
Slicing Object-Oriented Software*

Loren Larsentand Mary Jean Harrold$

Department of Computer Science

Clemson University

Abstract

We describe the construction of system depen-

dence graphs for object-oriented software on which ef-

ficient slicing algorithms can be applied. We con-

struct these system dependence graphs for individual

classes, groups of interacting classes, and complete

object- on”ented programs. For an incomplete system

consisting of a singte class or a number of interact-

ing ctasses, we construct a procedure dependence graph

that simulates all possible calls to public methods in the

class. For a comp[ete system, we construct a procedure
dependence graph from the main program in the sys-

tem. Using these system dependence graphs, we show

how to compute slices for individual classes, groups of

interacting classes and complete programs. One ad-

vantage of our approach is that the system dependence

graphs can be constructed incrementally because repre-

sentations of classes can be reused. A nether advantage

of our approach is that slices can be computed for in-

complete object-oriented programs such as classes or

class libraries. We present our results for C++, but

our techniques apply to other statically typed object-

oriented languages such as Ada-95.

1 Introduction

Program slicing has many applications such as de-

bugging, code understanding, program testing, reverse
engineering, and metrics analysis [4, 5, 6, 11, 15, 25,

26]. Weiser[27] defines a slice with respect to a slic-
ing criterion that consists of a program point p and

a subset of program variables V. His slices are ex-
ecutable programs that are constructed by removing

zero or more statements from the original program.

His algorithm uses dataflow analysis on control flow

graphs to compute intraprocedural and interprocedu-

ral slices. Ottenstein and 0ttenstein[20] define a slic-

ing criterion to consist of a program point p and a
variable w that is defined or used at p. They use a

*This work was partially supported by grants from Microsoft,

Inc. and Data General Corp., and by NSF under Grants CCR-

9109531 and CCR-9357811 to Clemson University.

t Current address: IBM Corporation, Reseamh Triangle

Park, NC, llarsen@raleigh.ibm. corn.

$Current address: Department of Computer and Information

Science, The Ohio State University, 395 Dreese Lab, 2015 Neil

Avenue, Columbus OH, 43210, harrold@cis.ohiestate. edu.

a graph reachability algorithm on a program depen-

dence graph to compute a slice that consists of all

statements and predicates of the program that may af-

fect the value of v at p. Horwitz, Reps and Binkley 14]

11also use dependence graphs to compute slices. T ey

developed an interprocedural program representation,

the system dependence graph, and a two-pass graph

reachability slicing algorithm that uses the system de-
pendence graph. Their t we-pass algorithm computes

more precise interprocedural slices than previous al-
gorithms because it uses summary information at call

sites to account for the calling context of called pro-
cedures. Researchers have extended langua e features

frepresented by system dependence graphs 2, 3, 8, 9,
13, 16], and proposed variations of dependence graphs

that facilitate finer-grained slices[15, 18. Researchers

lbhave also considered ways to represent o ject-oriented

programs[12, 19, 24]. However, no existing techniques

adequately define system dependence graphs and slic-

ing algorithms for the full range of object-oriented fea-
tures.

Object-oriented features, such as classes and ob-
jects, inheritance, polymorphism and dynamic bind-

ing, and scoping, impact the development of an eRi-
cient object-oriented program representation. A class

defines the attributes that an instance of that class
(an object) will possess. A class’s attributes consist

of (1) instance variables that implement the object’s
state and (2) methods that implement the operations

on the object’s state. We often design, implement,

and test classes without knowledge of calling envi-

ronments. Thus, an efficient graph representation for
object-oriented soft ware should consist of a class rep-

resentation that can be reused in the construction of
other classes and applications that use the class.

Derived classes are defined through inheritance,

which permits the derived class to inherit attributes

from its parent classes, and extend, restrict, redefine,

or replace them in some way. Just as inherit ante facil-

it ates code reuse, an eficient graph representation for

a derived class should facilitate the reuse of analysis
information. Construction of the representation for a

derived class should reuse analysis information com-

puted for base classes, and only compute information

that is defined in the derived class.
Polymorphism is an important feature of object-

oriented languages that permits, at runtime, a choice
of one of a possible set of destinations of a method call.

A static representation of a dynamic choice requires
that all possible destinations be included, unless the

type can be determined statically.

0270-5257/96 $5.00 @ 1996 IEEE

Proceedings of ICSE-18
495

Although the visibility of an object’s instance vari-
ables (stat e) is limited, these inst ante variables retain

their values between method calls to the object. A
representation must account for the dependencies of

inst ante variables between calls to the object’s meth-
ods by a calling program even though the instance

variables are not visible to the calling program.

To address these object-oriented features, we de-

veloped system dependence graphs for object-oriented

software on which an efficient interprocedural slic-

ing algorithm[14, 23] can be applied. We construct

these system dependence graphs for individual classes,

groups of interacting classes, and complete object-
oriented programs. For each class C in the system,
we construct a class dependence graph that we reuse
in the construction of classes that are derived from C

and classes that instantiate C. For an incomplete sys-
tem consisting of a single class or a number of inter-

act ing classes, we construct a procedure dependence

graph that simulates all possible calls to public meth-

ods in the class. For a complete object-oriented sys-

tem, we construct a procedure dependence graph from

the main program in the system.

The main contribution of this work is a represen-
t ation for single classes, interacting classes? and com-
plete object-oriented programs on which shces can be
computed efficiently. Our approach permits the com-

putation of slices for individual classes. Our tech-

niques focus on eficiency in construction and stor-
age by reusing previously computed components of

the represent ation whenever possible. We present our

results for C++ but our techniques can be applied

to other statically typed object-oriented programming

languages such as Ada-95.

In the next section, we overview interprocedural

slicing using the system dependence graph. Sec-

tion 3 presents our system dependence graphs for
object-oriented soft ware without considering issues

such as aliasing, arrays, reference parameters, and
finer-grained representations since existing techniques
for handling these features are applicable to our
graphs. Although these issues are relevant to the topic

of program representation, they introduce no issues

unique to object-oriented software. In Section 4, we

discuss the computation of backward static slices on
our system dependence graphs; forward slices can be
computed similarly. Section 5 discusses the space re-
quirements for our graphs, and Section 6 presents our

conclusions and future work.

2 Background

A system dependence graph (sDG)[14] is a collec-
tion of procedure dependence graphs, one for each
procedure. A procedure dependence graph[lO] repre-
sents a procedure as a graph in which vertices are
statements or predicate expressions. Data dependence

edges represent flow of data between statements or
expressions, and control dependence edges represent
control conditions on which the execution of a state-
ment or expression depends. Each procedure depen-

dence graph contains an entry vertex that represents

entry into the procedure. To model parameter pass-

ing, an SDG associates each procedure entry vertex

with ~orrnai-in and formal-out vertices. An SDG con-

tains a formal-in vertex for each formal parameter of

the procedure and a formal-out vertex for each formal

parameter that may be modified[17] by the procedure.

An SDG associates each call site in a procedure with

a caii vertex and a set of actual-in and actual-out ver-

tices. An SDG contains an actual-in vertex for each

actual parameter at the call site and an actual-out ver-

tex for each actual parameter that may be modified

by the called procedure. At procedure entry and call

sites, global variables are treated as parameters. Thus,
there are actual-in, actual-out, formal-in and formal-

out vertices for these global variables. SDGS connect
procedure dependence graphs at call sites. A call edge

connects a procedure call vertex to the entry vertex of
the called procedure’s dependence graph. Parameter-

in and parameter-out edges represent parameter pass-

ing. Parameter-in edges connect actual-in and formal-
in vertices, and parameter-out edges connect formal-

out and actual-out vertices.

Figure 1 shows a program main and its SDG. In the

figure, circles represent program statements; they are

labeled by statement numbers. Ellipses represent pa-
rameter vertices; they are labeled with Ai.in or Ai_out

for actual parameters and Fi-in or Fi.out for formal
parameters. The key in the figure describes the labels

associated with each parameter vertex, We refer to a

particular parameter vertex by prefixing the parame-

ter label with the call or entry vertex upon which it is

control dependent. For example, we use C7+Alin to

refer to the parameter vertex representing actual pa-

rameter “a_in=current _floor” in the call to add () at

C7, and we use C9+Alin to refer to actual parameter
“ain=current-floor” in the call to add () at C9.

In the figure, solid edges represent control depen-
dencies, dashed edges represent data dependencies,

and dotted edges represent procedure calls and pa-
rameter bindings. For example, the while state-
ments in S6 and S8 are control dependent on the
value of the predicate in S5. Thus, there are con-

trol dependence edges (S5, S6) and (S5, S8) in the

SDG. The value of current_floor in S2 may be
used in statements S6 and S8, and current .floor

appears as an actual parameter at call sites at

C7 and C9. Thus, there are data dependence
edges (S2, S6), (S2, S8), (S2, C7+Alin) and (S2,

C9+Alin). A parameter binding occurs at the
call to add() at C7 between current _floor in main

and *a in add (); a similar binding occurs between

current .floor and *a at the call to add() at
C9. These bindings result in parameter-in edges

(C7+Alin, Ell+Flin) (C9+Alin, E1l-Flin),
and parameter-out edges (El l+ Fl_out, C7-Al_out)

and (Ell+F1.outj C9+Al_out).

Horwitz, Reps and Binkley[14] compute interpro-
cedural slices by solving a graph reachability problem

on an SDG. To obtain precise slices, the computation

of a slice must preserve the calling context of called
procedures, and ensure that only paths correspond-

ing to legal call/return sequences are considered. To
facilitate the computation of interprocedural slicing

that considers the calling context, an SDG represents

496

EO: rnamo {

int current_flooq

int top_floon

int cnrrent_direction,

Sl: int floor =5;

S2: current_floor=1;
S3: top_floor= 1O;
S4: current_direction= UP,
S5: if (current_direction == UP)

S6: while ((current_floor != floor)&&

(currerrt_floor <= top_floor))

cl: add(&cumnt_floor, 1);

else

S8: while ((current_floor != floor) &&

(current_floor > ()))

C9: add(¤t_floor,-1);
S1O: printf(’’%d, current_floor);

}

El 1: add(int *a, int b) {

S12: *a= *a+&

}

Key for Parameter Vertices

Al_in: a_in = cnrrent_floor

A2_in: b_in = 1
Al_out: current_floor = a_out

A3_in b_in = -1

Fl_in: a = a_in

F2_iru b = b_in

Fl_out: a_out = a

Figure 1: Example program main and its system dependence graph.

the flow of dependencies across call sites. A transitive

flow of dependence occurs between an actual-in ver-
tex and an actual-out vertex if the value associated

with the actual-in vertex affects the value associated

with the actual-out vertex. The transitive flow of de-

pendence can be caused by data dependencies, control

dependencies, or both. A summary edge models the
transitive flow of dependence across a procedure call.

In the SDG of Figure 1, bold lines represent sum-

mary edges. Thus, edges (C7-Alin, C7-+Al_out)

and (C9-Alin, C9-+Al_out) represent the fact that
in procedure add(), the value of current filoor that

is passed to add () affects the value of current filoor
that is returned by add().

The first pass of the interprocedural slicing al-
gorithm traverses backward along all edges ex-
cept parameter-out edges, and marks those vertices

reached. The second pass traverses backward from all
vertices marked during the first pass along all edges

except call and parameter-in edges, and marks reached

vertices. The slice is the union of the vertices marked

during pass one and pass two.

To illustrate, consider the computation of a slice for
vertex C9+Al_out. During the first pass, the algo-
rithm marks vertices C9+Al_out, C9, S8, S5, EO, S4,

S3, S2. S1. C9+A3in. and C9-+Alin. On the second

in

3

pass, a traversal start: ‘at each vertex reached during

pass 1, and the algorithm marks vertices El l-+ Fl_out,
El 1, S12, Ell+F2in, and E1l-+Fl_in. The vertices

the slice are shaded in the SDG in Figure 1.

System Dependence Graphs

In this section, we describe our system dependence
graphs for both incomplete and complete object-

orient ed software.

3.1 Class Dependence Graphs

This section describes the construction of class de-

pendence graphs for single classes, derived classes and
interact ing classes. The section also discusses the way

in which our graphs represent polymorphism.

Representing Base Classes

To facilitate analysis and reuse, we represent each class
in a system by a class dependence graph (CIDG) [25].

A CIDG captures the control and data dependence re-
lationships that can be determined about a class with-

out knowledge of calling environments. Each method

in a CIDG is represented by a procedure dependence

graph, which we described in Section 2. Each method
has a method entry vertex that represents the entry

into the method. A CIDG also contains a class en-

try vertex that is connected to the method entry ver-

tex for each method in the class by a class member

edge. Class entry vertices and class member edges let

us quickly access method information when a class is

combined with another class or system. Our CIDG

construction expands each method entry by adding
formal-in and formal-out vertices. We add formal-in

vertices for each formal parameter in the method, and

formal-out vertices for each formal reference parame-

ter that is modified by the method. Additionally, we
add formal-in and formal-out parameters for global
variables that are referenced in a method. Finally,

since a class’s inst ante variables are accessible to all

methods in the class, we treat them as globals to meth-

ods in the class, and we add formal-in and formal-out

vertices for all instance variables that are referenced

in the method. The exception to this represent at ion

for instance variables is that our construction omits
formal-in vertices for instance variables in the class

constructor and formal-out vertices for instance vari-
ables in the class destructor.

497

CE1:

E2

S3:
84:
w.:

E6:

E7:
S8:

E%

Slo
En:

S12:

E13:

S14

E15:

S16

S17:

C18:

S19

C20

E21:

S22:

class Elevator {

public

Elevator(int l_toP.-floor)

{ currcnt_flrmr = 1;

current_direction = W,

top_floor = l_top_flooq }

virtual -Elevatoro {}

void UP()

{curralcirection = UP; }

void downo

{ cmrent_direction= DOWN; }

int wfdch_flooro

{ returncurrent_floOr }

Direction direction

{ returncurrent_directiOrv}

virtual void go (int floor)
,..

{if (current_dmctiOn == UP)

{ while (currcnt_floor != floor) &&

(currentdloor <= tOp_floor))

aefd(currant_floor, 1) } ‘\
$.else

{ while (currenLflrW != floor) &&

(current_f100r > O))

add(current_flOor, -1]]

}

private:

add(int &a, eonst int& b)

{a=a+b};

protected

int current_flooc

Direction current_direction;

Fl_iru

Fl_out

F2_in:

F2_0ut

F3_im

F3_outi

F4_in

F5_in

Key for Parameter Vertices

currentJloor = current_tloor_in F6_irx

current_floor_Out = current_floor F6_out

mrrentJirection = corrant_direction_in F7_im

current_direction_Out = curren~dircction Al_in

top_floOr = top_floor_in Al_out

top_floor_out = mp_floor ‘Qirr

l_top_floor = l_top_floor_irL A3_irx

floor = floor_in

a. &in

a_out = a

b = b_in

a_in = currant_floor

current_floOr = a_Out

b_in = 1

b_in=-1

int top_floor; I I

1;

Figure 2: A C++ Elevator class and its CIDG.

Figure 2 shows the CIDG for a C++ Elevator class;

the go () method is similar to the C program in Fig-

ure 1. A rectangle represents the class entry vertex

and is labeled by the statement label associated with

the class entry. Circles represent statements, and are

labeled with the corresponding statement number in

the class. For example, CE1 is the class entry ver-

tex, and E2, E6, E7, E9, En, E13, E15 and E21

are method entry vertices. Bold dashed edges rep-
resent class member edges that connect the class en-
try vertex to each method entry vertex; (CE1, E2),

(CE1, E6), (CE1, E7), (CE1, E9), (CE1, En), (CE1,
E13), (CE1, E15) and (CE1, E21) are class member
edges. Each method entry vertex is the root of a sub-

graph that is itself a partial SDG containing control
dependence edges (shown as solid lines), data depen-

dence edges (shown as light dashed lines), call and
parameter edges (shown as dotted lines), and sum-
mary edges (shown as solid bold li~es). Constructor
method Elevator () has no formal-in vertices for the

three instance variables, since these variables cannot
be referenced before they are allocated by the class
constructor. The CIDG for Elevator represents only
necessary parameter information. For example, meth-
ods up(), down() and direction() only reference in-
st ante variable current direction. Thus, methods

represented by method entries E7, E9 and E13 only
contain the required formal-in and formal-out vertices

for current-direction.

Since methods in a class can interact with each
other or with other methods, a CIDG represents the

effects of method calls by a call vertex. At each call
vertex, there are actual-in and actual-out vertices to

match the formal-in and formal-out vertices present

at the entry to the called method. For example, in

the CIDG of Figure 2, C18 and C20 represent calls to

addo.

A CIDG for a C++ class must represent effects of

return statements, which cause a method to return a

value to its calle~. In a CIDG, each return statement
is connected to Its corresponding call vertex using a

parameter-out edge. 1 Additionally, for every actual-

in parameter that may affect the returned value, sum-

mary edges are added between actual-in vertices and

the call vertex; these summary edges facilitate in-

terprocedural slicing. Figure 5 lists a program that

calls method whichfiloor (), which contains a return
statement, and illustrates the return statement’s rep-
resentation m the SDG. In the figure, parameter-out
edge (S12, S39) connects return statement S12 to

call vertex S39, and summary edge (A4_in, S39) in-
dicates that the value of current ~loor on entry to
method which_floor() affects the value returned by
which.flooro.

1Tfi~ ~dg~ is sknilar to the return-link edge described in

Reference [18].

498

CE23 :

E24

C25:

S26

E27:

S28:

E29

S30

E31:

S32

C33:

z)

@di%i+i-------------

class AlarmElevator: public Elevator {

public
,., -..’ ,“......,. ... ,.’”..

AkrnElevator(int tip_floor)
..; .

,.;

Elevator(top_flnor)

@kmn_On = Q }

void se~alarmo Key for Parameter Varuces

{ alarm_on= 1; } FIJrx current_f100r = crurent_t100I_in F8_0ut aknr_On_out = alann_On

void reset_alarmo Fl_out mrrent_f100r.Out = mrrenf_ftcor Al_irx tin = curreotdloor

{alarrn_on=Q} F2_m .xrrenUiirection = mrrent_&rectiOq_m ALOW wmrt_ftoor = ~out

void go(int floor) F2_ouc curmnt_direcriOn_out = eurrmt_directiOn A2_im b_in = 1

{if (!ahrm_On)
F3_im top-floor = tOp_tloorln A3_iw b_in=-1

Elevatm:go(tloor)
tK4_0ut mp_flLnJr_Out = top_i100r A4_im curran.-tloorjn = curremtlwr

>. F4_im Uop-tloor = l_tOp_ftOOrin A4_0ut current..tloor = currenUlwr_Out

19 F5_in floor = floorjr A5_irx current.drecdoti = current_direction

protected F6_im ~.~ A5_0uti surrenLdirectiOn = currenWrectiOn_Out

int alrrrm_OL
F6_out a_Out = a A6_iU tOp_tloor_in = topJloor

F7_in

};

b=b_in A6_ouc tOp_f100r = tOpJloor_Out

F8_irt al~On=ahrnr_On_m A8_im l_tOp_t100r_in = tOp_t100r

Figure 3: A C++ class AlarmElevator and its CIDG.

Representing Derived Classes

We construct a CIDG for a derived class by construct-
ing a representation for each method defined by the

derived class, and reusing the representations of all

methods that are inherited from base classes. We cre-

ate a class entry vertex for the derived class, and add

class member edges connecting this class entry ver-

tex to the method entry vertex of each method in
the definition of the derived class. We also create

class member edges to connect the class entry ver-
tex to the method entry vertices of any methods de-

fined in the base class that are inherited by the derived
class. Formal-in vertices for a method represent the

method’s formal parameters, instance variables in the
derived class or base classes that maybe referenced by

a call to this method, and global variables that may be
referenced by this method. Similarly, formal-out ver-

tices for a method represent the method’s formal pa-

rameters, instance variables in base or derived classes

that may be modified by a call to this method, and
global variables that may be modified by a call to this

method.
Figure 3 shows a C++ class AlarmElevat or that

is derived from class Elevator; we omit reference
to the destructor of this class in our discussion.

CE23 is the entry vertex for class AlarmElevat or.
Class member edges from CE23 to the method entry

of each method in the definition of AlarmElevator

are (CE23, E24), (CE23, E27), (CE23, E29) and

(CE23, E31). Since AlarmElevator inherits meth-
ods upo, downo, which_floor() and direction

from class Elevator, there are also class mem-
ber edges (CE23, E7), (CE23, E9), (CE23, En)

and (CE23, E13), respectively. The construc-

tor for AlarmElevator calls the constructor for

Elevator. Thus, our CIDG construction connects

499

call vertex C25 in AlarmElevatoro to entry ver-

tex E2 in Elevator() by call edge (C25, E2).

Virtual method go () in Elevator is not directly
accessed in AlarmElevator; go () is redefined in

AlarmElevator and calls Elevator: : go (). Thus,
our CIDG construction connects call vertex C33

in AlarmElevator: : go () to entry vertex E15 in

Elevator: :goo. For call sites C25 and C33, our

CIDG construction adds parameter-in and parameter-
out edges. Summary edges, which were computed

for each method in Elevator when the CIDG for

that class was created, are reflected to call sites

from AlarmElevator to Elevator. For example,

summary edge (C25+A8in, C25+A6_out) represents

the fact that the value of l_top_floor on entry

to Elevator () affects the value of t op_f loor on

exit from Elevator (). Our CIDG construction also
adds summary edges where required at the call to

Elevator: : go () in AlarmElevat or: : go (). The por-

tion of the CIDG below the wavy dashed line in the

figure is reused from the Elevator class.

Representing Interacting Classes

In object-oriented software a class may instantiate
another class either through a declaration or by us-

ing an operator such as new. For example, a class
may instantiate the Elevator class with the state-

ment Elevator elevator-oh j ect (10) or with the
statement elevat or_point er = new Elevat or(10).

When class Cl instantiates class (2’2, there is an im-

plicit call to (72’s constructor. To represent this im-

plicit constructor call, our CIDG construction adds a

call vertex in (71 at the location of the instantiation. A

call edge connects this call vertex to C2’s constructor

method. Our CIDG construction also adds actual-in

and actual-out vertices at the call vertex to match the
formal-in and formal-out vertices in C2’s constructor.

Figure 5 illustrates the representation of interacting
classes. Statements S36 and S37 in main() instan-
tiate objects of type AlarmElevator and Elevator,
respectively. The call vertex for S36 has actual-in and
actual-out vertices to match the formal-in and formal-

out vertices associated with E24, the method entry

vertex for AlarmElevat or (). Likewise, the call vertex

for S37 has actual-in and actual-out vertices to match
the formal-in and formal-out vertices associated with
E2, the method entry vertex for Elevator ().

When there is a call site in method All in Cl to
method ik12 in the public interface of C2, our con-

struction adds a call edge between the call vertex in

Cl and Lf2’s entry vertex; parameter edges are also
added. The linkage of these two CIDGS forms a new
CIDG that represents a partial system.

Representing Polymorphism

A CIDG must represent polymorphic method calls,

which occur when a method call is made and the des-
tination of the call is unknown at compile-time. A

CIDG uses a polymorphic choice vertex to represent

the dynamic choice among the possible destinations.

A call vertex corresponding to a polymorphic call has
a call edge incident to a polymorphic choice vertex.

A polymorphic choice vertex has call edges incident
to subgraphs that represent calls to each possible des-

tination. The polymorphic choice vertex represents

the dynamic selection of a destination. Static analy-

sis, however, must consider all possibilities. In Figure

5, P1 is a polymorphic choice vertex that represents

a dynamic choice between calls to Elevator: : go and

AlarmElevat or: : go. Algorithms for statically elimi-

nating infeasible destinations of a polymorphic call are

described in References [1, 21], but a precise solution

to the type inferencing problem is NP-hard[21].

3.2 Incomplete Systems

Classes and class libraries are often developed in-

dependently from the applications programs that use
them. To represent these incomplete systems for anal-

ysis, we simulate possible calling environments using

a frame [12]. A frame represents a universal driver for

a class that lets us simulate the calling of public meth-
ods in any order. A frame first calls the constructor of

the class and then enters a loop that has calls to each

public method in the class. On each iteration through

the loop, control can pass to any public method. After

the end of the loop, the frame calls the destructor of
the class.

A frame is the “main” program of an SDG for an

incomplete system. Thus, we use it to construct a

procedure dependence graph. The call to the con-

structor, the frame loop and the call to the destructor

are all control dependent on the frame entry vertex;

the frame loop is also control dependent on itself. Fi-

nally, the frame call is control dependent on the frame

loop. The frame call is replaced by calls to the pub-

lic methods in the class, and parameter vertices are

added at the call sites.

To create a procedure dependence graph for a frame

for a particular class, we replace the frame call vertex
with call vertices for each public method in the class.
For example, for the Elevator class, shown in Figure
4, the procedure dependence graph for the frame con-
tains C-E2, C-E7, C-E9, C-E1l, C-E13, C-E15, and

C-E6, which represent call vertices for Elevator (),

upo, downo, whlch_flooro, direction, goo,

and Elevator (), respectively. Instead of construct-

ing procedure dependence graphs for each method in

the class, we reuse the information in the CIDG. At

each call vertex in the frame’s procedure dependence

graph, we add actual-in and actual-out vertices to
match the formal-in and formal-out vertices of the

associated method entry vertex in the CIDG for the
called met hod. We connect the CIDG to the procedure

dependence graph for the frame by adding parameter-
in edges, parameter-out edges, and call edges.

When we connect the procedure dependence graph
for the frame to the CIDG for the Elevator class, we

get the SDG in Figure 4; we omit the class entry vertex
and class member edges from the figure. Since there

are no source code statements associated with call ver-
tices in the frame, we label them C-Ei, where Ei is the
method entry of the called method. We leave actual
parameter vertices unlabeled since they just represent
copies to and from temporaries. For example, C-E2 is

500

Key for Parameter Vertices

Fl_ux crurent_flOor = current_ f100r_in

F l_ouC current_SOOr_Out = current_t100r

F2_Im current_directiOn = current_duectiOkin

F2_0uti current_duectiOn_Out = mrrem_directiOn

F3_im tOp_flmx = tOp_f100r_in

F3_0uC tOp_flwr_Out = tOp_flOer

F4_in l_tOp_floOr=_tOp_ f100r_irr

F5_in floo~floorjtr

F6_ul a = a_nl

F6_out Lout = a

F7_in b = b_rn

Al_im ajn = current_f100r

Al_out mrre.nt_tlwr = a_Out

A2_ilx b_in = 1

A&h b_in = -1

Figure 4: SDG representation of C++ Elevator class along with two slices.

the call vertex associated with method entry E2, and

its actual-in and actual-out vertices are unlabeled.

Since instance variables retain their values between
met hod calls, there may be data dependencies across

call sites even though the variables are not visible
in the calling program. For example, the value of

current-direct ion at the end of a call to up (),
F2_out in Figure 4, can subsequently be used by a

call to go (). To account for these data dependen-

cies, our construction adds data dependence edges

between the actual-out vertices of each method call

and the corresponding actual-in vertices of every other

method call. For example, the actual-out vertex of C-

E7, representing the value of current-direction, is
connected to every other actual-in vertex correspond-
ing to data member current-direction, namely the

actual-in vertices for C-E9, C-E13, and C-E15. No val-
ues flow into a class constructor except through formal

parameters since no previous instance variable values
exist; no values flow from a destructor since instance

variables are no longer available.

3.3 Complete Programs

We construct the SDG for a complete program
by connecting calls in the partial system dependence

graph to methods in the CIDG for each class. We
described this construction in detail in Section 2;

it involves connecting call vertices to method entry
vertices, actual-in vertices to formal-in vertices, and

formal-out vertices to actual-out vertices. The sum-

mary edges for methods in a previously analyzed class

are added between the actual-in and actual-out ver-
tices at call sites. This construction of the SDG for

an object-oriented system maximizes reuse of previ-
ously constructed portions of the representation. The
introduction of variables in the scope of the applica-
tion program, such as a global variable, does not affect

the representation in any of the CIDG ‘s. Any global

variables referenced or modified by a class must be de-

clared extern in the class, so this information would

have been included while building the class’s CIDG.

Figure 5 contains an example of an application

program that instantiates an object. The variable

e_ptr could point to an object of type Elevator
or AlarmElevator. This graph was constructed by

building a partial SDG for the main function, includ-
ing the previously computed representation for the

Elevator and AlarmElevator classes, and connecting
each graph using call, parameter-in, and parameter-

out edges; we omit class entry vertices and class mem-

ber edges from the graph. This example also illus-

trates the way in which the CIDG represents the ef-

fects of methods that return values. For example,

S39 contains a call to e-ptr->which3100r that re-

turns a value (we omit the representation of the call

to tout). The call vertex is data dependent on the
value of current filoor. A summary edge is added

from S39+A4in to S39, and a parameter-out edge is
added from S12, the return statement, to S39.

501

,,....

#~~~*, ,-......
;Slles2:..

&4J ‘-%-.’ . S3;’:

E34

S35:
S36:

S37:

C38:

S39:

main(int argc, char **argv) {

Elevator *e_ptr;

if (argv[l])

e_ptr = new AlarmElevator(l 0}

else
e_ptr = new Elevator(lO);

e_ptr->go(5);

tout << “InCurrently on flooc “

<< e_ptr->which_flooro << “\n”;

F1_iIx

Fl_ouc

Zirx

llout

F3_iw

F3_0uc

F4_im

F5_IIu

F6_iE

F6_0uc

F7iIx

F8Jru

F8_0ut

Key for Psrsnreter Verdces

carrenr_flcm = current_tloar_in

wrrent-floor.out = current..-tlmr

current_direction. current_directim_in

current_direction_out = curren@irwtion

tOp_flOor = tOp_t100rjn

tOp_floor_out = tOp_flOar

Ltop–fhmr = l_tOp_t100r_h

floor = floorjn

a=a_ur

aOUt = a

b = bin

almrl_On = alarm_m_in

aiann_m_Out = al~on

Al_im

Al_ouc

A2_ix

A3_ilx

A4_iIx

A4_out

A5_ilx

M_Out

A6_in

A6_0ut

A7_in

A7_0ut

A8jrr

A9_m

AIO_iE

Al l_in

,,, :,:

:,, .,, ;,,
,.. .,,

:,, ,,. ,;::,,,, ,,

am= curremtloor

curremtloor = a_Out

b_m = I

b~=.1

current_tlax_in = curremtloor

currm_tlca = current_ flwr_Out

crurenLdirecriOn_in = current_directiOn

crarenr_direcdon = crurent_direction_out

tOp_t100rM = t0p_tle4r

tOp_r100r = tOp_f100r_Out

alarn3_0n_in = alarm_On

alarm_On = alarm_O~Out

l_tOp_f100rjn = LtOp_tlcor

f100r_m. 5

tOp_f1001=l o
l_tOp_t100F1o

Figure 5: SDG representation of application program that uses the Elevator and AlarmElevat or classes along

with two slices.

4 Slicing ables within an object (the object’s state) by provid-
ing methods as an interface for setting and observing

Since the SDGS that we compute for object-oriented the state of the object. Thus, object-oriented systems

programs belong to a class of SDGS defined in Refer- substitute many variable references with method calls

ence [14], we can use the two-pass graph reachability that simply return a value. To let us slice on the val-

algorithm for computing slices. That slicing algorithm ues returned by a method, we use a slightly modified

uses a slicing criterion < p, x > in which p is a state- slicing criterion. Our slicing criterion < p, z > con-

ment and z is a variable that is defined or used at sists of a statement p and a variable or a method call

p. Object-oriented software developers prevent users z. If z is a variable, it must be defined or used at

of a class from directly manipulating instance vari- p; if z is a method call it must be called at p. Since

502

our SDG construction creates summary edges that are

used to preserve the calling context, we compute slices

that satisfy our criterion on our SDGS using the two

pass algorithm. During the first pass of the slicing

algorithm, summary edges facilitate slicing across call

vertices that have transitive dependencies on actual-

in vertices. During the second pass of the algorithm,

the algorithm descends into called methods (or proce-

dures) along the parameter-out edges.

We consider slices on incomplete programs, and use

the Elevator class of Figure 2 for illustration. Figure

4 gives the SDG for the Elevator class and shows

two slices: slice 1, depicted with dashed line vertices,

and slice 2, depicted with shaded vertices. Slice 1 is

the backward slice computed at vertex C20+A1.out,

which represents the value of current floor returned

from the call at C20. The dashed line vertices in

Figure 4 indicate this slice, which includes all state-

ments that could affect the value of current _floor at

C20+Al_out for any sequence of calls to Elevator’s

public methods. On the first pass? the slicing al-

gorithm marks all dashed line vertices except E21,

E21+F6jn, E21+F7_in, E21+F6-out and S22. on

the second pass, the algorithm descends into called

method go (), and marks the rest of the vertices shown

with dashed lines in the figure. Vertices that are part

of the frame are not included in the slice as their only

purpose is to facilitate slicing: however, for complete-

ness? we include them in our dlust ration.

Since we compute a slice as if all possible sequences

of calls to public methods were possible, it includes

more statements than would likely be included if the

slice were taken from an application program that

specified a particular call sequence of public methods.

However, during development, this type of slice may

be useful since it indicates the dependencies that could

exist among statements in the class, and may assist in

understanding, debugging or testing the class.

Slice 2 is the backward slice computed at vertex

S14, which represents the value of current-direction

returned by a call to direct ion(). The shaded

vertices in Figure 4 indicate this slice, which in-

cludes only statements S14, E13, E13+F2in, S8,

E9, E9+F2-out, S1O, E7, E7+F2-out, S4, E2,

E2+F2_out and the associated frame vertices because

these are the only statements that modify the direc-

tion of the elevator.

Next, we consider slices on the application program

in Figure 5, which gives the SDG for this program

and shows two slices: slice 1, depicted with shaded

vertices, and slice 2, depicted with dashed line ver-

tices. Slice 1 is a backward slice computed with re-

spect to current-floor at C20+Al_out. This appli-

cation program has a polymorphic call, which causes

the slicing algorithm to include statements from all

possible destinations of the polymorphic call in the

slice.

Slice 2 is a backward slice computed with re-

spect to the call to which.floor () at vertex S39,

which includes includes all statements that may af-

fect current~loor. The summary edge between

S39+A4in and and S39 summarizes the statements

upon which the return value of whichfiloor () is de-

pendent. During the first pass of the slicing algorithm,

traversal proceeds backward over the data dependence

edges that are incident to S39+A4-in, and finds those

stat ements that affect its value. During the second

pass, the algorithm traverses back from all vertices

marked during the first pass, as well as backward over

the parameter-out edge incident on S39. The sec-

ond pass includes all statements in the which_floor

method.

A forward slice on a slicing criterion < p, z > in-

cludes all statements affected by the value of z at p.

Horwitz, Reps, and Binkley[14 also describe a two-

/phase algorithm for computing orward slices on a sys-

tem dependence graph. We can apply their forward

slicing algorithm to our system dependence graphs to

calculate forward slices.

5 System Dependence Graph Size

We designed our SDGS for object-oriented software

so that existing slicing algorithms could be applied to

them. Thus, our algorithm for constructing SDGS for

object-oriented programs is similar to existing algo-

rithms for procedural language programs except that

it reuses partial SDGS, such as those constructed for

individual classes, whenever possible. Howeve?, since

our SDGS are constructed for object-oriented software,

there may be differences in their sizes compared to

SDGS for procedural language programs. In this sec-

tion we discuss the size of our SDGS.

Table 1 lists the variables that contribute to the

size of an SDG. We give a bound on ParamVertices,

and use this bound to compute the upper bound on

the size of a method or procedure.

ParamVertices(m) = PaTams

+ G’lobais

+ InstanceVars (1)

Size(m) = O(VeAces + CallSites

* (1 + TreeDepth

* (2 * Para7nVertices(m)))

+ 2 * ParamVertices(m))(2)

Given Methods, the number of methods in the en-

tire system, the upper bound on the number of vertices

in an SDG, including all classes, is:

Size(SDG) = O(Size(m) * Methods) (3)

Size(SDG) is a rough upper bound on the number

of vertices in an SDG that we construct. In prac-

tice, an SDG may be considerably more space effi-

cient for several reasons. First, the computation of

GMOD/GREF sets[14] can considerably reduce the

number of global variables and instance variables that

must be represented as parameter vertices at call and

entry sites for a particular method.

Second, the computation of Si.ze(SDG) assumes

that all method calls are indirect calls. C++ programs

503

T’. hl. 1. P... molar. .ff..tino th~ .i.e nf an QT)P.. ..--.” ~ . ! -. -...”.-.” ~.. ””.,...

Vertzces

b . ..- ..”- -. u.. -w_
.

Greatest number of predicates and assignments m a single method or procedure

Edges Greatest number of edges in a single method or procedure

Params Greatest number of formal parameters in any method or procedure

GVobals Number of global variables in the system

InstarweVars Greatest number of instance variables in a class, including those in all instantiated classes

Ca[lSites Greatest number of call sites in any method or procedure

Tree Depth Depth of inheritance tree determining number of possible indirect call destinations

Methods Number of methods or procedures in the system

tend to use method calls more frequently than C pro- 6 Conclusions
reams. and C++ momams often use method calls and

;bjects as param-ete;s to methods. Despite this, the

full cost of a method call is only incurred for calls to

virtual methods whose destination cannot be resolved

statically. Calder and Grunwald[7] report that 80’%

of the function calls in C++ are calls to methods and

that only 67~o of these calls are indirect. Further-

more, using execution profiles of C++ programs, they

determined that the target of most indirect function

calls can be accurately predicted. Recently, Pande and

Ryder[22] presented an analysis technique that stat-

ically determines the target of indirect function calls

for C++ programs. Their experiments corroborate the

results of Calder and Grunwald. Static analysis can

greatly reduce the number of call sites associated with

a polymorphic choice vertex in our SDGS.

Another property of object-oriented programs also

helps minimize the construction of an SDG. C pro-

grams often use global variables indiscriminately,

whereas C++ programs encapsulate “global” variables

into classes where they are only visible to classes ac-

tually requiring access. These factors suggest that al-

though the upper bound on the size of the graph could

result in very large SDGS, in practice we expect them

to be much smaller.

To demonstrate the actual sizes of SDGS that we

expect, we performed a case study on a C++ program

cent aining nine classes, 65 methods, and class hierar-

chies up to three classes deep. Our goal was to com-

pare the number of vertices at call sites and method

entries in the computed size and the actual size. We

first computed the upper bound for the sample pro-

gram using Equation 3, which resulted in an SDG with

282,112 vertices. Then, we computed the SDG for the

sample program without considering Ver=t ices, and it

cent ains only 1,257 vertices. Although our case study

is not conclusive, we believe that it is indicative of

the sizes of SDGS for object-oriented systems. We are

currently developing tools to construct SDGS for C++

systems, so that we can perform experiments.

We performed our analysis and bounds computa-

tion for C++ systems. Since object-oriented program-

ming languages differ, the size of an SDG may vary

depending on the language being represented. How-

ever, our results are applicable for other statically-

typed object-oriented programming languages such as

Ada-95.

We have presented system dependence graphs for

object-oriented soft ware on which efficient interproce-

dural slicing can be performed. Each system depen-

dence graph consists of a program dependence graph,

which represents either the “main” program in the

system or a simulation of a calling environment, and

class dependence graphs, which represent classes in

the system. Class dependence graphs are constructed

for each class in the system, and reused in constructing

other class dependence graphs or system dependence

graphs. Our class dependence graphs are efficiently

constructed for derived classes and interacting classes

by incorporating parts of previously constructed class

dependence graphs. We represent a calling environ-

ment for an incomplete system using a frame that

simulates all possible calling environments. A frame

allows slices to be calculated not only on complete

object-oriented applications, but also on individual

classes.

We described the computation of slices on our sys-

tem dependence graphs using an efficient two-pass al-

gorithm. Although our discussion focused on back-

ward slicing, our techniques are also applicable for the

calculation of forward slices. Slicing object-oriented

programs is relatively efficient because most applica-

tions reuse components and it is possible to analyze

a component once and reuse the analysis information

many times. We are currently implementing our tech-

niques for C++, to experiment with useful applications

of slicing such as performing optimizations and gath-

ering metrics.

Acknowledgements

Jo Anna Madril edited many of the figures. Gregg

Rothermel, Devidas Gupta, Maria Demetriou, and the

anonymous reviewers provided suggestions that im-

proved the present ation of the paper.

References

[1] O. Agesen and Urs Holzle. Type feedback vs. concrete

type inference: A comparison of optimization tech-

niques for object-oriented languages. In Proceedings

o.f Object-Oriented Programming Systems, Languages

and Applications, pages 91–107, October 1995.

504

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

H. Agrawal. On slicing programs with jump state-

ments. In Proceedings of SIGPLA N’94 Conference on

Programming Language Design and Implementation,

pages 60–73, June 1994.

H. Agrawal, R. DeMiUo, and E. Spafford. Dy-

namic slicing in the presence of unconstrained point-

ers. In Proceedings of the Fourth Symposium on So#-

ware Testing, Anaiysis, and Verification, pages 60–73,

1991.

S. Bates and S. Horwitz. Incremental program testing

using program dependence graphs. In Proceedings of

the Twentieth ACM Symposium on Principles of Pro-

gramming Languages, pages 384–396, January 1993,

J. M. Bieman and L. M. Ott. Measuring functional

cohesion. IEEE Transactions on So#ware Engineer-

ing, 20(8):644–657, August 1994.

D. Binkley. Using semantic differencing to reduce the

cost of regression testing. In Proceedings of Confer-

ence on Software Maintenance, pages 41–50, Novem-

ber 1992.

B. Calder and D. Grunwald. Reducing indirect func-

tion call overhead in C++ programs. In Conference

Record of POPL ’94: 21st A CM SIGPLAN-SIGACT

Symposium on Priracipies of Progarnrning Languages,

pages 397–408, January 1994.

J.-D. Choi, M. Burke, and P. Carini, Efficient

flow-sensitive interprocedural computation of pointer-

induced aliases and side effects. In Proceedings of

Twentieth A nnua! ACM Symposium on Principles of

Programming Languages, pages 232-245. ACM, 1993.

J.-D. Choi and J. Ferrante. Static slicing in the pres-

ence of goto statements. ACM Transactions on Pro-

gramming Languages and Systems, 16(4):1097-1113,

July 1994.

J. Ferrante, K. J. Ottenstein, and J. D. Warren. The

program dependence graph and its use in optimiza-

tion. ACM Transactions on Programming Languages

and Systems, 9(3):319–349, July 1987.

K. B. Gallagher and J. R. Lyle. Using program slic-

ing in software maintenance. IEEE Transactions on

Software Engineering, 17(8):751–761, August 1991.

M. J. Harrold and G. Rothermel. Performing dat aflow

testing on classes. In Proceedings of the Second A CM

SIGSOFT Symposium on the Foundations of Software

Engineering, pages 154-163, December 1994.

S. Horwitz, P. Pfeiffer, and T. Reps. Dependence

analysis for pointer variables. In Proceedings of SIG-

PLAN’89 Conference on Programming Language De-

sign and Implementation, pages 28–40, June 1989.

S. Horwitz, T. Reps, and D. Binkley. Interprocedural

slicing using dependence graphs. ACM Transactions

on Programming Languages and Systems, 12(1) :26—

60, January 1990.

16]

17]

D. Jackson and E. J. Rollins. A new model of program

dependence for reverse engineering. In Proceedings of

the Second ACM SIGSOFT Conference on Founda-

tions of Software Engineering, pages 2–10, December

1994.

W. Landl and B. Ryder. A safe approximate algo-

rithm for interprocedural pointer sJiasing. In Pro-

ceedings of the ACM SIGPLA N ’92 Conference on

Programming Language Design and Implementation,

pages 235–248, June 1992.

W. Landi, B. G. Ryder, and S. Zhang. Interprocedu-

ral modification side effect analysis with pointer alias-

ing. In Proceedings of SIGPLAN’93 Conference on

Programming Language Design and Implementation,

pages 56-67, June 1993.

[18] P. E. Lividas and S. Croll. Static program slicing.

Technical Report SERC-55F, University of Florida,

Software Engineering Research Center, Computer and

Information Sciences Department, January 1992.

[19] B. A. Malloy, J. D. McGregor, A. Krishnaswamy, and

M. Medikonda. An extensible program representation

for object-oriented software. ACM Sigp!an Notices,

29(12):38–47, December 1994.

[20] K. J. Ottenstein and L. M. Ottenstein. The pro-

gram dependence graph in a software development

environment. In Proceedings of the ACM SIG-

SOFT/SIGPLAN Sofiware Engineering Symposium

on Practical Soflware Development Environments,

pages 177-184, April 1984.

[21] H. Pande and B. G. Ryder. Static t ype determination

in C++. In Proceedings of the Sixth USENIX ~+

Technical Conference, pages 85-97, April 1994.

[22] H. D. Pande and B. G. Ryder. Static t ype determina-

tion and aliasing for C++. Technical Report LCSR-

TR-250, Rutgers Univiversity, July 1995.

[23] T. Reps, S. Horwitz, M. Sagiv, and G. Resay. Speed-

ing up slicing. In Proceedings of Second A CM Confer-

ence on Foundations of So@ware Engineering, pages

11–20, December 1994.

[24] G. Rothermel and M. J. Harrold. Selecting regression

tests for object-oriented software. In Proceedings of

Conference on Software Maintenance, pages 14-25,

September 1994.

[25] G. Rothermel and M. J. Harrold. Selecting tests and

identifying test coverage requirements for modified

software. In Proceedings of the ACM International

Symposium on Software Testing and Analysis, pages

169-184, August 1994.

[26] F. Tip. A survey of program slicing techniques.

Journal of Programming Languages, 3(3):121-189,

September 1995.

[27] M. Weiser. Program slicing. IEEE Transactions on

Software Engineering, 10(4):352-357, July 1984,

505

