
 Open access Journal Article DOI:10.1145/256167.256394

Slicing real-time programs for enhanced schedulability — Source link

Richard Gerber, Seongsoo Hong

Institutions: University of Maryland, College Park, Seoul National University

Published on: 01 May 1997 - ACM Transactions on Programming Languages and Systems (ACM)

Topics: Program slicing, Optimizing compiler, Scheduling (computing), Compiler and Unobservable

Related papers:

 Program Slicing

 Interprocedural slicing using dependence graphs

 Dynamic program slicing

 The program dependence graph in a software development environment

 A survey of program slicing techniques.

Share this paper:

View more about this paper here: https://typeset.io/papers/slicing-real-time-programs-for-enhanced-schedulability-
2rdzu9khdv

https://typeset.io/
https://www.doi.org/10.1145/256167.256394
https://typeset.io/papers/slicing-real-time-programs-for-enhanced-schedulability-2rdzu9khdv
https://typeset.io/authors/richard-gerber-1zwy82s23e
https://typeset.io/authors/seongsoo-hong-40lcv18mde
https://typeset.io/institutions/university-of-maryland-college-park-1t055gc1
https://typeset.io/institutions/seoul-national-university-3ejiwrzr
https://typeset.io/journals/acm-transactions-on-programming-languages-and-systems-sjymo6nn
https://typeset.io/topics/program-slicing-1g5eiiap
https://typeset.io/topics/optimizing-compiler-2zvnscmr
https://typeset.io/topics/scheduling-computing-3elthrty
https://typeset.io/topics/compiler-1rd4cb0x
https://typeset.io/topics/unobservable-p7qn1czm
https://typeset.io/papers/program-slicing-1k2p7u44ly
https://typeset.io/papers/interprocedural-slicing-using-dependence-graphs-2fk5z60hh9
https://typeset.io/papers/dynamic-program-slicing-47uttzsten
https://typeset.io/papers/the-program-dependence-graph-in-a-software-development-bhtxylpqzx
https://typeset.io/papers/a-survey-of-program-slicing-techniques-55dhg2uoqv
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/slicing-real-time-programs-for-enhanced-schedulability-2rdzu9khdv
https://twitter.com/intent/tweet?text=Slicing%20real-time%20programs%20for%20enhanced%20schedulability&url=https://typeset.io/papers/slicing-real-time-programs-for-enhanced-schedulability-2rdzu9khdv
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/slicing-real-time-programs-for-enhanced-schedulability-2rdzu9khdv
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/slicing-real-time-programs-for-enhanced-schedulability-2rdzu9khdv
https://typeset.io/papers/slicing-real-time-programs-for-enhanced-schedulability-2rdzu9khdv

Slicing Real-Time Programs for Enhanced Schedulability �Richard Gerber and Seongsoo HongDepartment of Computer ScienceUniversity of MarylandCollege Park, MD 20742(301) 405-2710rich@cs.umd.edu sshong@cs.umd.eduApril 25, 1995AbstractIn this paper we present an automated, compiler-based technique to help developers synthe-size correct real-time systems. The domain we consider is that of multi-programmed real-timeapplications, in which periodic tasks control a physical systems via interacting with externalsensors and actuators. While a system is up and running, these operations must be performedas speci�ed { otherwise the system may fail.Correctness depends not only on each program individually, but also on complex task inter-actions which are usually exposed at runtime. Errors at this point are usually remedied by acostly process of instrumentation, measurement and code tuning.We describe a static alternative to this process, which relies on well-accepted technologiesfrom optimizing compilers and �xed-priority scheduling. Speci�cally, when an application isfound to be overloaded, the scheduling component determines good candidate tasks to gettransformed via program slicing. The slicing engine decomposes each of the selected tasks intotwo fragments: one that is \time-critical," and the other \unobservable." The unobservablepart is then spliced to the end of the time-critical code, with the semantics being maintained.The bene�t is that the scheduler may postpone the unobservable code beyond its original dead-line, which can enhance overall schedulability. While the optimization is completely local, theimprovement is realized globally, for the entire task set.Keywords: Real-time, programming languages, event-based semantics, compiler optimization,program slicing, system-tuning, static priority scheduling, priority assignment.�This research is supported in part by ONR grant N00014-94-10228, NSF grant CCR-9209333, an NSF YoungInvestigator Award CCR-9357850. An earlier version of this paper appeared in preliminary form in the Proceedingsof IEEE Real-Time System Symposium, (December 1993).

1 IntroductionA real-time application is characterized by the existence of two competing factors: its functionalspeci�cation and its temporal requirements. Functional speci�cations de�ne valid translations frominputs into outputs. As such they are realized by a set of programs, which consume CPU time.Temporal requirements, on the other hand, place upper and lower bounds between occurrences ofevents [8, 18]. An example is the robot arm must receive a next-position update every 10 ms. Sucha constraint arises from the system's requirements, or from a detailed analysis of the applicationenvironment. Temporal requirements implicitly limit the time that can be provided by the system'sresources.Thus, the \art" of real-time development lies in balancing the implementation's resource de-mands on one hand, and its temporal requirements on the other. If the desired balance cannotbe achieved, the result is usually a costly process of low-level system-tuning, involving expensivehardware monitors (e.g., in-circuit emulators, logic analyzers, etc.), taking careful measurements,and then reordering (or restructuring) various key operations. As a last resort, entire subsystemsmay have to be re-designed altogether.In this paper we present a static alternative to this process, which is based on two inter-relatedcomponents: a real-time annotation language called TCEL [11] (for \Time-Constrained EventLanguage"), and the compiler transformation known as program slicing [28, 36, 37]. Surprisingly,while our use of static slicing often leads to longer execution times { and even higher utilizations {it simultaneously helps achieve real-time correctness and schedulability for the entire system. Forthis reason we call the transformation real-time task slicing.The Language of Time Constrained Events. TCEL's annotation syntax is quite similar tothat found in other experimental real-time languages (e.g., [17, 19, 21, 24, 27, 38]). However, thesemantics di�ers signi�cantly, in that it is based on the time-constrained relationships betweenobservable events.For example, consider a construct such as \every 10ms do B," where the block of code \B" isexecuted once every 10ms. The typical approach is to establish timing constraints between blocks ofcode, and in this case all of the code in B must �t properly within each 10ms time-frame. But sinceTCEL's semantics establishes constraints between externally observable events, only B's events ofinterest must �t properly within the 10ms time-frame. This looser semantics yields two immediatebene�ts. First, the decoupling of timing constraints from code blocks enables a more straightforwardimplementation of the original, event-based requirements. But more importantly, the unobservablecode can be moved to automatically tune the program to its hardware environment.For simplicity, in the sequel we consider all \output" and \input" operations to be observable.In practice any relevant instruction can be annotated as event; thus the approach can be extended1

to most notions of communication. For example, an event can be a message-passing operation, anaccess to memory-mapped I/O, an instruction that induces side-e�ects on other tasks, or for thatmatter, a reference to any designated function call or variable.Real-Time Task Slicing. Consider the following set of requirements, which are typical of manyreal-time servo-loops.(1) Every 25ms, read a new measurement from an external sensor.(2) Using the new sensor reading and the current state, produce an actuator command and updatethe state.(3) Send the actuator its output before taking the next sensor reading.The TCEL program fragment below realizes the speci�cation.L1: every 25msfL2: input(Sensor, &data);L3: cmd = nextCmd(state, data);L4: state = nextState(state, data);L5: output(Actuator, cmd);gThe \every" construct on line L1 denotes a statement of cyclic behavior of a positive periodicity.Unlike other real-time languages, the event-based semantics only requires that the observable eventsL2 and L5 execute within every 25ms, while allowing the executions of local computations L3 andL4 to stretch over the 25ms time frame. Unless the program's control and data dependences areviolated, this transformation will always be safe.The distinction between observable and unobservable operations becomes apparent after thetuning process starts. Speci�cally, it enables real-time task slicing to automatically achieve schedu-lability. And while the transformation is applied to each individual task, its e�ect is global, and onthe entire system.The key idea behind this method is based on a simple fact:An application's schedulability improves whenever we can increase the deadlines (orperiods) of its constituent tasks.The same e�ect is achieved by allowing a task to slide past its deadline, while maintaining theoriginal event-based semantics. We can realize this bene�t by transforming a task, so that itstime-sensitive component always executes within its frame, while its unobservable part can bepostponed. 2

To accomplish this, the transform tool decomposes an unschedulable task into two slices: onethat is \time-critical" and the other unobservable. Then it \glues" the unobservable slice to theend of time-critical slice, and substitutes the resulting code for the original task.Figure 1 pictorially illustrates the net e�ect of this transformation. The downward and upwardarrows represent the execution of input and output events within the same time frame.k � 1st kth k + 1st k + 2ndperiodFigure 1: Run-time behavior of a TCEL periodic task.Although task slicing is applied locally, our application method requires complex interactionsbetween the scheduling analyzer and the task-slicer. Figure 2 illustrates the relationships betweenthe scheduling analyzer/priority assigner, and the real-time task slicer. If the task set is schedulable,the priority algorithm determines the optimal priority assignment for it. If no feasible priorityassignment can be found, the scheduling analyzer helps identify the tasks whose transformationwill most likely lead to a schedulable system. Then they are fed to slicer, after which the entiretask set is again tested for schedulability. Task Set,Priority Ordering Algorithm(Schedulability Tests)Tasks To Be SlicedSchedulablePriority Order Task Slicersuccess failurePeriod Constraints
Figure 2: Generalized slicing method for schedulability tuning.3

For the sake of presentation, we assume that applications execute on a single CPU. Due to thematurity of uniprocessor scheduling, this makes the analysis somewhat cleaner { and allows us toconcentrate on the issue of real-time slicing. But this simpli�cation does not reduce the utilityof our approach, since most distributed scheduling algorithms use uniprocessor algorithms at eachnode1 { and our method can be adapted as well.Related Work. Compiler-based techniques for real-time development can conceptually be clus-tered into two sub-areas { program transformation and timing analysis.There has been a growing amount of work within the area of program transformation. Theresulting techniques address di�erent problems associated with real-time programming, but theyshare the goal of enhancing the predictability and schedulability.In [12] a compiler tool classi�es an application program on the basis of its predictability andmonotonicity, and creates partitions which have a higher degree of adaptability. Speci�cally, thetool denotes whether a piece of code belongs in one of four classes; based on this classi�cation,programs are rearranged to help support adaptive run-time scheduling. The objective is to producea transformed program possessing a smaller variance in its execution time. In [27] a partial evaluatoris applied to a source program, which produces residual code that is both more optimized and moredeterministic. In [39] an approach to speculative execution is postulated for distributed real-timesystems. The idea is that the speculative \shadow threads" are forked o� to execute on availableresources.In [11, 15] we show how to use TCEL's event-based semantics to help synthesize feasible taskcode. (We call a code segment is infeasible if its execution time stretches over its speci�ed deadline.)The transformation algorithm corrects such faults via a two-step process. First, the compilerautomatically derives a set of timing equations from the language-based timing constraints of atask, so that a real-time scheduler can dispatch the task in an e�cient manner. Next, the compilerattempts to correct feasibility faults with respect to the derived dispatch equations. This is doneby a variant of Trace Scheduling, in which worst-case paths of the infeasible task are selected, andunobservable code is moved to shorten their execution time.In this paper we address the more ambitious goal of optimizing multi-threaded applications.But here { unlike in [11, 15] { we have to consider the role of scheduling support. Since schedulinganalysis often de�nes whether timing constraints will be met, the particular scheduling strategy willplay a leading role in optimization metric. But schedulers arbitrate between the demands of severalprograms, while a compiler usually works on one program at a time. This traditional separationof concerns between the kernel and the compiler has evolved for many good reasons, and in thispaper we strive to maintain it.1For example, a multiprocessor scheduling problem is often modeled as a combination of an allocation sub-problemand multiple instances of single processor scheduling sub-problems [34].4

Timing analysis is a key step in building a real-time application; this is especially true in a hardreal-time system, in which all deadlines must be met. Many analysis techniques have been proposed,ranging from static, source-based methods to pro�lers and testing tools, through some combinationthereof. While pro�ling usually produces the tightest results, it presupposes a completely developedsystem { as well as a test suite that achieves pessimistic worst-case coverage. Static, compiler-basedanalysis can be used much earlier in the design cycle, and it can usually yield worst-case coverage.But this is also its downside: the result can be a conservative \worst of all worst cases," i.e., anexperimentally unachievable measurement. Yet static analysis is developing at a rapid pace, andtools are being produced which can yield tighter results.The technique reported in [29] is based on a simple source-level timing schema, and it is fairlystraightforward to implement in a tool. In [13] another approach for more accurate timing was pro-posed; the resulting tool was able to analyze micro-instruction streams using machine-descriptionrules, and thus it was retargetable to various architectures. On the other hand, neither approach ad-dresses the problem of predicting architecture-speci�c timing behavior due to the various latenciesinherent in memory hierarchies and pipelines.New results have begun to account for this timing variance. Zhang et al. [40] presented a timinganalyzer based on a mathematical model of the pipelined Intel 80C188 processor. This analysismethod is able to take into account the overlap between instruction execution and fetching, which isan improvement over schemes where instruction executions are treated individually. In [31] Arnoldet al. developed a timing prediction method called static cache simulation to statically analyzememory and cache reference patterns. A similar but more advanced approach was reported in [23].While the latter approach is able to predict pipeline stalls as well, both essentially rely on attributegrammars [2] to propagate cache hit information backward in a
ow graph.However, no static timing tool is precise enough to be used with complete con�dence for de-veloping production-quality software. Moreover, even sophisticated timing analysis methods suchas [23, 31] are not appropriate for �ne-grained instruction timing. In Section 3.3 we explain howwe can e�ectively use these tools in spite of the limitations, by also taking advantage of softwarepro�ling, as well as static timing prediction. Speci�cally, our slicing technique does not require anystatic analyzer: it can be used to �rst transform the program, with the timing carried out later bya runtime pro�ler.Remainder of the Paper. The remainder of the paper is organized as follows. In Section 2 wemotivate our transformation algorithm via a high-level characterization of discrete-control servo-loops, and we describe some typical scheduling methods used to dispatch them. In Section 3 weprovide a technical treatment of program slicing that forms the crux of our transformation. InSection 4 we give an overview of new scheduling methods for the TCEL task model, concentratingon an algorithm that was recently developed for it by researchers at York [5].5

In Section 5 we put the analysis method to use { and harness it in our own priority orderingalgorithm. The algorithm decides which are the best tasks to get sliced, and determines the resultingpriority order for the entire task set. To demonstrate the e�ectiveness of this algorithm we showthe result of a small study we conducted on a task set drawn from an avionics platform.In Section 6 we describe our prototype implementation, and we conclude the paper in Section 7.2 Overview of the ApproachAs we have seen in Figure 2, \schedulability" is, by de�nition, a key metric that drives our real-timetask slicing, and thus it requires cooperation between the real-time scheduler and the compiler tool.But this presents two competing demands: (1) it is desirable to maintain the traditional separationof concerns between compilation and scheduling; and (2) schedulability depends on complex taskinteractions that are often exposed at runtime.In this section we show how real-time task slicing satis�es these demands. In doing so, we discussthe characteristics of a sample target domain { discrete control applications. Since discrete controlsoftware possesses many representative properties that can be found in other applications (e.g.,multimedia, vision, etc.), this discussion has close analogues in other types of real-time systems.2.1 Characterization of Discrete Control SoftwareMany discrete control algorithms possess computations that �t a �xed-rate algorithm paradigm [20],i.e., control-loops which execute repetitively with �xed periods. During each period, the physicalworld measurement data are sampled, and then actuator commands are computed. Meanwhile, aset of states is updated based on the current state and the sampled data.The dynamic behavior of a �rst-order discrete control system can be expressed by the followingequations: Outputk = g(Statek; Inputk)Statek+1 = h(Statek ; Inputk)In these equations, Inputk, Statek, and Outputk respectively represent the input, current state,and output of the kth period, while g is an output generation function and h is a state evolutionfunction.Control equations are thought of as simultaneous relationships (and not as a computationprocedure); thus the functions g and h can be implemented in a variety of di�erent ways. Theusual practice is to choose a single ordering, and then to code it up as a cyclic control-loop. Theactual loop structure is driven by one's personal programming style, or perhaps the availability ofgeneric code modules. But regardless of the choice (unless the underlying control laws are stateless),6

g and h mandate key precedence constraints, denoted by \�":Inputk � OutputkStatek � OutputkInputk � Statek+1Statek � Statek+1The typical way to enforce these constraints is to use the \code-based" semantics, and ensurethat each iteration of the control-loop completes by the end of its period. This means that thek + 1st iteration starts only after the kth iteration ends. Figure 3 illustrates the e�ect, while thekth iteration is \blown up" in Figure 4.
k � 1st kth period k + 1st k + 2ndInputk OutputkFigure 3: Dynamic behavior of a periodic control-loop.

Task at the kth periodInputk OutputkStatek Statek+1Figure 4: Task instance at the kth period.2.2 Fixed-Priority Preemptive SchedulingIn any nontrivial system, there are usually many such tasks that share the CPU and other resources.Thus they must be scheduled in a way that allows each of them to adhere to their timing constraints.7

This is often done via a �xed-priority, preemptive dispatcher, not only because these schedulers caneasily support periodic servo-loops, but also because they possess e�cient, o�ine analysis methods.Rate-monotonic scheduling, originally developed by Liu and Layland, was the �rst well-knownalgorithm of this kind. In their seminal paper [25] they proposed a priority assignment algorithm, inwhich a task with the shorter period is assigned the higher priority (hence the name rate-monotonicscheduling, or RMS). They also showed that such priority assignment is optimal in the sense thatwhenever it fails to �nd a feasible priority ordering, neither can any other static priority ordering.However, their algorithm is applicable only to the periodic task model where tasks have �xedperiods, deadlines are equal to periods, and tasks are totally independent of each other.Recent research has made signi�cant enhancements to this model, enhancements which relaxedthe original restrictions. In [22] Leung and Merrill showed that a deadline-monotonic priorityassignment is also optimal where deadlines may be shorter than periods. In [32] Sha et al. presentedtwo protocols which enable tasks to interact via shared resources, while still guaranteeing thetasks' deadlines. Most recently, a group of researchers at the University of York developed a setof analytical techniques which can provide schedulability tests for broad classes of tasks, includingthose whose deadlines are greater than their periods [4, 35, 33].In this work we choose the following York notation, mainly due to its generality:� � = f�1; �2; : : : ; �ng denotes a set of n tasks to be scheduled.� Ti denotes the period of task �i.� Di denotes the deadline of task �i, relative to the beginning of the current frame.� ci denotes the worst-case execution time of �i.If we wish to determine the schedulability of a task �i, we use what is called response time analysis{ de�ned as the time between when a request for �i arrives, and when �i �nishes its executionservicing the request. If we can con�rm that the maximum response time of �i is no greater thanDi, we can guarantee that �i will meet its deadline even in the worst-case. We �rst consider thetypical \code-based" case, where Di � Ti.Let Ri denote the maximum response time of task �i. Then Ri is computed as shown below.Ri = ci + X�j2hp(i)dRiTj ecj (Eq 1)where hp(i) is the set of higher priority tasks than �i. Observe that Ri is composed of two compo-nents, namely execution time ci and interference. The interference, the second term of Eq 1, is theamount of time during which �i is preempted by the higher priority tasks in hp(i) since the arrivalof its request. As Eq 1 is a recurrence equation on Ri, an iterative algorithm can compute Ri byinitially assigning it ci, and then generating new values until it converges on a �xpoint (or fails).But we need a method where deadlines can be longer periods, i.e., where there may be tasks of8

the form �i such that Di > Ti. In this case Eq 1 is not su�cient, since uncompleted iterations of �ican now interfere with the current one. Thanks to [35], the following general equation can be usedinstead. Ri = maxq=0;1;2;:::fri;q � q � Tig (Eq 2)where ri;q = (q + 1)ci + X�j2hp(i)dri;qTj ecjevery 16msfL1: input(Sensor, &data);L2: if (!null(data))fL3: t1 = F1(state);L4: t2 = F2(state);L5: t3 = F3(data);L6: t4 = F4(data);L7: state = F5(t1, t2, t3);L8: cmd = F6(t1, t3, t4);L9: output(Actuator, cmd);gL10: status dump(\log�le", cmd, state);gFigure 5: TCEL program for task �2.Consider the case of three periodic tasks, where the source of task �2 is given in Figure 5.Task Execution Time Period Deadline�1 c1 = 400 T1 = 1000 D1 = 1000�2 c2 = 400 T2 = 1600 D2 = 1600�3 c3 = 570 T3 = 2500 D3 = 2500Since the periods are equal to the deadlines, rate-monotonic priority assignment is a natural choice.In the above table the row order corresponds to the priority order; i.e., �1 is assigned the highest9

priority. We can carry out the response time analysis for these tasks using Eq 1 as follows:For �1: R1 = 400 < D1 = 1000For �2: R2 = 400 + d800=1000e400 = 800 < D2 = 1600For �3: R3 = 570 + d2570=1000e400+ d2570=1600e400 = 2570 > D3 = 2500Observe that the two high priority tasks �1 and �2 are schedulable, while �3 is not. (R3 is greaterthanD3 when �3 runs at priority 3.) In an e�ort to make the task set schedulable, we might try somehacking: e.g., by promoting �3 to the highest priority level. Although this makes �3 schedulable, itdoes not achieve the desired schedulability, since �2 will now be unschedulable. Indeed, since therate-monotonic assignment is optimal, no �xed priority assignment will su�ce here { unless thecode-based semantics is abandoned!The reason the above task set is unschedulable is obvious: the computation demands of �3exceed the available time. The simulated time line given in Figure 6 pictorially illustrates anunschedulable instance of �3.
T3 = 2500�3 �3 �3Preempted Preempted Deadline Miss�1 �2 �1 �1�21000 2000Figure 6: Simulated time line for the example task set.2.3 Scheduling with Compiler TransformationsWhen a system is found to be unschedulable, current engineering practice forces programmers tomanually pick some critical tasks from the task set, and then to hand-optimize them. Such system-tuning is often repeated many times, until the entire task set �nally achieves schedulability. Weaim to ease this process by providing a semi-automatic task transformation method, real-time taskslicing.Real-time task slicing is based on simple observation:Traditional real-time scheduling techniques implicitly assume that the entire control-loop10

�nish by its deadline. But the high-level TCEL semantics mandates that only the ob-servable event-generating operations be �nished within the originally speci�ed deadline.This observation leads us to the following method. We decompose a task � into two fragments { onecontaining all observable event operations, and the other all remaining local operations. We callthe former the IO-hander and the latter the state-update component. We denote them by � IO and�State, respectively. Figure 7 demonstrates the decomposition of the control-loop task originallyshown in Figure 4.After the decomposition, we ensure that the IO-handler will execute within its allowable timeframe. On the other hand, we may postpone the execution of the state-update part under the worst-case task phasing. Finally, we maintain precedence constraints between � IO and �State, originallyinduced by the task's data and control dependences.IO Handler State-Update IO HandlerInputk OutputkStatek Statek+1Figure 7: Decomposed task at the kth period.The task decomposition itself is carried out by static slicing. As we stressed above, we putthe greatest emphasis on preserving the timing behavior of observable events and the precedenceconstraints derived in Subsection 2.1.But before systematically presenting our slicing procedure, we show its ultimate e�ect on ourexample task set. Assume that slicing �2 yields the greatest bene�t in schedulability. We thendecompose �2's code into IO-handling � IO2 and state-update �State2 , as shown in Figure 8. Theircomputation times are separately calculated as follows:cIO2 = 2:2ms; cState2 = 1:9msNote that the sum of the two execution times is slightly greater than the original execution time4.0ms of �2. This is due to replication code, additional register loads, etc. { points which we revisitshortly. 11

/� Subtask � IO2 �/input(Sensor, &data);c = !null(data);if (c)f t1 = F1(state);t3 = F3(data);t4 = F4(data);cmd = F6(t1, t3, t4);output(Actuator, cmd);g
/� Subtask �State2 �/if (c)f t2 = F2(state);state = F5(t1, t2, t3);gstatus dump(\log�le", cmd, state);Figure 8: Two decomposed subtasks of task �2.To enforce that the precedence constraints we splice them together via sequential composition.The net result is the following execution behavior.� IO2 ! �State2 ! � IO2 ! �State2 ! : : :Our runtime support must guarantee one instance of � IO2 within each T2 time-frame; on the otherhand, it can let iterations of �State2 slide between period boundaries.3 Automatic Task Decomposition by Program SlicingThe idea behind the task decomposition is, as discussed in Subsection 2.3, to accept a task and thenslice it into two code components: one containing all observable events, and the other containingonly local state-update operations. Many factors make this a di�cult compiler problem, amongwhich are intertwined threads of control, nested control structures, complex data dependencesbetween statements, procedure calls in the task code, etc. To concentrate on the issue at hand {i.e. real-time { in this paper we made the following simplifying assumptions.� Function calls are inlined.� Loops are �nite.� The programs can be translated into a form in which all false data dependences, such asoutput dependences and anti-dependences, are eliminated.The �rst assumption allows us to avoid interprocedural slicing [16]. The next two assumptionssimplify the problems induced by false data dependences. Such dependences are caused by variablereuse rather a requirement for data integrity, and real-time slicing will be much more e�ective if12

they can be minimized. To do so, we can potentially use a code transformation algorithm such asthe rename transformation in [7], the static single assignment (SSA) form translation in [6, 15]. Inorder to avoid loop-unrolling, we could potentially use dependence-breaking methods, e.g., scalarexpansion [3].However, it is practically impossible to massage a program into a form that is entirely free offalse dependences, mainly due to the existence of aliases and pointers. We will get back to thisissue shortly, in Section 3.3.3.1 The Program Slicing AlgorithmConceptually a slice of program P with respect to program point p and expression e consists of P 'sstatements and control predicates that may a�ect the value of e at point p. We call a pair hp; eia slicing criterion, and denote its associated slice by P=hp; ei. The result is that we can executethe slice P=hp; ei to obtain the value of e at location p. Recall our periodic controller task �2 ofFigure 5. The following fragment is the slice �2=hL9; cmdi.L1: input(Sensor, &data);L2: if (!null(data))fL3: t1 = F1(state);L5: t3 = F3(data);L6: t4 = F4(data);L8: cmd = F6(t1, t3, t4);L9: output(Actuator, cmd);gStatements L1, L3, L5, L6 and L8 are included in the slice, because variable \cmd" depends ontheir computations (this is called data dependence). Also, statement L9 is included because itgenerates an observable event.2 Finally, the predicate on line L2 is included, because the executionof statements L3, L5, L6, L8 and L9 (hence the value of \cmd") depends on the boolean outcomeof the predicate (this is called control dependence).Thus the computation of slices is based on data dependence as well as control dependence. Inthis regard, using a program dependence graph [9, 16, 28] is ideal, since it represents both types ofdependences in a single graph. The program dependence graph is de�ned as follows.De�nition 3.1 The program dependence graph is a directed graph PDG = (V;E), where2We intentionally include L9, as will be discussed in Algorithm 3.1.13

� The vertices V represent the task's statements; i.e., assignments, control predicates andobservable statements (such as output and input). In addition there is a distinguishedvertex \entry," which represents the root of the task.� The edges E are of two sorts. An edge n1 c! n2 denotes a control dependence between n1and n2. That is, either (1) n1 is an entry vertex and n2 is not nested within any loop orconditional, or (2) n1 represents a control predicate and n2 is immediately nested within theloop or conditional whose predicate is represented by n1. An edge n1 d! n2 denotes a datadependence. That is (1) n1 de�nes variable v, and n2 uses v, and (2) control can reach n2after n1 via an execution path along which there is no rede�nition of v.We de�ne \p)� q" to mean that node p can reach node q via zero or more control dependenceedges or data dependence edges.We assume that the underlying programming language is \perfectly structured." That is, anytwo statements S1 and S2 in the program are in one of the following forms:1. S1 is contained in S2;2. S2 is contained in S1; or3. S1 and S2 are disjoint.Since many real-time programming languages allow only \structured" programs without unre-stricted gotos3, this does not impose serious restrictions on our approach. As a consequence, ourde�nition of control dependence is simpler than that found in [9].The program dependence graph PDG of our controller task �2 is shown in Figure 9.The slice of program P with respect to program point p and expression e (i.e., P=hp; ei) canbe obtained through a traversal of P 's program dependence graph. We can extend the de�nitionof a program slice for a set of slicing criteria C in a way that P=C = Shp;ei2C P=hp; ei. A simplealgorithm to compute the slice is given below. In the algorithm the program point p correspondsto a vertex of PDG.Algorithm 3.1 Computes the slice P=hp; ei:Step 1 Compute reaching de�nitions RD(p; e).Step 2 Compute the slice by a backward traversal of PDG such thatP=hp; ei = fm j 9n 2 RD(p; e) : m)� ng [fpg:Figure 10 shows the graph that results from taking a slice of the program dependence graph inFigure 9 with respect to criterion hL9; cmdi.3We disallow break statement as well, since it is a special instance of goto.14

if(!null(data))

send(−, cmd)

Entry

control dependence
data dependence

t1=F1(state) t2=F2(state) t3=F3(data) t4=F4(data)

status_log(−, cmd, state)

state =
F6(t1,t2,t3)

cmd =
F5(t1,t3,t4)

receive(−, &data)

Figure 9: Program dependence graph.
if(!null(data))

send(−, cmd)

Entry

t1=F1(state) t3=F3(data) t4=F4(data)

receive(−, &data)

cmd =
F5(t1,t3,t4)Figure 10: Slice with respect to criterion hL9; cmdi.15

One of the essential points in using our task decomposition algorithm is to providing right slicingcriteria for the algorithm, so that the computed I/O slice of a task \covers" all the observablebehaviors of the original task. Criteria selection can be automated by means of the observableevent speci�cation, or it can be manually performed by way of graphical user interface.Let CIO(�) be a set of slicing criteria for I/O slice of task � . Then the task decompositionalgorithm is given below:Algorithm 3.2 Decompose task � into � IO and �State:Step 1 Compute the slice of � with respect to CIO(�) using Algorithm 3.1. The generatedslice �=CIO(�) becomes � IO.Step 2 Delete from � all repeated statements of � IO except for the conditional statements.The remaining code becomes �State.Figure 8 shows the two subtasks � IO2 and �State2 of �2 computed by Algorithm 3.2 with slicingcriteria CIO(�) = fhL1; datai; hL9; cmdig.3.2 Slicing, Splicing and Timing AnalysisProgram slicing may easily increase worst-case execution times of tasks for a number of reasons:(1) control structures are replicated and will be executed twice; (2) splitting a basic block mayincrease the number of register load and store operations [2]; and (3) worst-case execution timepaths of the two resultant subtasks may be incorrectly derived. We take a close look at the lastfactor, since it tends to take up the greatest portion of the increase, though it is mainly an artifactof overly-conservative timing prediction.After a conditional of a task is sliced and then spliced, we must carefully correlate the dupli-cated condition predicates. If not, our static analysis will give us a wildly conservative worst-caseexecution time. Figure 11 pictorially depicts this case. The original task � consists of one condi-tional, one branch of which is IO-generating code \IO," and the other is state-update code \ST."The predicted worst-case execution time of � is:wt(�) = wt(c) + maxfwt(IO); wt(ST)g:In Figure 11 � is sliced into two subtasks � IO and �State. Their worst-case execution times are alsogiven below. wt(� IO) = wt(c) + wt(IO)wt(�State) = wt(c) + wt(ST):Consequently, the worst case execution time of the transformed task � 0 (� � IO; �State) may bemeasured as: wt(� 0) = 2 �wt(c) + wt(IO) + wt(ST);16

which is much larger than wt(�).

c c c� � IO �StateIO STATE IO STATEFigure 11: Slicing a conditional.However, tighter worst-case execution time can be easily obtained by correlating the conditionalpredicate of the subtask � IO with that of the subtask �State. For example, if \IO" (in Figure 11) isexecuted in the subtask � IO, then we know that the empty left branch will be executed in subtask�State. Thus wt(� 0) can be re�ned as follows:wt(� 0) = 2 �wt(c) + maxfwt(IO); wt(ST)gFor the given two subtasks of �i, we carry out the following simple steps which is based on thenotion of predicate correlation to compute tight worst-case execution times of subtasks � IOi and�Statei .Step 1 Calculate c0i by running a timing tool with the code of � 0i .Step 2 Calculate cIOi by running a timing tool with the code of � IOi .Step 3 Calculate cStatei such that cStatei = c0i � cIOi .This will serve as a good rough estimate for the transformed task code. Then we can use a pro�lerto account for the two other factors that incur timing overhead, as we discuss in the next subsection.3.3 Practical ConsiderationsAs we have stated, the above presentation of real-time slicing is rather idealized; we abstractedout some of the practical considerations that would have confused our focus. On the other hand,our success is contingent upon the inherent limitations of static program analysis. We faced inlimitations when building our prototype slicer tool (Section 6), which uses an existing dependenceanalyzer, as well as a course-grained static timing analyzer. In the following discussion, we elaborateon some of these problems, and point out some ways of working around them.17

In the preceeding subsection, we assumed that programs are rendered in a form where allfalse dependences are e�ectively removed. Fortunately the correctness of our approach does nothinge on this assumption, which is a good thing { since static data-
ow analysis is incapableof disambiguating all pointer aliases (at worst an undecidable problem). The abovementionedtechniques of inlining and loop unrolling partially assuage this problem; inlining can obviate doingcomplex, interprocedural analysis, while unrolling (and the associated renaming) can help exposeoutput and anti-dependences. Of course these and similar methods can dramatically increase codesize, which will in turn lead to more pressure on memory. The associated trade-o� analysis is bestmade by the developers of the system.But for the sake of soundness, we have to be conservative. That is, in practice we only removefalse dependences between those assignments that contain statically analyzable variables, and treatremaining \dependences" as true,
ow dependences. At worst, we end up with code that appearstotally unsliceable { when it may, in fact, be amenable to slicing. Again, the developers can be ofenormous help, by manually breaking some of the false dependences.We also note that dependence analyzers are improving at a fast rate (see [14, 30]), and ouralgorithm will improve along with them. For example, if we incorporate the recent advances inloop dependence analyses such as those in the Omega Test [30], we may not have to unroll loopsto slice a real-time task. Moreover, we can obtain better slices for loops using techniques like loopdistribution.We also rely on achieving reasonable execution time bounds for the code segments. But in theface of more complicated architectures, getting tight, static timing bounds is getting more di�cult{ due to the interplay between pipelines, hierarchical caches, shared memories, register windows,etc.Thus we have adopted a two-tier approach to deal with time predictions. We make use of atiming analyzer for a rough, initial estimate. Then after program slicing is completed, we verify theresult with a more sophisticated pro�ling tool, that actually runs the program. Performing suchre-timing is especially important in a cached memory structure, where code scheduling will alwayschange the instruction alignment.4 Scheduling the Sliced TasksNow assume we have a set of n tasks �, numbered �1 to �n. If some of the tasks are sliced, how dowe best schedule � to ensure that the event-based semantics are maintained? Any such scheme isdependent on two elements:(1) A scheduling policy that can exploit our task model; i.e. while the �State components canmiss their original deadlines, the precedence constraints between instances � IO and �Statemust be maintained. 18

(2) An o�ine schedulability analyzer for the given scheduling policy.In [10] we present a RMS-based method, in which each process receives two priorities, one for � IOand one for �State. Its principal strength is a simple dual-priority assignment rule, and an e�cientanalysis test to determine schedulability. Its weakness is that the online component lacks thesimplicity found in pure, static priority scheduling. The dual-priority scheme mandates a dynamicpriority-exchange mechanism, which in turn requires additional kernel support.So the following question arises: when can a set of transformed TCEL tasks be scheduled undera fully preemptive, static priority scheme? Burns [5] provides an answer to this question afteridentifying a simple, but essential fact about the TCEL task model. That is, whenever we let atask's deadline be greater than its period, this represents a relaxation of the classical rate-monotonicrestrictions put forth in [25]. Thus the rate-monotonic priority assignment may not be the optimalone.Given set �0 of transformed TCEL tasks� 01 = � IO1 ; �State1� 02 = � IO2 ; �State2...� 0n = � IOn ; �Statenit turns out the appropriate priority assignment is not only dependent on the deadlines (as in thepure deadline-monotonic model), but also on the respective execution times of each IO-handler andstate-update component. In [5] Burns presents a search algorithm to generate the feasible static-priority order { or to detect when no such order exists. Thus the approach includes the followingcomponents.Online Scheduler: This is a simple, preemptive dispatching mechanism, in which priority \ties"are broken in favor of the task dispatched �rst. Thus, for example, a task's current iteration will�nish before the next one starts.O�ine Analyzer: The analyzer is constructive, in that it produces a feasible priority assignmentif one exists. If no such assignment exists, perhaps the programmer may have to go back to thesystem design step and consider more aggressive system-tuning.For given task set � = f�1; �2; : : : ; �ng Burns' priority assignment algorithm accepts the pre-processed task set �0 = f� 01; � 02; : : : ; � 0ng as its input, where � 0i is a sliced version of �i. It then beginslooking for a task that can run at the lowest priority (level n)4. After such a task, say, � 0k is found,the algorithm proceeds to search the new task set �0 � f� 0kg for the second lowest priority task,and so on. There is an important fact that leads to the optimality of this algorithm: while a taskis being tested for priority level p, all p � 1 tasks whose priorities have not yet been assigned are4For n tasks, n denotes the lowest priority level, and 1 the highest.19

assumed to run at higher priorities. In �xed-priority preemptive scheduling, since a lower prioritytask can never preempt the higher priority tasks, selections made for priority levels p or below willnot a�ect those above p.During this priority ordering, the schedulability test of � 0i (� � IOi ; �Statei) for priority p yieldsthe following two conditions:(1) Whether � IOi can always run within time Di at priority p, and(2) Whether there exists some integer q such that q consecutive iterations of � 0i can run withinq � Ti +Di at priority p where q � 1.Condition (1) is required by the TCEL's semantics; condition (2) accounts for the case where atleast one iteration of �Statei is delayed. The schedulability test boils down to a check to see if themaximum response time of � IOi is no greater than Di in either case.The maximum response time (denoted by RIOi) of � IOi with respect to hp(i) is computed asbelow: ri;q = q(cIOi + cStatei) + cIOi + X�j2hp(i)dri;qTj ecjRIOi = maxq=0;1;2;:::fri;q � q � Tig (Eq 3)We must subtract q � Ti from ri;q to obtain the real response time, since ri;q is measured from thestart of the qth period prior to the current period. Although q is denoted as an unbounded numberin Eq 3, it can be trivially shown that there exists bounded response time RIOi as long as utilizationof hp(i) [f�ig is less than 100% [35].On the other hand, q is bounded below by r0i;qTi+Di wherer0i;q = (q + 1)(cIOi + cStatei) + X�j2hp(i)dr0i;qTj ecj :The intuition behind the equation is that the execution timeline of � 0i repeats only after � 0i gets tocomplete within its proper time-frame.Now recall the unschedulable task set we showed in Subsection 2.2. Suppose that only �2 wassliced. This requires priority rearrangement among the tasks, since RMS is no longer optimal inthe transformed task model. The result of new priority ordering is as follows:�3 � �1 � � 0220

In the next section we show how this ordering is obtained. But given that we have an ordering, wecan check it using Eq 3.For �3:R3 = 570 < D3 = 2500For �1:R1 = 400 + d970=2500e570 = 970 < D1 = 1000For � 02:r02;1 = 2 � 410 + d2750=2500e570+ d2750=1000e400 = 2750 < T2 +D2 = 3200r2;0 = 220 + d1590=2500e570+ d1590=1000e400 = 1590r2;1 = 410 + 220 + d2400=2500e570+ d2400=1000e400 = 2400RIO2 = maxf1590; 2400� 1600g = 1590 < D2 = 1600As a result, the task set is shown to be schedulable under the new priority assignment.5 Priority Ordering with Task SlicingIn this section we present the missing link; i.e., the algorithm that determines which tasks to slice,and which to leave intact. The priority assignment algorithm in [5] expects that all tasks in � aresliced before they are submitted for priority assignment. However, it is typically not desirable toslice all tasks in the application due to execution time overhead incurred. As an example, considera task set whose utilization is 0.96. Suppose that task slicing increases the worst-case executiontimes of most tasks by 5%. If we naively slice them all, this will result in utilization of 1.008, andwill render the task set permanently unschedulable. Moreover, since we view slicing as a meansof tuning an application, it should selectively be applied to tasks which will realize the greatestbene�t.To address this problem, we present an algorithm that not only �nds a feasible task priorityordering, but also picks only a small subset of tasks to slice. For a given ordered list of tasks� = [�1; �2; : : : ; �n], we make the following de�nitions.� sliced(�i) : a boolean variable denoting whether or not �i is sliced.� c0i = cIOi + cStatei .We refer to a certain permutation �0 of � as a con�guration, i.e. �0 denotes a priority ordering5 ofthe tasks in �, and sliced(�i) is de�ned for all �i 2 �0. There are n! di�erent priority orderings, and2n possible slicing choices. Thus the algorithm's job is to choose a task con�guration among 2n �n!distinct ones in an e�cient manner.5The �rst task in the list has the highest priority. 21

De�nition 5.1 (Feasibility) For a given �, a con�guration �0 is said to be feasible i� all tasksin �0 meet their deadlines under the priority ordering and slicing choice denoted by �0.5.1 Feasibility TestOur problem is to slice for schedulability, which is complicated by the fact that for a task �i,ci 6= cIOi + cStatei . Thus it seems inevitable to search the entire solution space of size 2n �n! in orderto �nd a feasible task con�guration.Fortunately, there are cases where we can make a slicing decision without exhaustively exploringthe search space. We rely on the response time analysis summarized by equations Eq 2 and Eq 3to �nd these cases. To be speci�c, we make use of the following schedulability test.Feasible(L; �k) �if :sliced(�k) then maxq=0;1;2:::frk;q � q � Tkg � Dkelse maxq=0;1;2:::fr0k;q � q � Tkg � DkwhereS = f�i 2 L j sliced(�i)g;rk;q = (q + 1)ck +P�j2L�Sd rk;qTj ecj +P�j2Sd rk;qTj ec0j ; andr0k;q = q � c0k + cIOk +P�j2L�Sd r0k;qTj ecj +P�j2Sd r0k;qTj ec0j :The proposition \:sliced(�k) ^ Feasible(L; �k)" denotes that the unsliced �k is schedulable withtasks in L running at higher priorities. Similarly, \sliced(�k)^Feasible(L; �k)" means that �k, aftergetting sliced, is schedulable with tasks in L.5.2 The AlgorithmWe now present the selection algorithm, which uses the following variables:� � = [�1; �2; : : : ; �n]: The input task list, initially ordered in nondecreasing order of the dead-lines. Such a deadline monotonic ordering is desirable as a starting point, since most tasks,except for a small number of tasks to be sliced will end up consistent with it.� Parameters L1 and L2: L1@L2 holds the current list of tasks, where \@" denotes the listappend operation. In every invocation, Search(L1;L2) returns either the priority-ordered listof the tasks, or false if it cannot �nd any feasible ordering among them.In every invocation, Search attempts to assign the last task in L1 (variable \�" in Figure 12) thepriority level jL1j+ jL2j. The condition on line (1) denotes that the algorithm has already generateda complete task con�guration of �. 22

The condition on line (2) means that the algorithm has checked all tasks in lists L1 and L2 forpriority level jL1j+ jL2j, but it can assign none of them that priority. Thus false is returned.Otherwise, the algorithm attempts to �nd a feasible priority assignment for tasks up to thecurrent priority (line (4)). If this cannot be done without � , then � is infeasible at the currentpriority. In this case the tail recursion is invoked on line (12), which will attempt to �nd anotherordering.But when the higher priority tasks are schedulable, � is checked for feasibility with them. If so,a new ordering L@[�] is returned. Otherwise, the algorithm slices � , and sees if � 0 is feasible, afterwhich it returns L@[� 0].In spite of its worst-case complexity, the algorithm computes results very fast in almost allinteresting cases. The reason is because it attempts to �rst assign tasks deadline monotonic prior-ities, and most of the tasks end up having priorities consistent with this order. We also note thata task is only sliced on demand, when its unsliced version cannot be scheduled within the currentcon�guration. algorithm PriAssign(�)beginreturn(Search(�; []));endlist function Search(L1;L2)case(1) when L1 = L2 = []: return([]);(2) when L1 = [];L2 6= []: return(false);(3) when L1 = L01@[�]:(4) L = Search(L01@L2; []);(5) if L 6= false then(6) if Feasible(L; �) then(7) return(L@[�]);(8) else(9) � 0 = Slice(�);(10) if Feasible(L; � 0) then(11) return(L@[� 0]);endend(12) return(Search(L01; [�]@L2));endFigure 12: Algorithm for priority ordering with slicing decision.23

5.3 A Larger ExampleIn a somewhat larger example, we adapted the periodic tasks described in [26, 35], factoring in dis-play server activity, as well as the IO and state-update components (while modifying the executiontimes accordingly). The adapted task set had a utilization of 0.836, and it was unschedulable underany static priority ordering. The resultant timing speci�cation of our task set is given in Table 1,where the time unit is 1 microsecond.We make the following assumptions for the task set, which we have found to be representative.1. Only small portion of a task { no more than 25 % of the original task code in terms of theworst case execution time { can be sliced.2. Slicing incurs no more that 5 % increase in a task's worst-case execution time.T D c cIO cState�1 1000 1000 51 51 0�2 25000 5000 2000 1600 500�3 25000 5000 1000 800 250�4 40000 5000 2000 1600 500�5 50000 20000 3000 2400 750�6 200000 20000 3000 2400 750�7 50000 25000 5000 4000 1250�8 59000 25000 8000 6400 2000�9 80000 80000 9000 7200 2250�10 80000 80000 2000 1600 500�11 100000 80000 8000 6400 2000�12 100000 100000 5000 4000 1250�13 200000 100000 3000 2400 750�14 200000 100000 1000 800 250�15 200000 120000 1000 800 250�16 200000 140000 2000 1600 500�17 1000000 1000000 1000 800 250�18 1000000 1000000 1000 800 250Table 1: Example task set.The priority ordering algorithm chose to slice tasks �4; �7 and �16, thereby making the task setschedulable. The utilization grew slightly to 0.844. We show the result in Table 2, where \R"denotes the maximum response time of an unsliced task, and RIO and RState respectively representthe maximum response times of the two components of an sliced task.6 TimeWare/SLICE: the Prototype ImplementationOur prototype tool is called TimeWare/SLICE, and it harnesses the \Search" algorithm to deter-mine which tasks should be sliced. However, the programmers get to graphically pick the slicingcriteria, and they can \veto" any slicing decision.24

T D c c0 R RIO RState Sliced?�1 1000 1000 51 51 51 0 0 n�2 25000 5000 2000 2100 2153 0 0 n�3 25000 5000 1000 1050 3204 0 0 n�4 40000 5000 2000 2100 0 4855 5406 y�6 200000 20000 3000 3150 8559 0 0 n�5 50000 20000 3000 3150 11712 0 0 n�8 59000 25000 8000 8400 20171 0 0 n�7 50000 25000 5000 5250 0 24375 28829 y�9 80000 80000 9000 9450 38339 0 0 n�10 80000 80000 2000 2100 42643 0 0 n�11 100000 80000 8000 8400 71372 0 0 n�12 100000 100000 5000 5250 79780 0 0 n�13 200000 100000 3000 3150 96747 0 0 n�14 200000 100000 1000 1050 97798 0 0 n�15 200000 120000 1000 1050 98849 0 0 n�16 200000 140000 2000 2100 0 139890 140441 y�17 1000000 1000000 1000 1050 141492 0 0 n�18 1000000 1000000 1000 1050 142543 0 0 nTable 2: Priority assignment with program slicing.For a variety of reasons, we have found this semi-automated strategy to best �t our problemdomain. First, users can help tighten both the automatic dependence analysis, by using assertionsto manually break false dependences that our static analyzer cannot handle (e.g., most pointeraliases). This results in better slices, and greater possibility of achieving schedulability.In a similar manner, the users can tighten the timing analysis by running their selected programsthrough special measurement tools { and not the generic timing analyzer. Moreover, enhanced de-pendence analysis will also increase the precision of timing estimates, since it will enable correlatingmore conditional blocks with aliased controlling predicates (see Section 3.2).But the most important reason to provide intensive user interaction is to maintain traceabilityto the original source code. This argues for a front-end that permits the programmer to interactwith the tool during each step of system-tuning. With our transformation engine as its foundation,a graphical interface allows a programmer to selectively apply the transformations { and also remaininformed of the results.TimeWare/SLICE Functionality. The key features of the tool are as follows:� It computes a program slice with respect to a given slicing criterion.� It present the code at the source-level.� It allows users to save a computed slice, and to carry out operations between the currentand the saved slices. These operations include intersection between slices, union of slices andsubtracting one slice from another. These commands are used to segregate special threadsfrom given task code. 25

� It automatically generates the transformed task code.TimeWare/SLICE Tool Screens. A source program is displayed on the two tool windows: onecalled the primary window and the other the scratch-pad window. Figure 13 demonstrates a possiblelayout on the tool screen of a SUN Sparc station equipped with a 17-inch display.The primary window provides users with a workplace where they can pick a slicing criterion andget the slicing result. The result is shown as a set of highlighted source lines on the window. Thescratch-pad window provides with a bu�er space where a user can temporarily store a pre-computedslice. When a user carries out operations between two slices (one on the primary window and theother on the scratch-pad window), the primary window works as if it were an accumulator. Thatis, the primary window provides the �rst operand and gets the result.

Figure 13: Tool screen of TimeWare/SLICE.Figure 13 shows the tool's display of the two slices in our example, where we have substitutedF5 and F6 with simple arithmetic operations. Figure 14 shows the transformed code that wasgenerated by splicing the two slices together. 26

Figure 14: Transformed code.Implementation. The prototype implementation of TimeWare/SLICE is based on a dynamicprogram slicing tool SPYDER developed at the Purdue University [1]. SPYDER is a programdebugging tool relying on dynamic slicing, and it consists of two components: a modi�ed version ofGCC (GNU C compiler) and GDB (GNU symbolic debugger). The role of the modi�ed GCC is toproduce the program dependence graph for an input program as well as the object code. SPYDERtraverses the graph to compute a static program slice.We had to tailor the implementation of SPYDER due to the following limitations.(1) It does not allow users to pick a general slicing criterion. Instead, it limits the criterion to avariable name.(2) SPYDER is a program analysis tool, whereas TimeWare/SLICE actually transforms the pro-gram text.(3) SPYDER's static slicer is not complete, which results in incorrect slices being produced. Forexample, the static data
ow analyzer of the modi�ed GCC does not detect rede�nitions of aglobal variable within a function, and SPYDER cannot account for this limitation. We had27

to retool TimeWare/SLICE to conquer this problem.As we described in Section 3.3, our approach to dependence analysis is to be conservative { byassuming that every function call has a potential to rede�ne every global variable. SPYDER'sinterprocedural analysis is limited, and its goal allows it to take an alternative, \optimistic" ap-proach. While our assumptions may result in too large an IO slice, users of TimeWare/SLICE canstill modify it using the editing facilities. But in such a case it is always better to be safe thansorry.As a �nal note, we point out that the implementation of TimeWare/SLICE enjoys all the bene�tsof GNU-based software, the most prominent being its portability to various hardware platforms.7 ConclusionIn this paper we presented an automated system-tuning approach for �xed-priority, preemptivereal-time systems. The approach consists of three interrelated components, namely, a real-timeprogramming language TCEL, a task slicing algorithm, and a new �xed-priority scheduling strategy.The TCEL paradigm helps incorporate a higher level of abstraction into real-time domains. Aswe have shown, TCEL's event-based semantics constrains only those operations that are criticalto real-time operation; i.e., the events denoted in the speci�cation or those derived from it. Mostimportantly, it enables our compiler tools to transform the program.For the underlying scheduling paradigm, we have concentrated on rate-based scheduling, since itis one of the best understood areas in the real-time literature, and one of the most widely embracedmethods by practitioners. Unfortunately, the tradition is disappointing in that one always considersthe \task" as an uninterpreted block of execution time { perhaps with a period, a start time and adeadline, but no other semantics to speak of. We have shown that once we \open up" the task toconsider its event-based semantics, we can automatically convert an unschedulable application intoa schedulable one. We believe that our approach can be used as a �rst-line defense in the tuningprocess, and is certainly preferable to measures such as hand-optimization or re-implementation insilicon { two of the more common remedies.References[1] H. Agrawal, R. DeMillo, and E. Spa�ord. Debugging with dynamic slicing and backtracking.Software Practice and Experience, 23(6):590{616, June 1993.[2] A. Aho, R. Sethi, and J. Ullman. Compilers: Principles, Techniques, and Tools. AddisonWesley Publishing Company, 1986. 28

[3] F. Allen, B. Rosen, and K. Zadeck. the forthcoming Optimization in Compilers. AddisonWesley Publishing Company, 1992.[4] N. Audsley. Optimal priority assignment and feasibility of static priority tasks with arbitrarystart times. Technical Report YCS 164, Department of Computer Science, University of York,England, December 1991.[5] A. Burns. Fixed priority scheduling with deadlines prior to completion. Technical Report YCS212 (1993), Department of Computer Science, University of York, England, October 1993.[6] R. Cytron, J. Ferrante, B. Rosen, M. Wegman, and F. Zadeck. E�ciently computing staticsingle assignment form and the control dependence graph. ACM Transactions on ProgrammingLanguages and Systems, 13:451{490, October 1991.[7] R. Cytron, A. Lowry, and K. Zadeck. Code motion of control structures in high-level languages.In Conference Record 13th Annual ACM Symposium on Principles of Programming Languages,pages 70{85. ACM Press, January 1986.[8] B. Dasarathy. Timing constraints of real-time systems: Constructs for expressing them,method for validating them. IEEE Transactions on Software Engineering, 11(1):80{86, Jan-uary 1985.[9] J. Ferrante and K. Ottenstein. The program dependence graph and its use in optimization.ACM Transactions on Programming Languages and Systems, 9:319{345, July 1987.[10] R. Gerber and S. Hong. Semantics-based compiler transformations for enhanced schedulabil-ity. In Proceedings of IEEE Real-Time Systems Symposium, pages 232{242. IEEE ComputerSociety Press, December 1993.[11] R. Gerber and S. Hong. Compiling real-time programs with timing constraint re�nement andstructural code motion. IEEE Transactions on Software Engineering, May 1995. To Appear.[12] P. Gopinath and R. Gupta. Applying compiler techniques to scheduling in real-time systems. InProceedings of IEEE Real-Time Systems Symposium, pages 247{256. IEEE Computer SocietyPress, December 1990.[13] M. Harmon, T. Baker, and D. Whalley. A retargetable technique for predicting executiontime. In Proceedings of IEEE Real-Time Systems Symposium, pages 68{77. IEEE ComputerSociety Press, December 1992.[14] L. Hendren, J. Hummel, and A. Nicolau. Abstractions for recursive pointer data structures:Improving the analysis and transformation of imperative programs. In Proceedings of the ACM29

SIGPLAN Conference on Programming Language Design and Implementation, pages 249{260.ACM Press, June 1992.[15] S. Hong and R. Gerber. Compiling real-time programs into schedulable code. In Proceedings ofthe ACM SIGPLAN '93 Conference on Programming Language Design and Implementation.ACM Press, June 1993. SIGPLAN Notices, 28(6):166-176.[16] S. Horwitz, T. Reps, and D. Binkley. Interprocedural slicing using dependence graph. ACMTransactions on Programming Languages and Systems, 12:26{60, January 1990.[17] Y. Ishikawa, H. Tokuda, and C. Mercer. Object-oriented real-time language design: Constructsfor timing constraints. In Proceedings of OOPSLA-90, pages 289{298, October 1990.[18] F. Jahanian and A. Mok. Safety analysis of timing properties in real-time systems. IEEETransactions on Software Engineering, 12(9):890{904, September 1986.[19] E. Kligerman and A. Stoyenko. Real-Time Euclid: A language for reliable real-time systems.IEEE Transactions on Software Engineering, 12:941{949, September 1986.[20] J. Krause. GN&C domain modeling: Functionality requirements for �xed rate algorithms.Technical Report (DRAFT) version 0.2, Honeywell Systems and Research Center, December1991.[21] I. Lee and V. Gehlot. Language constructs for real-time programming. In Proceedings of IEEEReal-Time Systems Symposium, pages 57{66. IEEE Computer Society Press, 1985.[22] J. Leung and M. Merill. A note on the preemptive scheduling of periodic, real-time tasks.Information Processing Letters, 11(3):115{118, November 1980.[23] S. Lim, Y. Bae, C. Jang, B. Rhee, S. Min, C. Park, H. Shin, K. Park, and C. Kim. Anaccurate worst case timing analysis for risc processors. In Proceedings of IEEE Real-TimeSystems Symposium, pages 97{108. IEEE Computer Society Press, December 1994.[24] K. Lin and S. Natarajan. Expressing and maintaining timing constraints in FLEX. In Pro-ceedings of IEEE Real-Time Systems Symposium. IEEE Computer Society Press, December1988.[25] C. Liu and J. Layland. Scheduling algorithm for multiprogramming in a hard real-time envi-ronment. Journal of the ACM, 20(1):46{61, January 1973.[26] C. Locke, D. Vogel, and T Mesler. Building a predictable avionics platform in ada: A casestudy. In Proceedings of IEEE Real-Time Systems Symposium, pages 181{189. IEEE ComputerSociety Press, December 1991. 30

[27] V. Nirkhe. Application of Partial Evaluation to Hard Real-Time Programming. PhD thesis,Department of Computer Science, University of Maryland at College Park, May 1992.[28] K. Ottenstein and L. Ottenstein. The program dependence graph in a software developmentenvironment. In Proceedings of the ACM SIGSOFT/SIGPLAN Software Engineering Sympo-sium on Practical Software Development Environments, pages 177{184, May 1984.[29] C. Park and A. Shaw. Experimenting with a program timing tool based on source-level timingschema. In Proceedings of IEEE Real-Time Systems Symposium, pages 72{81. IEEE ComputerSociety Press, December 1990.[30] W. Pugh and D. Wonnacott. Eliminating false data dependences using the Omega test. InProceedings of the ACM SIGPLAN '92 Conference on Programming Language Design andImplementation. ACM Press, June 1992.[31] D. Whalley R. Arnold, F. Mueller. Bounding worst-case instruction cache performance. InProceedings of IEEE Real-Time Systems Symposium, pages 172{181. IEEE Computer SocietyPress, December 1994.[32] L. Sha, R. Rajkumar, and J. Lehoczky. Priority inheritance protocols: An approach to real-time synchronization. IEEE Transactions on Software Engineering, 39:1175{1185, September1990.[33] K. Tindell. Using o�set information to analyse static priority pre-emptively scheduled tasksets. Technical Report YCS 182 (1992), Department of Computer Science, University of York,England, August 1992.[34] K. Tindell, A. Burns, and A. Wellings. Allocating real-time tasks (an np-hard problem madeeasy). The Journal of Real-Time Systems, 4(2):145{165, June 1992.[35] K. Tindell, A. Burns, and A. Wellings. An extendible approach for analysing �xed priorityhard real-time tasks. The Journal of Real-Time Systems, 6(2):133{152, March 1994.[36] G. Venkatesh. The semantic approach to program slicing. In Proceedings of the ACM SIGPLAN'91 Conference on Programming Language Design and Implementation, June 1991.[37] M. Weiser. Program slicing. IEEE Transactions on Software Engineering, 10:352{357, July1984.[38] V. Wolfe, S. Davidson, and I. Lee. RTC: Language support for real-time concurrency. InProceedings of IEEE Real-Time Systems Symposium, pages 43{52. IEEE Computer SocietyPress, December 1991. 31

[39] M. Younis, T. Marlowe, and A. Stoyenko. Compiler transformations for speculative executionin a real-time system. In Proceedings of IEEE Real-Time Systems Symposium, pages 109{117.IEEE Computer Society Press, December 1994.[40] N. Zhang, A. Burns, and M. Nicholson. Pipelined processors and worst case execution times.The Journal of Real-Time Systems, 5(4), October 1993.

32

