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ABSTRACT

The slice Dirac operator over octonions is a slice counterpart of the Dirac

operator over quaternions. It involves a new theory of stem functions,

which is the extension from the commutative O(1) case to the non-com-

mutative O(3) case. For functions in the kernel of the slice Dirac operator

over octonions, we establish the representation formula, the Cauchy inte-

gral formula (and, more in general, the Cauchy–Pompeiu formula), and

the Taylor as well as the Laurent series expansion formulas.
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1. Introduction

The purpose of this article is to initiate the study of the slice Dirac operator

over octonions. The Dirac operator for quaternions,

(1.1) D =
∂

∂x0
+ i

∂

∂x1
+ j

∂

∂x2
+ k

∂

∂x3
,

has its root in mathematical physics, quantum mechanics, special relativity, and

engineering (see [1, 2, 21]) and it plays a key role in the Atiyah–Singer index

theorem (see [5]). It may be called the Dirac operator since it factorizes the

4-dimensional Laplacian. However, we note that in the literature (1.1) is often

called the generalized Cauchy–Riemann operator or Cauchy-Fueter operator,

see e.g., [6, 23, 32], even though it was originally introduced in a paper by

Moisil, see [24].

Based on the Dirac operator for quaternions in (1.1), we shall introduce what

we call the slice Dirac operator over octonions, using the slice technique. This

technique was used by Gentili and Struppa for quaternions in [15, 16] and for

octonions in [17] based on Cullen’s approach [11]. This technique makes it pos-

sible to extend some properties of holomorphic functions in one complex vari-

able to the high dimensional and non-commutative case of quaternions. It has

found significant applications especially in operator theory [3, 9, 10], differential

geometry [14], geometric function theory [26, 27] and it can be generalized to

other higher dimensional settings like Clifford algebras [7, 8] and real alternative

algebras [18, 19, 20, 28].

The heart of the slice technique comes from the slice structure of quaternions

H, namely the fact that H can be expressed as a union of complex half planes as

H =
⋃
I∈S

C
+
I ,

where S denotes the set of imaginary units in H, and C
+
I is the upper half plane

{x+ yI : x ∈ R, y ≥ 0}.
From this decomposition, it is then natural to say that quaternions have a book

structure since C
+
I plays the role of a page in a book for any I ∈ S. The real

axis R plays the role of the edge of the book in which all the pages of the book

intersect, i.e.,

C
+
I ∩ C

+
J = R

for any I �= J .
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The book structure for quaternions plays the same role as the sheaf or fiber

bundle structure in differential geometry.

It is remarkable that the topology in the book structure is no longer the

Euclidean one. Indeed, the distance compatible with the topology is given by

the Euclidean one in a plane, otherwise the distance between any two points

from distinct half planes is measured through the path of light via the real axis.

Following Fueter’s construction [13], when one considers an open set O in

the upper half complex plane C+ minus the real line and a holomorphic func-

tion f(x + ιy) = F1(x, y) + ιF2(x, y) on O, one may define a function defined

over the quaternions using the book structure. In fact, if we consider q = x+Iy,

y > 0, for some suitable I, we may set

f(q) = f(x+ Iy) = F1(x, y) + IF2(x, y).

Note that q̄ = x− Iy, y > 0 and so, by definition,

f(q̄) = f(x− Iy) = F1(x, y)− IF2(x, y).

Note also that the pair (F1, F2) satisfies the Cauchy–Riemann system and thus

f(x+ Iy) is in the kernel of the Cauchy–Riemann operator ∂x + I∂y. If one is

willing to extend the definition to the points of the real line, there is a problem

since if q ∈ R then q = x+ I0 and the imaginary unit I is no longer unique.

To solve this problem, one may consider a weaker notion of book structure

and observe that

H =
⋃
I∈S

CI ,

in other words, we may consider H as the union of complex planes.

Following a slight modification of the Fueter construction, see [25], we

consider an open set O in the complex plane symmetric with respect to the real

axis (possibly intersecting the real axis) and a holomorphic function

f(x+ ιy) = F1(x, y) + ιF2(x, y) on O. If F1, F2 are an even-odd pair in the

second variable, namely if they satisfy

(1.2)

⎧⎨⎩F1(x+ ιy) = F1(x− ιy)

F2(x+ ιy) = −F2(x− ιy)
∀ x+ ιy ∈ O,

we may define a function on an open set in H (suitably constructed using O).

Note that these conditions immediately imply that

f(x+ Iy) = f(x+ (−I)(−y))
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so that f is well defined. Moreover, the fact that F2 is odd in the second variable

implies that F2(x, 0) = 0, thus f is well defined also at real points. This second

approach is the one that we will generalize to the octonionic case.

To this end, we set

F ≡
(
F1

F2

)
, z = x+ iy ≡

(
x

y

)
,

and we consider

g =

(
1 0

0 −1

)
∈ O(1)

where O(1) is identified with the group of matrices {( 1 0
0 1 ), (

1 0
0 −1 )}. Then we

have

gz =

(
x

−y

)
, g−1 =

(
1 0

0 −1

)
,

so (1.2) can be rewritten as

(1.3)

(
F1(z)

F2(z)

)
= g−1

(
F1(gz)

F2(gz)

)
.

Thus, following [29], we impose that

F (z) = g−1F (gz), ∀ g ∈ O(1),

and any F satisfying this condition is called a stem function.

We can regard this construction as the commutative stem function theory

since F is invariant under the commutative group O(1).

As we shall see, the significant property of the slice regular function in H

(non-commutative counterpart of holomorphic functions, i.e., holomorphic maps

depending on the parameter I ∈ S) is given by the representation formula,

which demonstrates that any slice regular function is completely determined by

its evaluation at any two distinct half planes, or pages in this description.

In order to extend the slice theory for the Cauchy–Riemann operator over

quaternions into the slice theory for the slice Dirac operator over octonions, we

need to introduce a modified theory of stem functions. It turns out that the

corresponding notion of a stem function is invariant under the non-commutative

group O(3). It will result in a new form of the representation formula, expressed

in terms of a quaternionic matrix.
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We point out that the non-commutative and non-associative setting of octo-

nions, the object of this paper, has found significant applications in the uni-

versal model of M -theory, in which the universe is given by the product of the

4-dimensional Minkowski space with a G2-manifold of very small scale. Here the

exceptional Lie group G2 is an automorphism group of octonions (see [4, 22]).

We conclude this introduction with a remark about our definition of intrin-

sic and stem functions. Rinehart [29] studied the intrinsic functions as self-

mappings of an associative algebra. In contrast, our intrinsic functions have

distinct dimensions for their definition and target domains, and are constructed

in the non-associative setting; see also [12, 30]. Fueter [13] initiated the study

of stem functions for complex-valued functions in his construction of radially

holomorphic functions on the space of quaternions; see [18] for its recent develop-

ment. However, their considerations are all restricted to the commutative O(1)

setting. In this paper we initiate the study in the non-commutative O(3) set-

ting. It is interesting to note that the procedure we followed may lead to further

generalizations to higher dimensional algebras.

The structure of this paper is as follows: In Section 2, we recall some impor-

tant properties of octonionic algebra O. In Section 3, we introduce the book

structure in the octonionic algebra in terms of quaternionic subspaces and the

stem function for the non-commutative group O(3); we also provide the repre-

sentation formula which can be written via a quaternionic matrix. In Section 4

we introduce the slice Dirac operator and a splitting property for slice Dirac

functions. Section 5 contains the Cauchy–Pompeiu integral formula for slice

functions and the Cauchy integral formula for slice Dirac-regular functions. Fi-

nally, in Section 6 we give the expansion of slice Dirac-regular as a Taylor series

as well as a Laurent series.

2. The algebra of octonions

The algebra of octonions O is a real, alternative, non-commutative and non-

associative division algebra (see for example [31]). It is isomorphic to R8 as

a real inner product vector space and it can be equipped with the standard

orthogonal basis: e0 = 1, e1, . . . , e7.



320 M. JIN, G.-B. REN AND I. SABADINI Isr. J. Math.

The multiplication between elements in the basis e0, e1, . . . , e7 is defined by

eiej = −δij + εijkek, ∀ i, j, k ∈ {1, 2, . . . , 7}.
Here δij is the Kronecker symbol and

εijk =

⎧⎨⎩(−1)σ(π) if (i, j, k) ∈ π(Σ),

0 otherwise,

where π is a permutation, σ(π) its sign, and

Σ = {(1, 2, 3), (1, 4, 5), (2, 4, 6), (3, 4, 7), (5, 3, 6), (6, 1, 7), (7, 2, 5)}.
The octonionic algebra O also can be generated from the quaternion algebra

H by the famous Cayley–Dickson process. Let {e0 = 1, e1, e2, e3 := e1e2} be a

basis of H. Then every x ∈ O can be expressed as x = a+ e4b, where a, b ∈ H,

and e4 is a fixed imaginary unit in O not belonging to H = {e0, e1, e2, e3}. The
addition and multiplication are defined as follows: for any x = a + e4b, y =

c+ e4d ∈ O,

x+ y := (a+ c) + e4(b+ d),

xy := ac− db+ e4(ad+ cb).

These two definitions of the octonionic algebra O are equivalent by setting

e5 := e4e1, e6 := e4e2, e7 := e4e3.

Every x ∈ O can be written as

x = x0 +

7∑
k=1

ekxk, ∀ xk ∈ R.

We can introduce its conjugate

x := x0 −
7∑

k=1

ekxk,

and then set

|x|2 := xx =

7∑
k=0

x2
k.

The modulus is multiplicative, i.e.,

|xy| = |x||y|, ∀ x, y ∈ O.
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In the sequel, given x ∈ O, we introduce a left multiplication operator

Lx : O → O,

defined as

Lxz = xz, ∀ z ∈ O.

In general, for any x, y ∈ O, LxLy �= Lxy, but equality may hold when suitable

assumptions hold:

Theorem 2.1 (Artin’s Theorem, [31]): The subalgebra generated by any two

elements of an alternative is associative. In particular, for all r ∈ R, and for all

x ∈ O,

(1) LxLx = Lxx,

(2) LrLx = Lrx.

3. Stem function in the octonionic setting

Let O be the algebra of octonions. The set of its imaginary units is a sphere of

dimension six,

S
6 := {x ∈ O : x2 = −1}.

Let

I := (1, I, J,K) ∈ O
4,

with the triple I, J,K satisfying

I, J ∈ S
6, I ⊥ J, K = IJ.

The set of all such row vectors I is denoted by N . For any I := (1, I, J,K) ∈ N ,

we consider the algebra of quaternions generated by it, i.e.,

HI = spanR{1, I, J,K}.
Lemma 3.1: Let I ∈ N and e ∈ S

6 such that e ⊥ HI. Then a(eb) = e(āb) for

every a, b ∈ HI.

Proof. Since the Cayley–Dickson process does not depend on the choice of the

orthonormal basis I, the result follows directly from the definition of the product

of octonions.
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We can endow the octonionic algebra with a structure that we still call a

book structure

O =
⋃
I∈N

HI,

as we prove in the following result:

Proposition 3.2: The octonionic algebra has the structure

O =
⋃
I∈N

HI.

Proof. Any x ∈ O can be written as the sum of its real part x0 and its imaginary

part Im(x) =
∑7

k=1 ekxk. Therefore, it can be further expressed as

x = x0 + Iy

with x0, y ∈ R and I = Im(x)/|Im(x)|. We have that

I2 =
1

|Im(x)|2
( 7∑

k=1

ekxk

)( 7∑
k=1

ekxk

)
= − 1

|Im(x)|2
7∑

k=1

x2
k = −1,

thus I ∈ S
6. Now we can choose J, K ∈ S

6 such that I := (1, I, J, K) ∈ N .

Hence x0 + Iy ∈ HI.

We note that, in general, any x ∈ O belongs to more than one quaternionic

space, as the following example shows.

Example 3.3: Let {1, e1, . . . , e7} be a standard basis of O and consider

x = 1 + e1 + e2 + e3 + e4.

According to Proposition 3.2, we have x = 1+2I where I = 1
2 (e1+e2+e3+e4),

so x ∈ HI, I = (1, I, J, K) where J , K are any two elements orthogonal to I

such that I ∈ N . Take now

I ′ = e1, J ′ =
e2 + e3 + e4√

3
, K ′ = I ′J ′ = e1

e2 + e3 + e4√
3

.

It is easy to see that

I ′, J ′, K ′ ∈ S
6, I ′2 = J ′2 = K ′2 = −1, J ′K ′ = −K ′J ′, K ′I ′ = −I ′K ′.

Since x = 1 + I ′ +
√
3J ′, we have x ∈ HI′ , where I

′ := (1, I ′, J ′, K ′).
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Let O(4) be the group of orthogonal transformations of R4, and let O(3) be

its subgroup keeping the real axis invariant. Therefore, any g ∈ O(3) can be

regarded as a matrix in the form

g =

(
1 0

0 P

)
,

where P is an orthogonal transformation of R3. The transformation g :R4−→R4

can be naturally extended to a map (still denoted by g) g : O4 −→ O4 via

ga = g

⎛⎜⎜⎜⎝
a0

a1

a2

a3

⎞⎟⎟⎟⎠ ,

for any a = (a0, a1, a2, a3) ∈ O4.

Definition 3.4: Let Ω be an open subset of R
4. If F : Ω → O4 is a O(3)-

intrinsic function, i.e., for any x ∈ Ω and for any g ∈ O(3) such that gx ∈ Ω,

it satisfies

(3.1) F (x) = g−1F (gx),

then F is called an O-stem function on Ω.

Remark 3.5: We point out that it is not reductive to assume that Ω ⊆ R4

is O(3)-intrinsic, otherwise in the previous definition we may consider the subset

Ω′ of Ω such that x ∈ Ω′ if and only if gx ∈ Ω′ for any g ∈ O(3). But this is

equivalent to assuming that Ω′ is O(3)-intrinsic.

We also recall that in the quaternionic case, the stem function is complex

intrinsic, namely it is invariant under the commutative group O(1). In other

words, f(z̄) = f(z) where z̄ denotes the complex conjugation. In our setting,

the stem function is intrinsic under the non-commutative group O(3) and this

set is evidently non-empty since it contains, e.g., Fi(x) = xic, i = 1, 2, 3, 4

where c is a constant in O.

With the book structure, we can define a slice function by lifting a stem

function. In fact, if an O4-valued function F defined on R4 is an O(3)-intrinsic

function, then there exists a slice function f : O → O such that the following
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diagram commutes for all I = (1, I, J,K) ∈ N :

O
f

�� O

R4

φI

��

F
�� O4

˜φI

��

where

φI(x) = x0 + Ix1 + Jx2 +Kx3 =: IxT , ∀ x = (x0, x1, x2, x3) ∈ R
4,

and

φ̃I(y) = IyT , ∀ y ∈ O
4.

Here we denote by xT the transpose of the row vector x = (x0, x1, x2, x3) and

similarly for yT .

Given an open subset Ω of R4, we consider the axially symmetric open set

in O generated by Ω, defined as

[Ω] := {q = IxT ∈ O : I ∈ N , x ∈ Ω}.
If Ω is a domain, i.e., a connected open subset of R4, then [Ω] is an axially

symmetric domain.

For any x = (x0, x1, x2, x3) ∈ R4, we consider the three involutions

α(x) =(x0, x1,−x2,−x3),

β(x) =(x0,−x1, x2,−x3),

γ(x) =(x0,−x1,−x2, x3).

Let I ∈ N be fixed arbitrarily. In virtue of the identification of HI with R4, the

map α can be identified with the map

αI : HI −→ O

defined by

αI(Ix
T ) := Iα(x)T .

For the simplicity of the notation we still keep the notation of α instead of αI

whenever there is no confusion. The same convention is also suitable to other no-

tations in the sequel such as β, γ,F , V, Vα,V,V , Pα,Pα,Pα, Aα, and Bα, which

also rely on I ∈ N .
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Definition 3.6: For any open subset Ω of R4, we define the symmetrized set [̃Ω]

as

[̃Ω] := {IxT ∈ O : I ∈ N , x ∈ Ω such that α(x), β(x), γ(x) ∈ Ω}.
It is easy to check that

[̃Ω] ⊂ [Ω].

Observe that [̃Ω] can be empty, also in the case when [Ω] is not.

Definition 3.7: Let [Ω] be an open set in O. Any O-stem function F : Ω → O
4

induces a function

f = L(F ) : [Ω] → O

defined by

f(q) = IF (x)T

for any q ∈ [Ω] with q = IxT for some I ∈ N . We say that f is a (left) slice

function (induced by F ).

Since, in general, any element in O may belong to more than one HI, we need

to prove the following:

Proposition 3.8: Definition 3.7 is well-posed.

Proof. Assume that q ∈ O can be written in two ways as

q = IxT = I
′x′T ;

we have to show that

f(IxT ) = f(I′x′T ).

We divide the proof into various cases.

Case 1: Assume that I �= I′ but HI = HI′ . Then there exist g ∈ O(3) such that

I′ = Ig. This means that

gx′T = xT .

Since F is an O-stem function, we have

F (x′T ) = F (g−1xT ) = g−1F (xT )

so that

I
′F (x′T ) = I

′g−1F (xT )

which yields I′F (x′T ) = IF (xT ) and the assertion follows.
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Case 2: If HI �= HI′ , we claim that HI and HI′ intersect at CI for some I ∈ S6.

Indeed, since q = IxT = I′x′T , there exists y0, y1 ∈ R and I ∈ S6 such that

q = y0 + Iy1 ∈ CI and the claim follows. Therefore, we can choose J1, J
′
1 ∈ S6

respectively such that

HI = HI1 , HI′ = HI′1

where

I1 =(1, I, J1, IJ1)

and

I
′
1 =(1, I, J ′

1, IJ
′
1).

Since q = IxT = I′x′T ∈ CI , it can be written as

q = IxT = I1y
T = I

′
1y

T = I
′x′T

for some y = (y0, y1, 0, 0) ∈ R4. The computation in Case 1 then shows that

IF (x)T = I1F (y)T = I
′
1F (y)T = I

′F (x′)T .

In conclusion, Definition 3.7 is well-posed.

Definition 3.9: Let [Ω] be an open set in O. We set

S([Ω]) := {f : [Ω] → O | f = L(F ), F : Ω → O
4 is an O-stem function}.

In other words, S([Ω]) denotes the collection of slice functions on [Ω].

Now we provide the representation formula of slice functions in terms of a

quaternion matrix:

Theorem 3.10: Let f be a slice function on an axially symmetric set [Ω] in O.

Let q ∈ O and let q = IxT , for I ∈ N and x ∈ R4. Then for any

p := I
′xT

with I′ ∈ N the following formula holds:

(3.2) f(p) = ( 1 I ′ J ′ K ′ )

⎛⎜⎜⎜⎝1

4

⎛⎜⎜⎜⎝
1 1 1 1

−I −I I I

−J J −J J

−K K K −K

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝

f(q)

f(α(q))

f(β(q))

f(γ(q))

⎞⎟⎟⎟⎠
⎞⎟⎟⎟⎠ .
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Proof. Since [Ω] is an axially symmetric set, we have α(q), β(q), γ(q) ∈ [Ω] for

any q ∈ [Ω]. By definition,

(3.3)

⎛⎜⎜⎜⎝
1 1 1 1

1 1 −1 −1

1 −1 1 −1

1 −1 −1 1

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝

F0(x)

IF1(x)

JF2(x)

KF3(x)

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
f(q)

f(α(q))

f(β(q))

f(γ(q))

⎞⎟⎟⎟⎠
so that

(3.4)

⎛⎜⎜⎜⎝
F0(x)

IF1(x)

JF2(x)

KF3(x)

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
1 1 1 1

1 1 −1 −1

1 −1 1 −1

1 −1 −1 1

⎞⎟⎟⎟⎠
−1⎛⎜⎜⎜⎝

f(q)

f(α(q))

f(β(q))

f(γ(q))

⎞⎟⎟⎟⎠

=
1

4

⎛⎜⎜⎜⎝
1 1 1 1

1 1 −1 −1

1 −1 1 −1

1 −1 −1 1

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝

f(q)

f(α(q))

f(β(q))

f(γ(q))

⎞⎟⎟⎟⎠ .

Thanks to Artin Theorem, see Theorem 2.1, we get

(3.5)

⎛⎜⎜⎜⎝
F0(x)

F1(x)

F2(x)

F3(x)

⎞⎟⎟⎟⎠ =
1

4

⎛⎜⎜⎜⎝
1 1 1 1

−I −I I I

−J J −J J

−K K K −K

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝

f(q)

f(α(q))

f(β(q))

f(γ(q))

⎞⎟⎟⎟⎠ .

By the definition of slice functions, for any I′ = (1, I ′, J ′,K ′) ∈ N we then have

f(x0+I ′x1 + J ′x2 +K ′x3)

=F0(x) + I ′F1(x) + J ′F2(x) +K ′F3(x)

=( 1 I ′ J ′ K ′ )

⎛⎜⎜⎜⎝1

4

⎛⎜⎜⎜⎝
1 1 1 1

−I −I I I

−J J −J J

−K K K −K

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝

f(q)

f(α(q))

f(β(q))

f(γ(q))

⎞⎟⎟⎟⎠
⎞⎟⎟⎟⎠ .
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Remark 3.11: The representation formula can be briefly expressed as

f(I′xT ) = I
′(MIF(q)),

where I′ = (1, I ′, J ′,K ′) ∈ N , q = IxT ,

F(q) = (f(q), f(α(q)), f(β(q)), f(γ(q)))T ,

and

MI =
1

4

⎛⎜⎜⎜⎝
1 1 1 1

−I −I I I

−J J −J J

−K K K −K

⎞⎟⎟⎟⎠ .

This representation is very useful to prove further properties of slice functions.

Moreover, notice that 2MI is an orthogonal matrix with elements in HI, i.e.,

2MI ∈ O(HI).

The following result shows that the slice function f(IxT ) is a linear function

of I.

Theorem 3.12: Let f be a slice function on an axially symmetric set [Ω]. Then

the octonionic-valued vector function MIF(q) depends only on x but not on I, I′

and f(I′x) = I
′(MIF(q)) is a linear function in I

′.

Proof. By construction, MIF(q) is independent of I′. Theorem 3.10 shows that

f(I′xT ) = I
′(MIF(q))

holds for any I, which implies that MIF(q) is independent of I. (As an alterna-

tive, one can prove the assertion noting that (3.5) shows that

MIF(q) =

⎛⎜⎜⎝
F0(x)

...

F3(x)

⎞⎟⎟⎠
andsoMIF(q) is independent of I.) Moreover, the linearity in I′ is immediate.

Remark 3.13: Also, the representation formula for quaternionic slice regular

functions can be written in matrix form. In fact, for any I, J ∈ S where S is the

set of imaginary units of quaternions, and for any x, y ∈ R, the representation

formula can be written as

(3.6) f(x+ Jy) =
1

2
( 1 J )

(
1 1

−I I

)(
f(x+ Iy)

f(x− Iy)

)
.
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4. Slice Dirac operator

In this section, we introduce the slice Dirac operator in O and establish the

corresponding splitting lemma. We begin by recalling the Dirac operator (1.1)

introduced in Section 1:

D =
∂

∂x0
+ i

∂

∂x1
+ j

∂

∂x2
+ k

∂

∂x3
= ( 1 i j k )

⎛⎜⎜⎝
∂

∂x0

...
∂

∂x3

⎞⎟⎟⎠ = ( 1 i j k )D

where D = ( ∂
∂x0

∂
∂x1

∂
∂x2

∂
∂x3

)T , and its conjugate operator

D =
∂

∂x0
− i

∂

∂x1
− j

∂

∂x2
− k

∂

∂x3
= ( 1 −i −j −k )D.

For any fixed I = (1, I, J,K) ∈ N , we define the slice Dirac operator in O as

(4.1) DI =
∂

∂x0
+ I

∂

∂x1
+ J

∂

∂x2
+K

∂

∂x3
= ( 1 I J K )D.

In the sequel, the restriction f |HI
of a function f to HI shall be denoted by fI:

fI = f |HI
.

We now introduce a main definition:

Definition 4.1: Let [Ω] be an axially symmetric domain in O and let

f ∈ S([Ω]) ∩ C1([Ω]) so that f = L(F ), f(q) = IF (x)T , where q = IxT ,

F = [F0, F1, F2, F3]. If F satisfies

(4.2)

⎛⎜⎜⎜⎝
∂x0 −∂x1 −∂x2 −∂x3

∂x1 ∂x0 −∂x3 ∂x2

∂x2 ∂x3 ∂x0 −∂x1

∂x3 −∂x2 ∂x1 ∂x0

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝
F0

F1

F2

F3

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
0

0

0

0

⎞⎟⎟⎟⎠ ,

then f is called a (left) slice Dirac-regular function in [Ω].

We denote the set of slice Dirac-regular functions on the axially symmetric

set [Ω] by SR([Ω]).

Proposition 4.2: Let [Ω] be an axially symmetric domain in O and let

f ∈ S([Ω]) ∩ C1([Ω]). Then f is (left) slice Dirac-regular if and only if

(4.3) DIf(q) = 0, ∀ q ∈ [Ω] ∩HI =: ΩI

for all I ∈ N .
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Proof. Let f be slice Dirac-regular and let q ∈ [Ω] ∩ HI, q = IxT . Then using

(4.2) we have

(4.4)

DIf(q) =DIIF (xT ) = DI(F0 + IF1 + JF2 +KF3)

=(∂x0F0 − ∂x1F1 − ∂x2F2 − ∂x3F3)

+ I(∂x1F0 + ∂x0F1 − ∂x3F2 + ∂x2F3)

+ J(∂x2F0 + ∂x3F1 + ∂x0F2 − ∂x1F3)

+K(∂x3F0 − ∂x2F1 + ∂x1F2 + ∂x0F3)

=0.

Conversely, let us assume that the slice function f is such that (4.3) holds for

all I ∈ N . Let us fix an arbitrary I ∈ N and q = IxT and let us impose that

f(q) = IF (xT ) satisfies (4.3). Computations as in (4.4) show that (4.2) holds,

by arbitrarity of I.

Remark 4.3: We note that (4.3) is well-defined. Indeed, for any q ∈ O there

exist I ∈ N such that q ∈ HI and q = (1, I, J,K)(x0, x1, x2, x3)
T . It can be also

written as q = ((1, I, J,K)g−1)(y0, y1, y2, y3)
T for any g ∈ O(3) and yT = gxT .

By the chain rule, it can be directly shown that

(1, I, J,K)(∂x0 , ∂x1 , ∂x2 , ∂x3)
T f(q) = ((1, I, J,K)g−1)(∂y0, ∂y1, ∂y2, ∂y3)

T f(q)

which implies the claim.

Example 4.4: Consider the function F = (F0, F1, F2, F3) : R
4 → O4 defined by⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

F0(x) = 3x0,

F1(x) = x1,

F2(x) = x2,

F3(x) = x3,

where x = (x0, x1, x2, x3) ∈ R4. It is evident that F is an O-stem function

since (3.1) holds true. Then it induces a slice function f : O → O given by

f(x0 + Ix0 + Jx2 +Kx3) = 3x0 + Ix1 + Jx2 +Kx3,

for any I = (1, I, J,K) ∈ N . It is easy to verify that f is a solution of equa-

tions (4.3) by direct calculation, which means that f is a slice Dirac-regular

function on O.
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Example 4.5: We construct a function F = (F0, F1, F2, F3) : R
4 → O4 via⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

F0(x) = S(x0, r),

F1(x) = x1h(x0, r),

F2(x) = x2h(x0, r),

F3(x) = x3h(x0, r),

where

x = (x0, x1, x2, x3) ∈ R
4 and r =

√
x2
1 + x2

2 + x2
3.

Here S, h : R2 → O are functions satisfying differential equations

(4.5)

⎧⎨⎩y∂yh(x, y) + 3h(x, y) = ∂xS(x, y),

y∂xh(x, y) = −∂yS(x, y).

It can be directly verified that (3.1) holds true so that F is an O-stem function.

This stem function F induces a slice function f : O → O defined by

f(x0 + Ix0 + Jx2 +Kx3) = S(x0, r) + Ix1h(x0, r) + Jx2h(x0, r) +Kx3h(x0, r)

for any I = (1, I, J,K) ∈ N . Since S, h satisfy equations (4.5), it is easy to

verify that F is a solution of equations (4.2). This means that f is a slice

Dirac-regular function on O.

An explicit example for F is given by⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
F0(x) =

3
5x

5
0 − 2x3

0r
2 + 3

5x0r
4,

F1(x) = x1(x
4
0 − 6

5x
2
0r

2 + 3
35r

4),

F2(x) = x2(x
4
0 − 6

5x
2
0r

2 + 3
35r

4),

F3(x) = x3(x
4
0 − 6

5x
2
0r

2 + 3
35r

4).

The restriction of a slice Dirac-regular function to a quaternionic space HI

satisfies the following splitting property:

Lemma 4.6: Let f be a slice Dirac-regular function defined on an axially sym-

metric domain [Ω]. Then for any I ∈ N and any e4 ∈ S6 with e4 ⊥ HI, there

exist two functions G1, G2 : ΩI → HI with DIG1 = 0, DIG2 = 0 such that

(4.6) f(q) = G1(q) + e4G2(q), ∀ q ∈ ΩI.
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Proof. Since e4 ⊥ HI, there exist (unique) functions G1, G2 : ΩI → HI such that

f = G1 + e4G2

on ΩI. Hence, using Lemma 3.1, it follows that

0 = DIf =DIG1 +DI(e4G2)

=DIG1 + e4(DIG2),

which implies

DIG1 = DIG2 = 0,

and the assertion follows.

Remark 4.7: We note that, in principle, one could have written

f = G1 +G2e4

and the condition of being slice Dirac regular would translate into

DIG1 = 0, G2DI = 0,

obtaining that G2 is right regular.

5. Cauchy integral formula

In this section, we present the Cauchy integral theory for the slice Dirac

operator.

Throughout, we let Ω be an open subset in R4 and recall the notations

[Ω] := {q = IxT ∈ O : I ∈ N , x ∈ Ω}, ΩI = [Ω] ∩HI.

We shall consider the function f : [Ω] −→ O and its restrictions fI := f |HI
.

We let

n(ξ) = n0 + In1 + Jn2 +Kn3

denote the unit exterior normal to the boundary ∂ΩI at ξ. We consider the

Cauchy kernel in HI defined by

(5.1) V (ξ − q) =
1

2π2

ξ − q

|ξ − q|4 , ∀ ξ, q ∈ HI,

and we finally let

dm = dx0 ∧ dx1 ∧ dx2 ∧ dx3

be the Lebesgue volume element in R
4, and dS the induced surface element.
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Theorem 5.1: Let f : [Ω] −→ O be a slice function on a bounded axially

symmetric set [Ω] ⊂ O. Suppose that fI ∈ C1(ΩI) and ∂ΩI is piecewise smooth

for some given I ∈ N . Then for all q ∈ ΩI, we have

(5.2) fI(q) =

∫
∂ΩI

V (ξ − q)(n(ξ)fI(ξ))dS(ξ) −
∫
ΩI

V (ξ − q)(DIfI(ξ))dm(ξ).

Proof. The classical divergence theorem shows that∫
ΩI

∂

∂xj
μdm =

∫
∂ΩI

njμdS, j = 0, 1, 2, 3

for any real-valued function μ ∈ C1(ΩI) ∩ C(ΩI). Thus for the octonion-valued

function fI ∈ C1(ΩI), we have

(5.3)

∫
ΩI

∂

∂xj
fIdm =

∫
∂ΩI

njfIdS, j = 0, 1, 2, 3.

Let e4 ∈ S6 with e4 ⊥ HI, and let G1, G2 be the HI-valued functions defined

on ΩI such that fI = G1 + e4G2. Hence for any map V : ΩI → HI such that

V ∈ C1(ΩI) ∩ C(ΩI), we have

(5.4)

∫
ΩI

(V DI)G1 + V (DIG1)dm

=

∫
ΩI

∂

∂x1
(V G1) +

∂

∂x2
(V IG1) +

∂

∂x3
(V JG1) +

∂

∂x3
(V KG1)dm

=

∫
∂ΩI

V nG1dS,

where we have used associativity in HI. Similarly, we have

(5.5)

∫
ΩI

(V DI)G2 + V (DIG2)dm =

∫
∂ΩI

V nG2dS.

The equalities (5.4) and (5.5) hold, in particular, when V is the Cauchy kernel

in (5.1). We now fix q ∈ ΩI and note that

V (ξ − q) = − 1

4π2
Dξ

1

|ξ − q|2 ,

where Dξ denotes the Dirac operator with respect to the variable ξ. Indeed,

(5.6)

V (ξ − q) =
−1

4π2

( ∂

∂x0
− I

∂

∂x1
− J

∂

∂x2
−K

∂

∂x3

) 1

|ξ − q|2

=
1

2π2

ξ − q

|ξ − q|4 .
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Straightforward calculations show that

(5.7) (V Dξ)(q) = (DξV )(q) = 0

for any ξ �= q.

Take a sufficient small ε such that the ball Bε(q) centered at q and with

radius ε is contained in ΩI. From (5.4), (5.5), (5.7), the equation fI = G1+e4G2,

and Lemma 3.1, we have

(5.8)

∫
ΩI\Bε(q)

V (DξfI)dm =

∫
∂(ΩI\Bε(q))

V (nfI)dS.

Hence we can calculate this integral as follows:

(5.9)

∫
ΩI\Bε(q)

V (ξ − q)(DξfI)dm

=

∫
∂ΩI

V (ξ − q)(nfI)dS −
∫
{|ξ−q|=ε}

V (ξ − q)(nfI)dS

:=I∂ΩI
− Iε

By Equation (5.6) and Artin’s Theorem 2.1, we can evaluate the limit of Iε:

(5.10)

lim
ε→0

Iε =
1

2π2
lim
ε→0

∫
{|ξ−q|=ε}

ξ − q

|ξ − q|4
ξ − q

|ξ − q|fI(ξ)dS

=
1

2π2
lim
ε→0

∫
{|ξ−q|=ε}

1

|ξ − q|3 fI(ξ)dS

=fI(q).

Let ε → 0 in (5.9); we get

fI(q) =

∫
∂ΩI

V (ξ − q)(n(ξ)fI(ξ))dS −
∫
ΩI

V (ξ − q)(DξfI(ξ))dm,

as desired.

Corollary 5.2: Let f be a slice Dirac-regular function on a bounded axially

symmetric set [Ω]. Suppose that fI ∈ C1(ΩI) and ∂ΩI is piecewise smooth for

some given I ∈ N . Then

(5.11) fI(q) =

∫
∂ΩI

V (ξ − q)(n(ξ)fI(ξ))dS, ∀ q ∈ ΩI

and

(5.12)

∫
∂ΩI

V (ξ − q)(n(ξ)fI(ξ))dS = 0, ∀ q /∈ ΩI.
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Proof. If q ∈ ΩI, then (5.11) follows from Theorem 5.1 since DξfI(ξ) = 0. For

q /∈ ΩI, the integral at the left hand side of (5.12) is a proper integral so that

after a limit process, (5.8) becomes∫
ΩI

V (ξ − q)(DξfI)dm =

∫
∂ΩI

V (ξ − q)(nfI)dS

Since f is slice Dirac-regular in [Ω], the left hand side vanishes and we

obtain (5.12).

Using the representation formula, we can introduce another kernel which

allows us to write a Cauchy formula of more general validity.

Denote Mn×m(O) the set of octonion matrices of m rows and n columns

where n,m are positive integers. Given an octonion matrix A ∈ Mn×m(O), the

left multiplication operator

LA : Mm×k(O) → Mn×k(O)

defined as

LAB := AB, ∀B ∈ Mm×k(O).

In general, LALB �= LAB.

Definition 5.3: For some I, I′ ∈ S
6 and for any fixed ξ, q ∈ HI with ξ �= q, we

introduce an operator V := V(ξ, q, I′). This operator V : O → O is called the

slice Cauchy kernel, defined by

(5.13) V(ξ, q, I′) = LI′LMI
LV(ξ−q),

where

V(ξ − q) = (V (ξ − q), V (ξ − α(q)), V (ξ − β(q)), V (ξ − γ(q)))T .

Theorem 5.4: Let f be a slice function on a bounded axially symmetric set [Ω],

suppose that fI ∈ C1(ΩI) and ∂ΩI is piecewise smooth for some given I ∈ N .

Then for any p ∈ [Ω], there exists I′ ∈ N such that p = I
′xT with x ∈ R

4 and

(5.14) f(p) =

∫
∂ΩI

V(ξ, q, I′)(n(ξ)fI(ξ))dS −
∫
ΩI

V(ξ, q, I′)(DIfI(ξ))dm,

where q = IxT ∈ ΩI and V is as in (5.13).
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Proof. By the representation formula in Theorem 3.10, for any q = IxT ∈ ΩI

and any I′ ∈ N we have

(5.15) f(p) = f(I′xT ) = I
′(MIF(q)).

Since [Ω] is an axially symmetric set, it follows that α(q), β(q), γ(q) ∈ ΩI for

any q ∈ ΩI. Theorem 5.1 gives

(5.16) F(q) =

∫
∂ΩI

V(ξ − q)(n(ξ)fI(ξ))dS −
∫
ΩI

V(ξ − q)(DIfI(ξ))dm.

Substituting (5.16) into (5.15) and moving the integral out, we finally get

f(I′xT ) =

∫
∂ΩI

I
′(MI(V(ξ−q)(n(ξ)fI(ξ))))dS−

∫
ΩI

I
′(MI(V(ξ−q)(DIfI(ξ))))dm,

and (5.13) allows us to conclude.

6. Slice Dirac-regular power series

In this section, we provide the Taylor series for the slice Dirac-regular func-

tion and the Laurent series for the slice Dirac-regular function near an isolated

singularity.

For any α = (α1, α2, α3) ∈ N3, we set n = |α| = α1+α2+α3, α! = α1!α2!α3!,

∂α =
∂n

∂xα1
1 ∂xα2

2 ∂xα3
3

,

and for any q = x0 + ix1 + jx2 + kx3 ∈ H denote

Vα(q) = ∂αV (q),

where

V (q) =
1

2π2

q

|q|4 .
It is well known that Vα(q) is left and right Dirac-regular except at zero since ∂α

commutes with the Dirac operator D.

Note that the monomials f(q) = qn are not Dirac-regular. Their Dirac-regular

counterparts are the homogeneous left and right Dirac-regular polynomials Pα,

defined by

Pα(q) =
α!

n!

∑
(xβ1 − iβ1x0) · · · (xβn − iβnx0),

where q = x0+ix1+jx2+kx3. Here the sum runs over all n!
a! different orderings

of α1 1’s, α2 2’s and α3 3’s and iβl
∈ {i, j, k} for any l = 1, 2, . . . , n.
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The polynomials Pα are homogeneous of degree n, while Vα is homogeneous

of degree −n− 3 (see [6]).

Let Un be the right quaternionic vector space of homogeneous Dirac-regular

functions of degree n ∈ N. Then, the polynomials Pα (α ∈ N3) are Dirac-regular

and form a basis for Un.

Theorem 6.1: Let f be a slice Dirac-regular function in the unit ball B ⊂ O

centered at the origin and let f ∈ C1(B). For any q ∈ B, there exist I ∈ N
such that q ∈ HI, and

(6.1) f(q) =
+∞∑
n=0

∑
α∈N3

|α|=n

Pα(q)
∂αfI(0)

α!
,

where the power series is uniformly convergent over BI.

Proof. Let q ∈ B; then there exists I ∈ N such that q ∈ HI. Moreover, there

exists a closed ball Bρ with ρ < 1 such that q ∈ Bρ. By Lemma 4.6, we can

pick e4 ∈ S6 with e4 ⊥ HI, and write

fI(q) = G1(q) + e4G2(q),

where G1 and G2 are HI-valued Dirac-regular and conjugate Dirac-regular, re-

spectively. The integral formula (5.11) gives

(6.2)

fI(q) =

∫
∂BI

V (ξ − q)(n(ξ)fI(ξ))dS

=

∫
∂BI

V (ξ − q)n(ξ)G1(ξ)dS + e4

(∫
∂BI

V (ξ − q) n(ξ)G2(ξ)dS

)
:=I1 + e4I2.

By Theorem 28 in [32], we can expand V (ξ−q) in a power series for any |q| < |ξ|:

(6.3)

V (ξ − q) =

+∞∑
n=0

∑
α∈N3

|α|=n

(−1)nPα(q)Vα(ξ)

=

+∞∑
n=0

∑
α∈N3

|α|=n

(−1)nVα(ξ)Pα(q),

and the right-hand side converges uniformly in any region {(ξ, q) : |q| ≤ r|ξ|}
with r < 1. Since q ∈ Bρ and ξ ∈ ∂B, we have |q| ≤ r|ξ| with r < 1. Using the
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rightmost expression in (6.3), we get

(6.4)

I2 =

∫
∂BI

+∞∑
n=0

∑
α∈N3

|α|=n

(−1)nVα(ξ)Pα(q) n(ξ)G2(ξ)dS

=

+∞∑
n=0

∑
α∈N3

|α|=n

Pα(q)(−1)n
∫
∂BI

Vα(ξ) n(ξ)G2(ξ)dS.

Using the first expression in (6.3) and repeating the procedure, we have

(6.5) I1 =

+∞∑
n=0

∑
α∈N3

|α|=n

Pα(q)(−1)n
∫
∂BI

Vα(ξ)n(ξ)G2(ξ)dS.

Substituting (6.4) and (6.5) into (6.2) we obtain

fI =
+∞∑
n=0

∑
α∈N3

|α|=n

Pα(q)((−1)n
∫
∂BI

Vα(ξ)(n(ξ)fI(ξ))dS).

Differentiating both sides of the integral formula (6.2), we have

∂αfI(q) = (−1)n
∫
∂BI

Vα(ξ − q)(n(ξ)fI(ξ))dS.

In particular, letting q → 0 we conclude that

∂αfI(0) = (−1)n
∫
∂BI

Vα(ξ)(n(ξ)fI(ξ))dS.

Remark 6.2: We point out that although the polynomial functions Pα : HI → O

are homogeneous left and right Dirac-regular polynomials, they cannot extend

to a slice Dirac-regular function on the whole O in general. For example, we

consider the special case when n = 2 and set

f(q) :=
∑
α∈N3

|α|=2

Pα(q).

For any q = x0 + Ix1 + Jx2 +Kx3 ∈ HI, by direct calculation we have

f(q) = F0(x) + IF1(x) + JF2(x) +KF3(x),
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where

F0(x) = − 6x2
0 + (x1 + x2 + x3)

2 + x2
1 + x2

2 + x2
3,

F1(x) = − 2x0(x1 + x2 + x3)− 2x0x1,

F2(x) = − 2x0(x1 + x2 + x3)− 2x0x2,

F3(x) = − 2x0(x1 + x2 + x3)− 2x0x3.

Notice that F0 does not satisfy the compatibility conditions (3.1). Therefore,

not all Pα can be extended to a slice Dirac-regular function on the whole O.

Remark 6.3: We still do not know if the series in (6.1) is convergent uniformly

on the whole unit ball B, besides on the subsets BI. Our proof on BI depends

on the explicit formula of the kernel V and the associativity of quaternions.

This technique obviously fails in the setting of octonions and to consider the

uniform convergence over B, one should follow a different approach. In fact, for

any f ∈ C1(B), one needs the estimate

|f(q)− f(q′)| ≤ |f(IxT )− f(I′xT )|+ |f(I′xT )− f(I′x′T )|,
and it is problematic to show that |f(IxT )− f(I′xT )| is small enough.

We now study the power series at any point q0 ∈ O for slice Dirac-regular

functions. With the same approach used in Theorem 6.1, one can show that

(6.6) f(q) =
+∞∑
n=0

∑
α∈N3

|α|=n

Pα(q − q0)
∂αfI(q0)

α!

for any q0 ∈ O ∩HI and

q ∈ BI(q0, R,O) := B(q0, R,O) ∩HI.

Here B(q0, R,O) ⊂ O denotes the ball of radius R centered at q0.

Let B(x0, R) ⊂ R
4 be the ball of radius R centered at x0 and denote by

B̃(x0, R) ⊂ O the symmetrized set of B(x0, R).

We set

Pα(q − q0) = (Pα(q − q0), Pα(α(q) − q0), Pα(β(q)− q0), Pα(γ(q)− q0))
T

and consider the operator

Pα(q, q0, I
′) = LI′LMI

LPα(q−q0).
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Theorem 6.4: Assume that f ∈ C1(B(q0, R,O)) with R > 0 and let

q0 = IxT
0 ∈ HI. If f is slice Dirac-regular on B(q0, R,O), then

f(I′xT ) =

+∞∑
n=0

∑
α∈N3

|α|=n

Pα(q, q0, I
′)
∂αf(q0)

α!

for any q = IxT ∈ BI(q0, R,O) ∪ B̃(x0, R).

Proof. By virtue of (6.6), f admits the power series expansion

f(q) =

+∞∑
n=0

∑
α∈N3

|α|=n

Pα(q − q0)
∂αf(q0)

α!

for any q ∈ BI(q0, R,O) and q0 = IxT
0 ∈ HI. If q ∈ B̃(x0, R), then

α(q), β(q), γ(q) ∈ B̃(x0, R)

so that

F(q) =

+∞∑
n=0

∑
α∈N3

|α|=n

Pα(q − q0)
∂αf(q0)

α!
.

By the representation formula, we have

f(I′xT ) = I
′(MIF(q)).

Combining these two formulas and taking the sum we conclude that

f(I′xT ) =

+∞∑
n=0

∑
α∈N3

|α|=n

Pα(q, q0,K)
∂αf(q0)

α!
.

Finally we study the Laurent power series. We need to introduce some no-

tation. Let q0 ∈ O and 0 ≤ R1 < R2 ≤ +∞. We consider the spherical shell

in O

B(q0, R1, R2,O) = {q ∈ O : R1 < |q − q0| < R2}
and the spherical shell in R4,

B(x0, R1, R2) = {x0 ∈ R
4 : R1 < |x− x0| < R2}.

We let B̃(x0, R1, R2) denote the symmetrized set of B(x0, R1, R2).
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Let f ∈ C1(B(q0, R1, R2,O)) and, for q0 ∈ HI, we set

Si = {q ∈ HI : |q − q0| = Ri}, i = 1, 2,

and the formulas

Aα =(−1)n
∫
S2

Vα(q − q0)(n(ξ)f(ξ))dS,

Bα =(−1)n
∫
S1

Pα(q − q0)(n(ξ)f(ξ))dS.

Theorem 6.5: Let q0 = IxT
0 ∈ HI. Let f be a slice Dirac-regular function on

a spherical shell B(q0, R1, R2,O) and f ∈ C1(B(q0, R1, R2,O)). Then

f(I′xT ) =

+∞∑
n=0

∑
α∈N3

|α|=n

[Pα(q, q0, I
′)Aα + Vα(q, q0, I

′)Bα]

for any q = IxT ∈ BI(q0, R1, R2,O) ∪ B̃(x0, R1, R2).

Proof. Let q0 = IxT
0 ∈ HI. The integral formula in Theorem 5.1 implies

f(q) =

∫
S2

V (ξ − q)(n(ξ)f(ξ))dS −
∫
S1

V (ξ − q)(n(ξ)f(ξ))dS.

For any ξ ∈ S2, we have |ξ − q0| > |q − q0|. Therefore, the same approach as in

the proof of Theorem 6.1 shows that∫
S2

V (ξ − q)(n(ξ)f(ξ))dS =

+∞∑
n=0

∑
α∈N3

|α|=n

Pα(q − q0)Aα.

For any ξ ∈ S1, we have |ξ − q0| < |q − q0|. Now we use the second series in

(6.3) and repeat the procedure in the proof Theorem 6.1 to deduce that

(6.7)

−
∫
S1

V (ξ − q)(n(ξ)f(ξ))dS

=

∫
S1

V (q − ξ)(n(ξ)f(ξ))dS

=

∫
S1

+∞∑
n=0

∑
α∈N3

|α|=n

(−1)nVα(q − q0)Pα(ξ − q0)(n(ξ)f(ξ))dS

=

+∞∑
n=0

∑
α∈N3

|α|=n

Vα(q − q0)Bα.
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This means that

f(q) =
+∞∑
n=0

∑
α∈N3

|α|=n

[Pα(q − q0)Aα + Vα(q − q0)Bα].

For any q ∈ BI(q0, R1, R2,O) ∩ B̃(x0, R1, R2), we have

α(q), β(q), γ(q) ∈ BI(q0, R1, R2,O) ∩ B̃(x0, R1, R2)

so that

F(q) =

+∞∑
n=0

∑
α∈N3

|α|=n

[Pα(q − q0)Aα + Vα(q − q0)Bα].

By the representation formula

f(I′xT ) = I
′(MIFI(q)).

We obtain the stated result

f(I′xT ) =

+∞∑
n=0

∑
α∈N3

|α|=n

[Pα(q, q0,K)Aα + Vα(q, q0,K)Bα].
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