC is simple to use, its sole parameter

being the number of desired superpixels, and it is one of the

few methods to produce supervoxels. Finally, among existing

methods, SLIC is unique in its ability to control the trade-off

between superpixel compactness and boundary adherence if

desired, through m.
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E. More complex distance measures

The reader may wonder if more sophisticated distance mea-

sures improve SLIC’s performance, considering the simplicity

of the approach described in Section III. We investigated this

question by replacing the distance in Eq. 3 with an adaptively

normalized distance measure (ASLIC) and a geodesic distance

measure (GSLIC). Perhaps surprisingly, the simple distance

measure used in Eq. 3 outperforms ASLIC and GSLIC in

terms of speed, memory, and boundary adherence.

Adaptive-SLIC, or ASLIC, adapts the color and spatial nor-

malizations within each cluster. As described in Section III-B,

S and m in Eq. 3 are the assumed maximum spatial and color

distances within a cluster. These constant values are used to

normalize color and spatial proximity so they can be combined

into a single distance measure for clustering. Instead of using

constant values, ASLIC dynamically normalizes the proximi-

ties for each cluster using its maximum observed spatial and

color distances (ms,mc) from the previous iteration. Thus,

the distance measure becomes

D =

√

(

dc
mc

)2

+

(

ds
ms

)2

. (6)

As before, constant normalization factors are used for the first

iteration, but the algorithm subsequently keeps track of the

maximum distances for each cluster. The advantage of this

approach is that the superpixel compactness is more consistent,

and it is never necessary to set m. This comes at the price of

reduced boundary recall performance, as shown in Fig. 4(a).

Geodesic-SLIC, or GSLIC, replaces the distance of Eq. 3

with a geodesic distance. The unsigned geodesic distance from

on pixel I(pi) to another I(pj) is defined as

G(I(pi), I(pj)) = min
P∈Γ

d(P ), (7)

where Γ is the set of all paths between I(pi) and I(pj) and

d(P ) is the cost associated to path P , given by

d(P ) =
n
∑

i=2

‖I(pi)− I(pi−1)‖, (8)

where ‖I(pi)−I(pi−1)‖ is the Euclidean distance between the

CIELAB color vectors of pixels pi and pi−1. This approach

has the advantage that the connectivity in the xy plane is

guaranteed, eliminating the need for the post-processing step.

However, the computation cost is higher and the boundary

adherence performance suffers, as seen in Fig. 4(a).

V. BIOMEDICAL APPLICATIONS

Many popular graph-based segmentation approaches such as

graph cuts [3] become increasingly expensive as more nodes

are added to the graph, limiting image size in practice. For

some applications, such as mitochondria segmentation from

electron micrographs (EM), the images are large but reducing

the resolution is not an option. In such cases, segmentation

on a graph defined over the pixel-grid would be intractable.

In [18], SLIC superpixels significantly reduce the complexity

of the graph, making the segmentation tractable. Segmented

mitochondria from [18] are shown in Fig. 6(a) and (b).
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Fig. 6: SLIC applied to segment mitochondria from 2D and 3D EM
images of neural tissue. (a) SLIC superpixels from an EM slice. (b)

The segmentation result from the method of [18]. (c) SLIC supervoxels
on a 1024 × 1024 × 600 volume. (d) Mitochondria extracted using the
method described in [19]. (e) Segmentation performance comparing
SLIC supervoxels vs. cubes of similar size for the volume in (c).

In [19], this approach is extended to 3D image stacks,

which can contain billions of voxels. Only the most frugal

of algorithms can operate on such large volumes of data

without reducing the size of the graph in some manner. SLIC

supervoxels reduce the memory requirements and complexity

by over three orders of magnitude, and significantly increases

performance over regular cubes as shown in Fig. 6(c)-(e).

VI. CONCLUSION

Superpixels have become an essential tool to the vision

community, and in this paper we provide the reader with an in-

depth performance analysis of modern superpixel techniques.

We performed an empirical comparison of five state-of-the-

art algorithms, concentrating on their boundary adherence,

segmentation speed, and performance when used as a pre-

processing step in a segmentation framework. In addition, we

proposed a new method for generating superpixels based on k-

means clustering, SLIC, which has been shown to outperform

existing superpixel methods in nearly every respect.

Although our experiments are thorough, they come with a

caveat. Certain superpixel methods, namely GC10 and TP09,

do not consider color information, while the other methods

do. This may adversely impact their performance.
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GS04 NC05 TP09 QS09 GCa10 GCb10 SLIC

Fig. 7: Visual comparison of superpixels produced by various methods. The average superpixel size in the upper left of each image is 100 pixels,
and 300 in the lower right. Alternating rows show each segmented image followed by a detail of the center of each image.
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