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Abstract

In this paper we present an automated, compiler-based technique to help developers synthe-
size correct real-time systems. The domain we consider is that of multi-programmed real-time
applications, in which periodic tasks control a physical systems via interacting with external
sensors and actuators. While a system is up and running, these operations must be performed
as specified — otherwise the system may fail.

Correctness depends not only on each program individually, but also on complex task inter-
actions which are usually exposed at runtime. Errors at this point are usually remedied by a
costly process of instrumentation, measurement and code tuning.

We describe a static alternative to this process, which relies on well-accepted technologies
from optimizing compilers and fixed-priority scheduling. Specifically, when an application is
found to be overloaded, the scheduling component determines good candidate tasks to get
transformed via program slicing. The slicing engine decomposes each of the selected tasks into

”  The unobservable

two fragments: one that is “time-critical,” and the other “unobservable.
part is then spliced to the end of the time-critical code, with the semantics being maintained.
The benefit is that the scheduler may postpone the unobservable code beyond its original dead-
line, which can enhance overall schedulability. While the optimization is completely local, the

improvement is realized globally, for the entire task set.

Keywords: Real-time, programming languages, event-based semantics, compiler optimization,

program slicing, system-tuning, static priority scheduling, priority assignment.

*This research is supported in part by ONR grant N00014-94-10228, NSF grant CCR-9209333, an NSF Young
Investigator Award CCR-~9357850. An earlier version of this paper appeared in preliminary form in the Proceedings
of IEEFE Real-Time System Symposium, (December 1993).



1 Introduction

A real-time application is characterized by the existence of two competing factors: its functional
specification and its temporal requirements. Functional specifications define valid translations from
inputs into outputs. As such they are realized by a set of programs, which consume CPU time.
Temporal requirements, on the other hand, place upper and lower bounds between occurrences of
events [8, 18]. An example is the robot arm must receive a next-position update every 10 ms. Such
a constraint arises from the system’s requirements, or from a detailed analysis of the application
environment. Temporal requirements implicitly limit the time that can be provided by the system’s
resources.

Thus, the “art” of real-time development lies in balancing the implementation’s resource de-
mands on one hand, and its temporal requirements on the other. If the desired balance cannot
be achieved, the result is usually a costly process of low-level system-tuning, involving expensive
hardware monitors (e.g., in-circuit emulators, logic analyzers, etc.), taking careful measurements,
and then reordering (or restructuring) various key operations. As a last resort, entire subsystems
may have to be re-designed altogether.

In this paper we present a static alternative to this process, which is based on two inter-related
components: a real-time annotation language called TCEL [11] (for “Time-Constrained Event
Language”), and the compiler transformation known as program slicing [28, 36, 37]. Surprisingly,
while our use of static slicing often leads to longer execution times — and even higher utilizations —
it simultaneously helps achieve real-time correctness and schedulability for the entire system. For

this reason we call the transformation real-time task slicing.

The Language of Time Constrained Events. TCEL’s annotation syntax is quite similar to
that found in other experimental real-time languages (e.g., [17, 19, 21, 24, 27, 38]). However, the
semantics differs significantly, in that it is based on the time-constrained relationships between
observable events.

For example, consider a construct such as “every 10ms do B,” where the block of code “B” is
executed once every 10ms. The typical approach is to establish timing constraints between blocks of
code, and in this case all of the code in B must fit properly within each 10ms time-frame. But since
TCEL’s semantics establishes constraints between exzternally observable events, only B’s events of
interest must fit properly within the 10ms time-frame. This looser semantics yields two immediate
benefits. First, the decoupling of timing constraints from code blocks enables a more straightforward
implementation of the original, event-based requirements. But more importantly, the unobservable
code can be moved to automatically tune the program to its hardware environment.

For simplicity, in the sequel we consider all “output” and “input” operations to be observable.

In practice any relevant instruction can be annotated as event; thus the approach can be extended



to most notions of communication. For example, an event can be a message-passing operation, an
access to memory-mapped I/0, an instruction that induces side-effects on other tasks, or for that

matter, a reference to any designated function call or variable.

Real-Time Task Slicing. Consider the following set of requirements, which are typical of many

real-time servo-loops.

(1) Every 25ms, read a new measurement from an external sensor.

(2) Using the new sensor reading and the current state, produce an actuator command and update

the state.

(3) Send the actuator its output before taking the next sensor reading.
The TCEL program fragment below realizes the specification.

L1: every 25ms

{

L2:  input(Sensor, &data);

L3:  cmd = nextCmd(state, data);
L4:  state = nextState(state, data);
L5:  output(Actuator, cmd);

1

The “every” construct on line L1 denotes a statement of cyclic behavior of a positive periodicity.
Unlike other real-time languages, the event-based semantics only requires that the observable events
L2 and L5 execute within every 25ms, while allowing the executions of local computations L3 and
L4 to stretch over the 25ms time frame. Unless the program’s control and data dependences are
violated, this transformation will always be safe.

The distinction between observable and unobservable operations becomes apparent after the
tuning process starts. Specifically, it enables real-time task slicing to automatically achieve schedu-
lability. And while the transformation is applied to each individual task, its effect is global, and on
the entire system.

The key idea behind this method is based on a simple fact:

An application’s schedulability improves whenever we can increase the deadlines (or

periods) of its constituent tasks.

The same effect is achieved by allowing a task to slide past its deadline, while maintaining the
original event-based semantics. We can realize this benefit by transforming a task, so that its
time-sensitive component always executes within its frame, while its unobservable part can be

postponed.



To accomplish this, the transform tool decomposes an unschedulable task into two slices: one
that is “time-critical” and the other unobservable. Then it “glues” the unobservable slice to the
end of time-critical slice, and substitutes the resulting code for the original task.

Figure 1 pictorially illustrates the net effect of this transformation. The downward and upward

arrows represent the execution of input and output events within the same time frame.
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Figure 1: Run-time behavior of a TCEL periodic task.

Although task slicing is applied locally, our application method requires complex interactions
between the scheduling analyzer and the task-slicer. Figure 2 illustrates the relationships between
the scheduling analyzer /priority assigner, and the real-time task slicer. If the task set is schedulable,
the priority algorithm determines the optimal priority assignment for it. If no feasible priority
assignment can be found, the scheduling analyzer helps identify the tasks whose transformation
will most likely lead to a schedulable system. Then they are fed to slicer, after which the entire
task set is again tested for schedulability.

Task Set,
Period Constraints

Priority Ordering Algorithm
(Schedulability Tests)

success

farlure

S.che.dulable Tasks To Be Sliced )— Task Slicer
Priority Order

Figure 2: Generalized slicing method for schedulability tuning.




For the sake of presentation, we assume that applications execute on a single CPU. Due to the
maturity of uniprocessor scheduling, this makes the analysis somewhat cleaner — and allows us to
concentrate on the issue of real-time slicing. But this simplification does not reduce the utility
of our approach, since most distributed scheduling algorithms use uniprocessor algorithms at each

node! — and our method can be adapted as well.

Related Work. Compiler-based techniques for real-time development can conceptually be clus-
tered into two sub-areas — program transformation and timing analysis.

There has been a growing amount of work within the area of program transformation. The
resulting techniques address different problems associated with real-time programming, but they
share the goal of enhancing the predictability and schedulability.

In [12] a compiler tool classifies an application program on the basis of its predictability and
monotonicity, and creates partitions which have a higher degree of adaptability. Specifically, the
tool denotes whether a piece of code belongs in one of four classes; based on this classification,
programs are rearranged to help support adaptive run-time scheduling. The objective is to produce
a transformed program possessing a smaller variance in its execution time. In [27] a partial evaluator
is applied to a source program, which produces residual code that is both more optimized and more
deterministic. In [39] an approach to speculative execution is postulated for distributed real-time
systems. The idea is that the speculative “shadow threads” are forked off to execute on available
resources.

In [11, 15] we show how to use TCEL’s event-based semantics to help synthesize feasible task
code. (We call a code segment is infeasible if its execution time stretches over its specified deadline.)
The transformation algorithm corrects such faults via a two-step process. First, the compiler
automatically derives a set of timing equations from the language-based timing constraints of a
task, so that a real-time scheduler can dispatch the task in an efficient manner. Next, the compiler
attempts to correct feasibility faults with respect to the derived dispatch equations. This is done
by a variant of Trace Scheduling, in which worst-case paths of the infeasible task are selected, and
unobservable code is moved to shorten their execution time.

In this paper we address the more ambitious goal of optimizing multi-threaded applications.
But here — unlike in [11, 15] — we have to consider the role of scheduling support. Since scheduling
analysis often defines whether timing constraints will be met, the particular scheduling strategy will
play a leading role in optimization metric. But schedulers arbitrate between the demands of several
programs, while a compiler usually works on one program at a time. This traditional separation
of concerns between the kernel and the compiler has evolved for many good reasons, and in this

paper we strive to maintain it.

1For example, a multiprocessor scheduling problem is often modeled as a combination of an allocation sub-problem
and multiple instances of single processor scheduling sub-problems [34].



Timing analysisis a key step in building a real-time application; this is especially true in a hard
real-time system, in which all deadlines must be met. Many analysis techniques have been proposed,
ranging from static, source-based methods to profilers and testing tools, through some combination
thereof. While profiling usually produces the tightest results, it presupposes a completely developed
system — as well as a test suite that achieves pessimistic worst-case coverage. Static, compiler-based
analysis can be used much earlier in the design cycle, and it can usually yield worst-case coverage.
But this is also its downside: the result can be a conservative “worst of all worst cases,” i.e., an
experimentally unachievable measurement. Yet static analysis is developing at a rapid pace, and
tools are being produced which can yield tighter results.

The technique reported in [29] is based on a simple source-level timing schema, and it is fairly
straightforward to implement in a tool. In [13] another approach for more accurate timing was pro-
posed; the resulting tool was able to analyze micro-instruction streams using machine-description
rules, and thus it was retargetable to various architectures. On the other hand, neither approach ad-
dresses the problem of predicting architecture-specific timing behavior due to the various latencies
inherent in memory hierarchies and pipelines.

New results have begun to account for this timing variance. Zhang et al. [40] presented a timing
analyzer based on a mathematical model of the pipelined Intel 80C188 processor. This analysis
method is able to take into account the overlap between instruction execution and fetching, which is
an improvement over schemes where instruction executions are treated individually. In [31] Arnold
et al. developed a timing prediction method called static cache simulation to statically analyze
memory and cache reference patterns. A similar but more advanced approach was reported in [23].
While the latter approach is able to predict pipeline stalls as well, both essentially rely on attribute
grammars [2] to propagate cache hit information backward in a flow graph.

However, no static timing tool is precise enough to be used with complete confidence for de-
veloping production-quality software. Moreover, even sophisticated timing analysis methods such
as [23, 31] are not appropriate for fine-grained instruction timing. In Section 3.3 we explain how
we can effectively use these tools in spite of the limitations, by also taking advantage of software
profiling, as well as static timing prediction. Specifically, our slicing technique does not require any
static analyzer: it can be used to first transform the program, with the timing carried out later by

a runtime profiler.

Remainder of the Paper. The remainder of the paper is organized as follows. In Section 2 we
motivate our transformation algorithm via a high-level characterization of discrete-control servo-
loops, and we describe some typical scheduling methods used to dispatch them. In Section 3 we
provide a technical treatment of program slicing that forms the crux of our transformation. In
Section 4 we give an overview of new scheduling methods for the TCEL task model, concentrating

on an algorithm that was recently developed for it by researchers at York [5].



In Section 5 we put the analysis method to use — and harness it in our own priority ordering
algorithm. The algorithm decides which are the best tasks to get sliced, and determines the resulting
priority order for the entire task set. To demonstrate the effectiveness of this algorithm we show
the result of a small study we conducted on a task set drawn from an avionics platform.

In Section 6 we describe our prototype implementation, and we conclude the paper in Section 7.

2 Overview of the Approach

As we have seen in Figure 2, “schedulability” is, by definition, a key metric that drives our real-time
task slicing, and thus it requires cooperation between the real-time scheduler and the compiler tool.
But this presents two competing demands: (1) it is desirable to maintain the traditional separation
of concerns between compilation and scheduling; and (2) schedulability depends on complex task
interactions that are often exposed at runtime.

In this section we show how real-time task slicing satisfies these demands. In doing so, we discuss
the characteristics of a sample target domain — discrete control applications. Since discrete control
software possesses many representative properties that can be found in other applications (e.g.,

multimedia, vision, etc.), this discussion has close analogues in other types of real-time systems.

2.1 Characterization of Discrete Control Software

Many discrete control algorithms possess computations that fit a fixed-rate algorithm paradigm [20],
i.e., control-loops which execute repetitively with fixed periods. During each period, the physical
world measurement data are sampled, and then actuator commands are computed. Meanwhile, a
set of states is updated based on the current state and the sampled data.

The dynamic behavior of a first-order discrete control system can be expressed by the following

equations:
Outputy, = g(Stateg, Inputy)
Statery1 = h(Statey, Inputy)

In these equations, Inputy, Statey, and Outputy respectively represent the input, current state,
and output of the k™ period, while ¢ is an output generation function and A is a state evolution
function.

Control equations are thought of as simultaneous relationships (and not as a computation
procedure); thus the functions g and h can be implemented in a variety of different ways. The
usual practice is to choose a single ordering, and then to code it up as a cyclic control-loop. The
actual loop structure is driven by one’s personal programming style, or perhaps the availability of

generic code modules. But regardless of the choice (unless the underlying control laws are stateless),



¢g and h mandate key precedence constraints, denoted by “<”:

Inputy < Outputy
Stater, < QOutputy
Inputy, < Statepiq
Stater, < Stateriq

The typical way to enforce these constraints is to use the “code-based” semantics, and ensure
that each iteration of the control-loop completes by the end of its period. This means that the
k + 1°¢ iteration starts only after the k" iteration ends. Figure 3 illustrates the effect, while the

Eth iteration is “blown up” in Figure 4.

Inputy  Outputy,

bt At

- o o oy -
- -t

k— 1%t Eth period k41 k4 2nd

Figure 3: Dynamic behavior of a periodic control-loop.

Figure 4: Task instance at the k" period.

2.2 Fixed-Priority Preemptive Scheduling

In any nontrivial system, there are usually many such tasks that share the CPU and other resources.

Thus they must be scheduled in a way that allows each of them to adhere to their timing constraints.



This is often done via a fixed-priority, preemptive dispatcher, not only because these schedulers can
easily support periodic servo-loops, but also because they possess efficient, offline analysis methods.

Rate-monotonic scheduling, originally developed by Liu and Layland, was the first well-known
algorithm of this kind. In their seminal paper [25] they proposed a priority assignment algorithm, in
which a task with the shorter period is assigned the higher priority (hence the name rate-monotonic
scheduling, or RMS). They also showed that such priority assignment is optimal in the sense that
whenever it fails to find a feasible priority ordering, neither can any other static priority ordering.
However, their algorithm is applicable only to the periodic task model where tasks have fixed
periods, deadlines are equal to periods, and tasks are totally independent of each other.

Recent research has made significant enhancements to this model, enhancements which relaxed
the original restrictions. In [22] Leung and Merrill showed that a deadline-monotonic priority
assignment is also optimal where deadlines may be shorter than periods. In [32] Sha et al. presented
two protocols which enable tasks to interact via shared resources, while still guaranteeing the
tasks’ deadlines. Most recently, a group of researchers at the University of York developed a set
of analytical techniques which can provide schedulability tests for broad classes of tasks, including
those whose deadlines are greater than their periods [4, 35, 33].

In this work we choose the following York notation, mainly due to its generality:

o I'={r.,7m,...,7,} denotes a set of n tasks to be scheduled.
e T; denotes the period of task 7.
o D, denotes the deadline of task 7;, relative to the beginning of the current frame.

e ¢; denotes the worst-case execution time of 7.

If we wish to determine the schedulability of a task 7;, we use what is called response time analysis
— defined as the time between when a request for 7; arrives, and when 7; finishes its execution
servicing the request. If we can confirm that the maximum response time of 7; is no greater than
D;, we can guarantee that 7; will meet its deadline even in the worst-case. We first consider the
typical “code-based” case, where D; < T;.

Let R; denote the maximum response time of task 7;. Then R; is computed as shown below.

Ri=ci+ ), [E

Te; (Eq 1)
T;€0p(7) T]

where hp(t) is the set of higher priority tasks than 7;. Observe that R; is composed of two compo-
nents, namely execution time ¢; and interference. The interference, the second term of Fq 1, is the
amount of time during which 7; is preempted by the higher priority tasks in hp(7) since the arrival
of its request. As Fq I is a recurrence equation on R;, an iterative algorithm can compute R; by
initially assigning it ¢;, and then generating new values until it converges on a fixpoint (or fails).

But we need a method where deadlines can be longer periods, i.e., where there may be tasks of



the form 7; such that D; > T;. In this case Fq I is not sufficient, since uncompleted iterations of 7;

can now interfere with the current one. Thanks to [35], the following general equation can be used

instead.

where

R;= max {r;,—q-T;}

q=0,1,2,...

7‘2'7
rig=(g+Dei+ > [Tﬁcj

7j€hp(3)

(Eq 2)

L1:
L2:

L3:
L4:
L5:
L6:
L7:
L&:
L9:

L10:

every 16ms

{

input(Sensor, &data);

if (Inull(data))

{

t1 = Fl(state);

(

t2 = F'2(state);
t3 = F3(data
t4 = F'4(data

);
).

9

state = I'5(t1, 12, t3);
cmd = F6(t1, t3, t4);
output(Actuator, cmd);

}

status_dump(“logfile”, cmd, state);

}

Figure 5: TCEL program for task 7.

Consider the case of three periodic tasks, where the source of task 75 is given in Figure 5.

Task | Execution Time | Period Deadline
T1 c1 =400 Ty = 1000 | Dy = 1000
T2 co = 400 Ty = 1600 | Dy = 1600
T3 c3 = 570 T5 = 2500 | D3 = 2500

Since the periods are equal to the deadlines, rate-monotonic priority assignment is a natural choice.

In the above table the row order corresponds to the priority order; i.e., 71 is assigned the highest



priority. We can carry out the response time analysis for these tasks using Fq 1 as follows:

Form: Ry = 400 < D¢ = 1000
For rp: Ry, = 400 4 [800/1000]400 = 800 < D3 = 1600
For 751 R = 5704 [2570/1000]400+ [2570/1600]400 = 2570 > D3 = 2500

Observe that the two high priority tasks 7y and 7, are schedulable, while 75 is not. (Rs is greater
than D3 when 75 runs at priority 3.) In an effort to make the task set schedulable, we might try some
hacking: e.g., by promoting 73 to the highest priority level. Although this makes 73 schedulable, it
does not achieve the desired schedulability, since 7 will now be unschedulable. Indeed, since the
rate-monotonic assignment is optimal, no fixed priority assignment will suffice here — unless the
code-based semantics is abandoned!

The reason the above task set is unschedulable is obvious: the computation demands of 73
exceed the available time. The simulated time line given in Figure 6 pictorially illustrates an

unschedulable instance of 7.

Preempted Preempted

' '

1 T2 T3 Gl T3 To T1 T3

T 1000 2000 A
- >

Ts = 2500

Deadline Miss

Figure 6: Simulated time line for the example task set.

2.3 Scheduling with Compiler Transformations

When a system is found to be unschedulable, current engineering practice forces programmers to
manually pick some critical tasks from the task set, and then to hand-optimize them. Such system-
tuning is often repeated many times, until the entire task set finally achieves schedulability. We
aim to ease this process by providing a semi-automatic task transformation method, real-time task
slicing.

Real-time task slicing is based on simple observation:

Traditional real-time scheduling techniques implicitly assume that the entire control-loop

10



finish by its deadline. But the high-level TCEL semantics mandates that only the ob-

servable event-generating operations be finished within the originally specified deadline.

This observation leads us to the following method. We decompose a task 7 into two fragments — one
containing all observable event operations, and the other all remaining local operations. We call
the former the IO-hander and the latter the state-update component. We denote them by 7/¢ and
rotate respectively. Figure 7 demonstrates the decomposition of the control-loop task originally
shown in Figure 4.

After the decomposition, we ensure that the IO0-handler will execute within its allowable time
frame. On the other hand, we may postpone the execution of the state-update part under the worst-

I State

case task phasing. Finally, we maintain precedence constraints between 7/¢ and 7 , originally

induced by the task’s data and control dependences.

R -
Statey 41

Figure 7: Decomposed task at the k" period.

The task decomposition itself is carried out by static slicing. As we stressed above, we put
the greatest emphasis on preserving the timing behavior of observable events and the precedence
constraints derived in Subsection 2.1.

But before systematically presenting our slicing procedure, we show its ultimate effect on our
example task set. Assume that slicing 75 yields the greatest benefit in schedulability. We then
decompose 73’s code into 10-handling 74© and state-update 75/, as shown in Figure 8. Their

computation times are separately calculated as follows:
9 =2.2ms, ' = 1.9ms

Note that the sum of the two execution times is slightly greater than the original execution time
4.0ms of 5. This is due to replication code, additional register loads, etc. — points which we revisit

shortly.

11



/* Subtask 59 x/ /* Subtask 759 x/

input(Sensor, &data); if (¢)
¢ = null(data); {
if (¢) t2 = F'2(state);
{ state = I'5(t1, 12, t3);
t1 = Fl(state); }
t3 = IF'3(data); status_dump(“logfile”, cmd, state);

t4 = F4(data);
cmd = F6(t1, t3, t4);
output(Actuator, cmd);

Figure 8: Two decomposed subtasks of task 3.

To enforce that the precedence constraints we splice them together via sequential composition.

The net result is the following execution behavior.

7_210 _ Tigtate _ 7_210 _ Tigtate -

Our runtime support must guarantee one instance of 74¢ within each 7, time-frame; on the other

hand, it can let iterations of 75%%% slide between period boundaries.

3 Automatic Task Decomposition by Program Slicing

The idea behind the task decomposition is, as discussed in Subsection 2.3, to accept a task and then
slice it into two code components: one containing all observable events, and the other containing
only local state-update operations. Many factors make this a difficult compiler problem, among
which are intertwined threads of control, nested control structures, complex data dependences
between statements, procedure calls in the task code, etc. To concentrate on the issue at hand —

i.e. real-time — in this paper we made the following simplifying assumptions.
e Function calls are inlined.
e Loops are finite.
e The programs can be translated into a form in which all false data dependences, such as

output dependences and anti-dependences, are eliminated.

The first assumption allows us to avoid interprocedural slicing [16]. The next two assumptions
simplify the problems induced by false data dependences. Such dependences are caused by variable

reuse rather a requirement for data integrity, and real-time slicing will be much more effective if

12



they can be minimized. To do so, we can potentially use a code transformation algorithm such as
the rename transformation in [7], the static single assignment (SSA) form translation in [6, 15]. In
order to avoid loop-unrolling, we could potentially use dependence-breaking methods, e.g., scalar
expansion [3].

However, it is practically impossible to massage a program into a form that is entirely free of
false dependences, mainly due to the existence of aliases and pointers. We will get back to this

issue shortly, in Section 3.3.

3.1 The Program Slicing Algorithm

Conceptually a slice of program P with respect to program point p and expression e consists of P’s
statements and control predicates that may affect the value of e at point p. We call a pair (p, e)
a slicing criterion, and denote its associated slice by P/(p,e). The result is that we can execute
the slice P/(p,e) to obtain the value of e at location p. Recall our periodic controller task 72 of

Figure 5. The following fragment is the slice 75 /(L9, cmd).

L1:  input(Sensor, &data);
L2:  if (Inull(data))
{

L3: t1 = Fl(state);

L5: t3 = F3(data);

L6: t4 = F4(data);

L8: cmd = F6(t1, t3, t4);
L9: output(Actuator, cmd);

}

Statements L1, L3, L5, L6 and L8 are included in the slice, because variable “cmd” depends on
their computations (this is called data dependence). Also, statement L9 is included because it
generates an observable event.? Finally, the predicate on line L2 is included, because the execution
of statements L3, L5, L6, L8 and 1.9 (hence the value of “cmd”) depends on the boolean outcome
of the predicate (this is called control dependence).

Thus the computation of slices is based on data dependence as well as control dependence. In
this regard, using a program dependence graph [9, 16, 28] is ideal, since it represents both types of

dependences in a single graph. The program dependence graph is defined as follows.

Definition 3.1 The program dependence graph is a directed graph PDG = (V, F), where

2We intentionally include L9, as will be discussed in Algorithm 3.1.
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o The vertices V represent the task’s statements; i.e., assignments, control predicates and
observable statements (such as output and input). In addition there is a distinguished

i

vertex “entry,” which represents the root of the task.

o The edges F are of two sorts. An edge ny = ny denotes a control dependence between n4
and ny. That is, either (1) ny is an entry vertex and ny is not nested within any loop or
conditional, or (2) ny represents a control predicate and ny is immediately nested within the
loop or conditional whose predicate is represented by n;. An edge nq LA n9 denotes a data
dependence. That is (1) ny defines variable v, and ny uses v, and (2) control can reach ng

after ny via an execution path along which there is no redefinition of v.

We define “p =, ¢” to mean that node p can reach node ¢ via zero or more control dependence

edges or data dependence edges. O

We assume that the underlying programming language is “perfectly structured.” That is, any

two statements 57 and S5 in the program are in one of the following forms:

1. 51 is contained in S9;
2. S5 is contained in S%; or

3. 51 and 55 are disjoint.

Since many real-time programming languages allow only “structured” programs without unre-
stricted gotos?®, this does not impose serious restrictions on our approach. As a consequence, our
definition of control dependence is simpler than that found in [9].

The program dependence graph PDG of our controller task 7, is shown in Figure 9.

The slice of program P with respect to program point p and expression e (i.e., P/(p,e)) can
be obtained through a traversal of P’s program dependence graph. We can extend the definition
of a program slice for a set of slicing criteria C' in a way that P/C = Uip,eyec P/{p,e). A simple
algorithm to compute the slice is given below. In the algorithm the program point p corresponds

to a vertex of PDG.
Algorithm 3.1 Computes the slice P/(p,e):

Step 1 Compute reaching definitions RD(p,e).
Step 2 Compute the slice by a backward traversal of PDG such that

P/{p,e)y={m|3In € RD(p,e) : m =, n}U{p}.

Figure 10 shows the graph that results from taking a slice of the program dependence graph in

Figure 9 with respect to criterion (L9, cmd).

We disallow break statement as well, since it is a special instance of goto.
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receive(-, &data) . if(!null(data))

7

F6(t1,12,13)
///

——— control dependence
(R data dependence

Figure 9: Program dependence graph.

receive(-, &data) .—l if(!null(data))
(rem) % o)

Figure 10: Slice with respect to criterion (L9, cmd).
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One of the essential points in using our task decomposition algorithm is to providing right slicing
criteria for the algorithm, so that the computed I/O slice of a task “covers” all the observable
behaviors of the original task. Criteria selection can be automated by means of the observable
event specification, or it can be manually performed by way of graphical user interface.

Let Cro(7) be a set of slicing criteria for I/O slice of task 7. Then the task decomposition

algorithm is given below:

Algorithm 3.2 Decompose task 7 into 710 and 75t

Step 1 Compute the slice of 7 with respect to C'1o(7) using Algorithm 3.1. The generated

slice 7/Cro(7) becomes 719,

Step 2 Delete from 7 all repeated statements of 7/¢ except for the conditional statements.

The remaining code becomes 73t

Figure 8 shows the two subtasks 7/© and 75%** of 7, computed by Algorithm 3.2 with slicing

criteria Cro(7) = {(L1, data), (L9, cmd)}.

3.2 Slicing, Splicing and Timing Analysis

Program slicing may easily increase worst-case execution times of tasks for a number of reasons:
(1) control structures are replicated and will be executed twice; (2) splitting a basic block may
increase the number of register load and store operations [2]; and (3) worst-case execution time
paths of the two resultant subtasks may be incorrectly derived. We take a close look at the last
factor, since it tends to take up the greatest portion of the increase, though it is mainly an artifact
of overly-conservative timing prediction.

After a conditional of a task is sliced and then spliced, we must carefully correlate the dupli-
cated condition predicates. If not, our static analysis will give us a wildly conservative worst-case
execution time. Figure 11 pictorially depicts this case. The original task 7 consists of one condi-
tional, one branch of which is 10-generating code “I0,” and the other is state-update code “ST.”

The predicted worst-case execution time of 7 is:
wt(7) = wt(c) + max{wt(I0), wt(ST)}.

State

In Figure 11 7 is sliced into two subtasks 7/¢ and 7 . Their worst-case execution times are also

given below.
wt(t19) = wi(c) + wit(10)
wt(T51) = wt(c) + wt(ST).

TIO;TState) may be

Consequently, the worst case execution time of the transformed task 7’ (=
measured as:

wit(7') = 2 - wi(c) + wi(10) + wt(ST),
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which is much larger than wt(r).

10 TState

/é\

10 STATE I:> 10 + STATE

Figure 11: Slicing a conditional.

However, tighter worst-case execution time can be easily obtained by correlating the conditional
predicate of the subtask 779 with that of the subtask 75t For example, if “I0” (in Figure 11) is
executed in the subtask 7/, then we know that the empty left branch will be executed in subtask

r5tate Thus wt(r') can be refined as follows:
wi(r') = 2+ wt(c) + max{wt(I0), wt(ST)}

For the given two subtasks of 7;, we carry out the following simple steps which is based on the

(@]

notion of predicate correlation to compute tight worst-case execution times of subtasks 7/¢ and

rState,
Step 1 Calculate ¢; by running a timing tool with the code of 7.
Step 2 Calculate ¢/© by running a timing tool with the code of 7/©.
Step 3 Calculate ¢! such that ¢ = ¢} — f©.

This will serve as a good rough estimate for the transformed task code. Then we can use a profiler

to account for the two other factors that incur timing overhead, as we discuss in the next subsection.

3.3 Practical Considerations

As we have stated, the above presentation of real-time slicing is rather idealized; we abstracted
out some of the practical considerations that would have confused our focus. On the other hand,
our success is contingent upon the inherent limitations of static program analysis. We faced in
limitations when building our prototype slicer tool (Section 6), which uses an existing dependence
analyzer, as well as a course-grained static timing analyzer. In the following discussion, we elaborate

on some of these problems, and point out some ways of working around them.
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In the preceeding subsection, we assumed that programs are rendered in a form where all
false dependences are effectively removed. Fortunately the correctness of our approach does not
hinge on this assumption, which is a good thing — since static data-flow analysis is incapable
of disambiguating all pointer aliases (at worst an undecidable problem). The abovementioned
techniques of inlining and loop unrolling partially assuage this problem; inlining can obviate doing
complex, interprocedural analysis, while unrolling (and the associated renaming) can help expose
output and anti-dependences. Of course these and similar methods can dramatically increase code
size, which will in turn lead to more pressure on memory. The associated trade-off analysis is best
made by the developers of the system.

But for the sake of soundness, we have to be conservative. That is, in practice we only remove
false dependences between those assignments that contain statically analyzable variables, and treat
remaining “dependences” as true, flow dependences. At worst, we end up with code that appears
totally unsliceable — when it may, in fact, be amenable to slicing. Again, the developers can be of
enormous help, by manually breaking some of the false dependences.

We also note that dependence analyzers are improving at a fast rate (see [14, 30]), and our
algorithm will improve along with them. For example, if we incorporate the recent advances in
loop dependence analyses such as those in the Omega Test [30], we may not have to unroll loops
to slice a real-time task. Moreover, we can obtain better slices for loops using techniques like loop
distribution.

We also rely on achieving reasonable execution time bounds for the code segments. But in the
face of more complicated architectures, getting tight, static timing bounds is getting more difficult
— due to the interplay between pipelines, hierarchical caches, shared memories, register windows,
etc.

Thus we have adopted a two-tier approach to deal with time predictions. We make use of a
timing analyzer for a rough, initial estimate. Then after program slicing is completed, we verify the
result with a more sophisticated profiling tool, that actually runs the program. Performing such
re-timing is especially important in a cached memory structure, where code scheduling will always

change the instruction alignment.

4 Scheduling the Sliced Tasks

Now assume we have a set of n tasks I', numbered 7 to 7,. If some of the tasks are sliced, how do
we best schedule I' to ensure that the event-based semantics are maintained? Any such scheme is

dependent on two elements:

State

(1) A scheduling policy that can exploit our task model; i.e. while the 7 components can

I State

miss their original deadlines, the precedence constraints between instances 7/¢ and

must be maintained.
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(2) An offline schedulability analyzer for the given scheduling policy.

In [10] we present a RMS-based method, in which each process receives two priorities, one for 779

and one for r5tate

. Its principal strength is a simple dual-priority assignment rule, and an efficient
analysis test to determine schedulability. Its weakness is that the online component lacks the
simplicity found in pure, static priority scheduling. The dual-priority scheme mandates a dynamic
priority-exchange mechanism, which in turn requires additional kernel support.

So the following question arises: when can a set of transformed TCEL tasks be scheduled under
a fully preemptive, static priority scheme? Burns [5] provides an answer to this question after
identifying a simple, but essential fact about the TCEL task model. That is, whenever we let a
task’s deadline be greater than its period, this represents a relaxation of the classical rate-monotonic
restrictions put forth in [25]. Thus the rate-monotonic priority assignment may not be the optimal

one.

Given set I of transformed TCEL tasks

!’ 10. _State
o= 717
!’ 10. -State
Ty = T3 37y
o 10. -State
Tn - Tn 7Tn

it turns out the appropriate priority assignment is not only dependent on the deadlines (as in the
pure deadline-monotonic model), but also on the respective execution times of each 10-handler and
state-update component. In [5] Burns presents a search algorithm to generate the feasible static-
priority order — or to detect when no such order exists. Thus the approach includes the following
components.

Online Scheduler: This is a simple, preemptive dispatching mechanism, in which priority “ties”
are broken in favor of the task dispatched first. Thus, for example, a task’s current iteration will
finish before the next one starts.

Offline Analyzer: The analyzer is constructive, in that it produces a feasible priority assignment
if one exists. If no such assignment exists, perhaps the programmer may have to go back to the
system design step and consider more aggressive system-tuning.

For given task set I' = {7y, 7,...,7,} Burns’ priority assignment algorithm accepts the pre-
processed task set IV = {r{,7},...,7,} asits input, where 7/ is a sliced version of 7;. It then begins
looking for a task that can run at the lowest priority (level n)*. After such a task, say, 7, is found,
the algorithm proceeds to search the new task set 1" — {7/} for the second lowest priority task,
and so on. There is an important fact that leads to the optimality of this algorithm: while a task

is being tested for priority level p, all p — 1 tasks whose priorities have not yet been assigned are

*For n tasks, n denotes the lowest priority level, and 1 the highest.

19



assumed to run at higher priorities. In fixed-priority preemptive scheduling, since a lower priority
task can never preempt the higher priority tasks, selections made for priority levels p or below will
not affect those above p.

710, 7 State)

During this priority ordering, the schedulability test of 7/ (= for priority p yields

the following two conditions:

(1) Whether TZ»IO can always run within time D; at priority p, and

(2) Whether there exists some integer ¢ such that ¢ consecutive iterations of 7/ can run within

q-T; + D; at priority p where ¢ > 1.

Condition (1) is required by the TCEL’s semantics; condition (2) accounts for the case where at
least one iteration of 7'2»515‘7”56 is delayed. The schedulability test boils down to a check to see if the
maximum response time of 7/ is no greater than D; in either case.

The maximum response time (denoted by RI?) of 7/¢ with respect to hp(i) is computed as

below:
T
rig= (el + ")+ e+ 30 [
N i
m€hp(i) 7
RI® = max {r,—q-T:} (Eq 3)

q=0,1,2,...

We must subtract ¢ - T; from 7; , to obtain the real response time, since r; , is measured from the
start of the ¢ period prior to the current period. Although ¢ is denoted as an unbounded number
in Fq 3, it can be trivially shown that there exists bounded response time RZ»IO as long as utilization
of hp(i) U {r;} is less than 100% [35].

On the other hand, ¢ is bounded below by

!

"9 where
T:+D;

!
T

T;

rig = g+ D+ )+ 30T
7;€hp(i)

Jej-

The intuition behind the equation is that the execution timeline of 7/ repeats only after 7/ gets to
complete within its proper time-frame.

Now recall the unschedulable task set we showed in Subsection 2.2. Suppose that only 7 was
sliced. This requires priority rearrangement among the tasks, since RMS is no longer optimal in

the transformed task model. The result of new priority ordering is as follows:

/
T3 < T1 < Ty
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In the next section we show how this ordering is obtained. But given that we have an ordering, we

can check it using Fq 3.

For 7s:
Ry = 570 < D3 = 2500
For 7:
Ry = 400 4 [970/25001570 = 970 < Dy = 1000
For 74
rhy = 2410 4 [2750/2500]570 + [2750/10007400 = 2750 < T5 + Dy = 3200
Too = 220 4 [1590/2500]570 4 [1590/10007400 = 1590
roq = 4104 220+ [2400/2500]570 + [2400/10007400 = 2400
RO = max{1590, 2400 — 1600} = 1590 < Dy = 1600

As a result, the task set is shown to be schedulable under the new priority assignment.

5 Priority Ordering with Task Slicing

In this section we present the missing link; i.e., the algorithm that determines which tasks to slice,
and which to leave intact. The priority assignment algorithm in [5] expects that all tasks in T' are
sliced before they are submitted for priority assignment. However, it is typically not desirable to
slice all tasks in the application due to execution time overhead incurred. As an example, consider
a task set whose utilization is 0.96. Suppose that task slicing increases the worst-case execution
times of most tasks by 5%. If we naively slice them all, this will result in utilization of 1.008, and
will render the task set permanently unschedulable. Moreover, since we view slicing as a means
of tuning an application, it should selectively be applied to tasks which will realize the greatest
benefit.

To address this problem, we present an algorithm that not only finds a feasible task priority
ordering, but also picks only a small subset of tasks to slice. For a given ordered list of tasks

I' =[r,72,...,7s), we make the following definitions.

e sliced(7;) : a boolean variable denoting whether or not 7; is sliced.

o ¢l =cl0 4 cPtate,

We refer to a certain permutation I of T as a configuration, i.e. I' denotes a priority ordering® of
the tasks in I', and sliced(r;) is defined for all 7; € I". There are n! different priority orderings, and
2" possible slicing choices. Thus the algorithm’s job is to choose a task configuration among 2" - n!

distinct ones in an eflicient manner.

®The first task in the list has the highest priority.
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Definition 5.1 (Feasibility) For a given I', a configuration 1" is said to be feasible iff all tasks

in I meet their deadlines under the priority ordering and slicing choice denoted by I".

5.1 Feasibility Test

Our problem is to slice for schedulability, which is complicated by the fact that for a task =,
ci # cl9 4¢Pt Thus it seems inevitable to search the entire solution space of size 2 - n! in order
to find a feasible task configuration.

Fortunately, there are cases where we can make a slicing decision without exhaustively exploring
the search space. We rely on the response time analysis summarized by equations Fg 2 and Fq 3

to find these cases. To be specific, we make use of the following schedulability test.

Feasible(L, 1) =
if —sliced(7y) then max,—o12. {74, — ¢ - Tr} < Dy
else maxq:07172,,,{7‘;€7q —q-Ti} < Dy
where
S ={r € L]sliced(m)},
Thg = (¢+ L)ex + qu,c—s[%ﬂcj + qus[rﬂﬂc‘v and

! !
Tk, Tk,

!
J
10
T;C,q =q- C?ﬂ + Ck + ZTJEE—S[ T]q-‘cj + ZTJES[ T]q-‘C;‘

The proposition “-sliced(7x) A Feasible(L, ;)" denotes that the unsliced 74 is schedulable with
tasks in £ running at higher priorities. Similarly, “sliced(7y) A Feasible(L,Ty)” means that 7, after

getting sliced, is schedulable with tasks in L.

5.2 The Algorithm

We now present the selection algorithm, which uses the following variables:

o I'=[r,7,...,7]: The input task list, initially ordered in nondecreasing order of the dead-
lines. Such a deadline monotonic ordering is desirable as a starting point, since most tasks,

except for a small number of tasks to be sliced will end up consistent with it.

e Parameters £4 and Lo: £1@QL5 holds the current list of tasks, where “@” denotes the list
append operation. In every invocation, Search(Lq,L3) returns either the priority-ordered list

of the tasks, or false if it cannot find any feasible ordering among them.

In every invocation, Search attempts to assign the last task in £; (variable “7” in Figure 12) the
priority level |£1|+]|Lz|. The condition on line (1) denotes that the algorithm has already generated

a complete task configuration of T'.
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The condition on line (2) means that the algorithm has checked all tasks in lists £ and £, for
priority level |£1| 4 |£L2|, but it can assign none of them that priority. Thus false is returned.

Otherwise, the algorithm attempts to find a feasible priority assignment for tasks up to the
current priority (line (4)). If this cannot be done without 7, then 7 is infeasible at the current
priority. In this case the tail recursion is invoked on line (12), which will attempt to find another
ordering.

But when the higher priority tasks are schedulable, 7 is checked for feasibility with them. If so,
a new ordering L@[r] is returned. Otherwise, the algorithm slices 7, and sees if 7/ is feasible, after
which it returns L@[7'].

In spite of its worst-case complexity, the algorithm computes results very fast in almost all
interesting cases. The reason is because it attempts to first assign tasks deadline monotonic prior-
ities, and most of the tasks end up having priorities consistent with this order. We also note that
a task is only sliced on demand, when its unsliced version cannot be scheduled within the current

configuration.

algorithm Pridssign(1)
begin
return(Search(I',[]));

end

list function Search(Lq,Ls)
case

(1) when £y = £, = []: return([]);
(2) when £; =[], L2 # []: return(false);
(3) when £y = £ @[7]:
(4) L = Search(L{QL,,[]);
(5) if L # false then
(6) if Feasible(L,7) then
(7) return( LQ[r]);
(8) else
(9) 7' = Slice(T);
(10) if Feasible(L,7') then
(11) return(LQ[r']);

end

end

(12) return(Search(L), [T]QL,));

end

Figure 12: Algorithm for priority ordering with slicing decision.
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5.3 A Larger Example

In a somewhat larger example, we adapted the periodic tasks described in [26, 35], factoring in dis-
play server activity, as well as the 10 and state-update components (while modifying the execution
times accordingly). The adapted task set had a utilization of 0.836, and it was unschedulable under
any static priority ordering. The resultant timing specification of our task set is given in Table 1,
where the time unit is 1 microsecond.

We make the following assumptions for the task set, which we have found to be representative.

1. Only small portion of a task — no more than 25 % of the original task code in terms of the

worst case execution time — can be sliced.

2. Slicing incurs no more that 5 % increase in a task’s worst-case execution time.

| | T D ¢ CIO ¢ tate |
T 1000 1000 51 51 0
T2 25000 5000 2000 1600 500
T3 25000 5000 1000 800 250
T4 40000 5000 2000 1600 500
Ts 50000 20000 3000 2400 750
Te 200000 20000 3000 2400 750
T7 50000 25000 5000 4000 1250
T8 59000 25000 8000 6400 2000
To 80000 80000 9000 7200 2250

T10 80000 80000 2000 1600 500
T11 100000 80000 8000 6400 2000
T12 100000 100000 5000 4000 1250
T13 200000 100000 3000 2400 750
T14 200000 100000 1000 800 250
T15 200000 120000 1000 800 250
Ti6 200000 140000 2000 1600 500
717 | 1000000 1000000 1000 800 250
718 | 1000000 1000000 1000 800 250

Table 1: Example task set.

The priority ordering algorithm chose to slice tasks 74, 77 and 716, thereby making the task set
schedulable. The utilization grew slightly to 0.844. We show the result in Table 2, where “R”

RState

denotes the maximum response time of an unsliced task, and R and respectively represent

the maximum response times of the two components of an sliced task.

6 TimeWare/SLICE: the Prototype Implementation

Our prototype tool is called TimeWare/SLICE, and it harnesses the “Search” algorithm to deter-
mine which tasks should be sliced. However, the programmers get to graphically pick the slicing

criteria, and they can “veto” any slicing decision.
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] T D c c' R R R Sliced?

T1 1000 1000 51 51 51 0 0 n
T2 25000 5000 2000 2100 2153 0 0 n
T3 25000 5000 1000 1050 3204 0 0 n
T4 40000 5000 2000 2100 0 4855 5406 y
T6 200000 20000 3000 3150 8559 0 0 n
Ts 50000 20000 3000 3150 11712 0 0 n
78 59000 25000 8000 8400 20171 0 0 n
T7 50000 25000 5000 5250 0 24375 28829 y
) 80000 80000 9000 9450 38339 0 0 n
T10 80000 80000 2000 2100 42643 0 0 n
T11 100000 80000 8000 8400 71372 0 0 n
T12 100000 100000 5000 5250 79780 0 0 n
T13 200000 100000 3000 3150 96747 0 0 n
T14 200000 100000 1000 1050 97798 0 0 n
T15 200000 120000 1000 1050 98849 0 0 n
Ti6 200000 140000 2000 2100 0 139890 140441 y
717 | 1000000 1000000 1000 1050 141492 0 0 n
718 | 1000000 1000000 1000 1050 142543 0 0 n

Table 2: Priority assignment with program slicing.

For a variety of reasons, we have found this semi-automated strategy to best fit our problem
domain. First, users can help tighten both the automatic dependence analysis, by using assertions
to manually break false dependences that our static analyzer cannot handle (e.g., most pointer
aliases). This results in better slices, and greater possibility of achieving schedulability.

In a similar manner, the users can tighten the timing analysis by running their selected programs
through special measurement tools — and not the generic timing analyzer. Moreover, enhanced de-
pendence analysis will also increase the precision of timing estimates, since it will enable correlating
more conditional blocks with aliased controlling predicates (see Section 3.2).

But the most important reason to provide intensive user interaction is to maintain traceability
to the original source code. This argues for a front-end that permits the programmer to interact
with the tool during each step of system-tuning. With our transformation engine as its foundation,
a graphical interface allows a programmer to selectively apply the transformations — and also remain

informed of the results.

TimeWare/SLICE Functionality. The key features of the tool are as follows:

o [t computes a program slice with respect to a given slicing criterion.
e It present the code at the source-level.

o It allows users to save a computed slice, and to carry out operations between the current
and the saved slices. These operations include intersection between slices, union of slices and
subtracting one slice from another. These commands are used to segregate special threads

from given task code.
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o [t automatically generates the transformed task code.

TimeWare/SLICE Tool Screens.

A source program is displayed on the two tool windows: one

called the primary window and the other the scratch-pad window. Figure 13 demonstrates a possible

layout on the tool screen of a SUN Sparc station equipped with a 17-inch display.

The primary window provides users with a workplace where they can pick a slicing criterion and

get the slicing result. The result is shown as a set of highlighted source lines on the window. The

scratch-pad window provides with a buffer space where a user can temporarily store a pre-computed

slice. When a user carries out operations between two slices (one on the primary window and the

other on the scratch-pad window), the primary window works as if it were an accumulator. That

is, the primary window provides the first operand and gets the result.

[#] slice

fbird/sshong/test/control.c

_shel

#include “rtio.h”

float data, state. cnd:
float F1{}, F2(}, F3{), Fd(};
int null{l;

nain{}
float tl, t2, t3, td;

int c3

EVERY {2Gns)
£

receive{Sensor, Bdata);

status_log{"log_file", cnd, statels

1
2
3
4
5
6
7
a
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

Realtine_Slice Del_Line Subtract Intersect Load Undo

Clear Duit Add_Line Add Isolate Swap Save

Transforn

> add line 24 to current slice

suap current slice with saved slice
static progran slice on “"state" at line 29
isolate current slice from saved slice
add line 27 to current slice

swap current slice with saved slice

JAinclude “rtio.h™

float data, state. cnd;
float F1{), F2(}, F3(}, F4(};
int null{};

nain{}

float t1, t2, t3, td;
int c3
state = 0,03

EYERY {25ns}
i

receive{Sensor, Bdata);
c = !null{data};
£

tl = Fl{state}s
t3 = F3{data};
t4 = Fd{data};
chd = tl % (£3+td)s
send{fctuator, cnd};

state = t1 = (£2+t3}3

H

Figure 13: Tool screen of TimeWare/SLICE.

Figure 13 shows the tool’s display of the two slices in our example, where we have substituted

F5 and F6 with simple arithmetic operations. Figure 14 shows the transformed code that was

generated by splicing the two slices together.
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xtenn

inzlude "rtio.h”

loat data, state, cmd:
loat FL1(), F203, F3(), F4(0:
nt nullih:

ainiy

float t1, t2, t3, td:
int o3
state = 0,0

EVERY {2%ms}
i
receivelSensor, &datal:
c = lhullidatar:
if (o)
i
tl = Flistater:
t3 = F3idatal:
t4 = Fdidatal:
cmd = t1 % (£3+t4h:
zend{Actuator, cmd)?

¥
if (c2

t2 = F2istated:
ztate = t1 ® (L2+E33:

¥
ztatus_log{"log_file", cmd, statel:

Figure 14: Transformed code.

Implementation. The prototype implementation of TimeWare/SLICE is based on a dynamic
program slicing tool SPYDER developed at the Purdue University [1]. SPYDER is a program
debugging tool relying on dynamic slicing, and it consists of two components: a modified version of
GCC (GNU C compiler) and GDB (GNU symbolic debugger). The role of the modified GCC is to
produce the program dependence graph for an input program as well as the object code. SPYDER
traverses the graph to compute a static program slice.

We had to tailor the implementation of SPYDER due to the following limitations.

(1) It does not allow users to pick a general slicing criterion. Instead, it limits the criterion to a

variable name.

(2) SPYDER is a program analysis tool, whereas TimeWare/SLICE actually transforms the pro-

gram text.

(3) SPYDER’s static slicer is not complete, which results in incorrect slices being produced. For
example, the static data flow analyzer of the modified GCC does not detect redefinitions of a

global variable within a function, and SPYDER cannot account for this limitation. We had
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to retool TimeWare/SLICE to conquer this problem.

As we described in Section 3.3, our approach to dependence analysis is to be conservative — by
assuming that every function call has a potential to redefine every global variable. SPYDER’s
interprocedural analysis is limited, and its goal allows it to take an alternative, “optimistic” ap-
proach. While our assumptions may result in too large an 10 slice, users of TimeWare/SLICE can
still modify it using the editing facilities. But in such a case it is always better to be safe than
SOTTY.

As a final note, we point out that the implementation of TimeWare/SLICE enjoys all the benefits

of GNU-based software, the most prominent being its portability to various hardware platforms.

7 Conclusion

In this paper we presented an automated system-tuning approach for fixed-priority, preemptive
real-time systems. The approach consists of three interrelated components, namely, a real-time
programming language TCEL, a task slicing algorithm, and a new fixed-priority scheduling strategy.

The TCEL paradigm helps incorporate a higher level of abstraction into real-time domains. As
we have shown, TCEL’s event-based semantics constrains only those operations that are critical
to real-time operation; i.e., the events denoted in the specification or those derived from it. Most
importantly, it enables our compiler tools to transform the program.

For the underlying scheduling paradigm, we have concentrated on rate-based scheduling, since it
is one of the best understood areas in the real-time literature, and one of the most widely embraced
methods by practitioners. Unfortunately, the tradition is disappointing in that one always considers
the “task” as an uninterpreted block of execution time — perhaps with a period, a start time and a
deadline, but no other semantics to speak of. We have shown that once we “open up” the task to
consider its event-based semantics, we can automatically convert an unschedulable application into
a schedulable one. We believe that our approach can be used as a first-line defense in the tuning
process, and is certainly preferable to measures such as hand-optimization or re-implementation in

silicon — two of the more common remedies.
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