Sliding Conjugate Symmetric Sequency-Ordered
Complex Hadamard Transform: Fast Algorithm
and ApplicationsB

Abstract—This paper presents a fast algorithm for the compu-
tation of sliding conjugate symmetric sequency-ordered complex
Hadamard transform (CS-SCHT). The algorithm calculates the
values of window ¢+ IN /4 from those of window %, one length-IN /4
Walsh Hadamard transform (WHT) and one length-IN/4 Mod-
ified WHT (MWHT). The proposed algorithm requires O(IV)
arithmetic operations, which is more efficient than the block-based
algorithms of various transforms and the sliding FFT algorithm,
but less efficient than the sliding WHT algorithms. Compared to
the recently proposed sliding inverse SCHT (ISCHT) algorithm,
the proposed algorithm is more efficient for real input but less effi-
cient for complex input. The applications of the sliding CS-SCHT
in transform domain adaptive filtering (TDAF) to complex signal
channel equalization and real speech signal acoustic echo cancel-
lation are also provided.

Index Terms—Conjugate symmetric sequency-ordered complex
Hadamard transform, fast algorithm, sliding algorithm.

[. INTRODUCTION

HE DISCRETE orthogonal transforms including

discrete Fourier transform (DFT), discrete cosine
transform (DCT), discrete Hartley transform (DHT), and
Walsh-Hadamard transform (WHT), play an important role
in the fields of digital signal processing, filtering, and com-
munications [1], [2]. During the past years, the problem of
the fast computation of these transforms has been extensively
investigated [3]-[12]. At the same time, attention was also
paid to finding new transforms and to developing their fast
algorithms [13]-[22]. In particular, Bouguezel et al. [13],
[14] proposed a new class of parametric transforms, including
reciprocal-orthogonal WHT (RWHT), reciprocal-orthogonal
DFT (RDFT), and reciprocal-orthogonal DHT (RDHT). Ra-
hardja and Falkowski [15] derived a family of unified complex

This work was supported by the National Basic Research Pogram of China un-
der Grant 2011CB707904, the National Natural Science Foundation of China
under Grants 60873048, 60911130370, 61073138, and 81101104, and the Nat-
ural Science Foundation of Jiangsu Province under Grant SBK 200910055.

J. Wu, L. Wang, G. Yang, L. Luo, and H. Shu are with the Laboratory
of Image Science and Technology, School of Computer Science and En-
gineering, Southeast University, Nanjing 210096, China, and also with the
Centre de Recherche en Information Biomédicale Sino-Frangais (CRIBs),
Nanjing 210096, China (e-mail: jswu@seu.edu.cn; wanglu@seu.edu.cn;
yang.list@seu.edu.cn; luo.list@seu.edu.cn; shu.list@seu.edu.cn).

L. Senhadji is with INSERM, U 1099, 35000 Rennes, France, with the
Laboratoire Traitement du Signal et de I’'Image (LTSI), Université de Rennes
1, 35000 Rennes, France, and with the Centre de Recherche en Information
Biomédicale Sino-Frangais (CRIBs), 35000 Rennes, France (e-mail: lotfi.sen-
hadji@univ-rennes].fr).

) @\ OED»MM ERAOM»ERAJ»E}EMOM WA EHA e‘l‘H N Mo ﬁ»euk{o N 031* >>$

Hadamard transforms (UCHTs), which find their applications
in many areas, such as multiple-valued logic design [16].
Aung et al. [17] introduced the so-called sequency-ordered
complex Hadamard transform (SCHT), which find its appli-
cations in spectrum analysis [17], image watermarking [18],
and shape-based image retrieval [19]. More recently, based
on natural-ordered complex Hadamard transform (NCHT)
[21], the same authors [22] introduced a new transform named
conjugate symmetric SCHT (CS-SCHT) with the half spectrum
property, which made it more suitable than SCHT for signal
spectrum analysis. They further proposed a fast block-based
decimation-in-sequency (DIS) algorithm for the computation
of CS-SCHT [22], and showed that it can be an alternative
to DFT and DCT in some applications requiring lower com-
putational complexity such as spectrum estimation and image
compression.

When dealing with a nonstationary process, such as speech,
radar, biomedical, and communication signals, the commonly
used method is sliding orthogonal transform, which is defined
by (23], [24]

N-1

YN(ka l) = Z ‘(L‘i-&-mwmdj(lr”v k)? 1
m=0

where w,, is a window function, and {¢(m, k)} is an orthog-
onal basis set. Y 5(k, i) represent the orthogonal transform of
the windowed signal around time ;.

Since the computation of sliding transform is an intensive
task, many fast algorithms have been proposed to speed up the
computation efficiency [23]-[38]. By using the radix-2 deci-
mation-in-time (DIT) FFT structure, Farhang-Boroujeny et al.
[25], [26] derived a sliding FFT algorithm, which requires only
N complex multipliers to update the N-point FFT for all N
bins and is very suitable for serial-in serial-out implemental
structure. Jacobsen and Lyons [27], [28] proposed the sliding
DFT by using the circular shift property of DFT. Their algo-
rithm is very different from sliding FFT and more suitable for
parallelizing all V bins to construct the parallel-in parallel-out
structure. The research on the fast computation of sliding WHT
is also very active [29]-[34]. Farhang-Boroujeny [29] devel-
oped a radix-2 DIT sliding WHT algorithm. Hel-Or and Hel-Or
[31] proposed a radix-2 DIS fast algorithm, which evaluates
the projection values of a length-N¥ WHT from that of two
length-N/2 WHTs. Ben-Artzi et al. [32] further proposed a
Gray Code Kernel (GCK) WHT algorithm, which is more ef-
ficient than the algorithms reported in [29] and [31] when a
small number of projection values are computed. If all projec-
tion values are computed, their algorithm needs two more ad-
ditions. Ouyang and Cham [33] presented a more efficient al-
gorithm to compute the length-y WHT of window ¢ + N/4

TABLE 1
SYMBOLS USED IN THE PAPER WITH A BRIEF DESCRIPTION

Symbols Brief descriptions Symbols Brief descriptions Symbols Brief descriptions
B.B,P,Q, Permutation matrices Y Qutput vector Vi Constant
Q.R.R

C NCHT matrix A Additions a2k, i) Estimated input powers
(ol Matrix related to WHT d, @) Intermediate variable Step-size
related to input

D, D, IS Diagonal matrices d'() Desired signal wim, k) Orthogonal basis

E Matrix composed by (i) Error signal [0} Angular frequency
sub-block identity matrices

F.&0G Vectors related to elements g, f) CS-SCHT matrix elements Superscript H Hermitian Transposition

T of C5-SCHT matrix
H CS-SCHT matrix M Multiplications Superscripts o and ¢ Row and column vectors
1 Identity matrix Me Memory Superscript 7' Transposition
reverse identity matrix £, (ki) Intermediate variable Superscript * Complex conjugate
related to projection values
W WHT matrix Wi Window function Superscripts ¢CS, Complex CS-SCHT, ISCIHT,
cISCHT, W, e MW WHT, and Modified WHT
W’ Weight vector ¥, (k1) £" CS-SCHT projection Superseripts (S, Real CS-SCHT, ISCHT,
value for the i" window FISCHT, rW, rMIW WHT, and Modified WHT
X Input vector z(f) Filter output signal

from that of window ¢ and one length-N /4 WHT. More recently,
Wu et al. [37] proposed two fast algorithms for the computa-
tion of sliding inverse SCHT (ISCHT) by using the structures
of radix-2 and radix-4 DIS fast ISCHT algorithms.

Since most signals in radar, sonar, and communications have
in-phase and quadrature components, i.e., they are complex sig-
nals, which have nonsymmetrical power spectral density with
respective to w = 0 and are more effectively processed by
complex transforms [38, p. 224]. Even for some real input ap-
plications, they still need the phase information, for example,
phase slope index (PSI) measure [39], [40], phase based image
retrieval [41]. For more detail about the applications that need
complex transform, please refer to [42]. Hence there is a need
to develop the sliding complex transforms.

In this paper, we focus our attention on the fast computa-
tion of sliding CS-SCHT. The proposed algorithm computes
the values of window ¢ + N/4 from those of window ¢,
one length-N/4 WHT and one length-V/4 Modified WHT
(MWHT). A preliminary study was presented in [43], we
expand this idea here and also provide a rigorous mathemat-
ical proof of the algorithm as well as an in-depth analysis
of its computational complexity. Application to complex
signal channel equalization and real speech signal filtering is
discussed. The rest of the paper is organized as follows. In
Section II, preliminaries about the sliding CS-SCHT are given.
The proposed sliding CS-SCHT algorithm is described and
the comparison results with other algorithms are provided in
Section III. Transform domain adaptive filtering for complex
signal channel equalization and real speech signal filtering is
given in Section IV to illustrate the potential applications of
sliding CS-SCHT. Section V concludes the paper. In Table I we
give a list of variables and symbols used in this paper together
with a brief description.

II. PRELIMINARY

Let XN(’Z) = ..7.7,‘,‘+1\T_1]T and Yl\f(i) =
[YisYis1s--»yizn 1] be respectively the complex or real
input vector and the corresponding transformed vector of the
1th window, where the superscript 7' denotes the transpose,

the length-N forward and backward sliding CS-SCHT are
respectively defined as [22]

Y (i) = Hy Xy (i),)
X (i) = Y Yx (i), G

where the length IV is assumed to be a power of two, i.e., N =
2™, n > 1, the superscript H denotes the Hermitian transposi-
tion. Hp is the order-N CS-SCHT matrix whose elements are
given by

g, [) = (D) F (=T,

OSQ f§2n_17 n:10g2N7 (4)
where G = (§n—1,---,61,60): G = (Gn—1,---,91,90), and
F = (fu-1..--.f1, f0). The dot “-” denotes the inner product
of two vectors. g, and f, are, respectively, the binary represen-
tation of g and f,r = 0,1,....n — 1, being the index of the
binary bit position. g, is a binary gray code of the bit reversal of
gr and §, is the rth bit of the binary bits of the highest power of
2 in¢(g)/2 where ¢(g) is the decimal number obtained through
a bit-reversed conversion of the decimal g.

From (4), we have

Hl:[l]a
1 1 1 1
11 I B S R
HQ_[l —1}’ e O
1 -5 -1 3
i1 1 11 1 1 17
11 45 5 -1 -1 =j =
1 53 -1 -5 1 i3 -1 —3
1 -1 —j j -1 1 3§ —j
Ho= 1 1] —Jl 1 -1 { —jl - O
1 -1 § —j—-1 1 —j j
1 -5 -1 5 1 -5 -1
L1 1 -5 —j-1 -1 5 j |

Let us introduce some notations:

= [H%(0), Hy (1), ..., HE (N = 1)]", 6)

= [H%(0), H (1), ..., NIV =1, @)
”’“ = [H5(0), Hy (1), ..., Hy (N/m — 1)]

= [H}/m(o 1/’”(). HY™(N - 1)}T

m=2,4, (8)

where H% (k) and H% (k). 5 = 0,1,...,N — 1, are the
kth row and kth column of CS-SCHT matrix, respectively.
HY"(k),k = 0,1,...,N — 1, is the kth row of HY ™. For
example,

H,* = [H(0)] = [1,1,1,1]7
= [m o) 1), 1Y), BV @) @)
Hy/* = [Hg(0), Hg(1)]
1
J

(11 11 1 1 1]t
“ 11

-1 -1 -1 —j 1
- [.E) B)] o)

Letyn (k,) be the kth CS-SCHT projection value for the ith
window:

yn(k, i) = Hy ()X n (4),
fork=0,1,...N —1;
i=0,1,....M-N,N=2"n>1, (i)

where M is the length of the input data sequence.
For the real input data, yn (k. ¢) satisfies the following con-
jugate symmetric property:

N —ki)=yi(ki), k=12, N/2-1 (12

Z/N(

where the superscript * denotes the complex conjugate.

III. FAST ALGORITHM FOR SLIDING CS-SCHT

In this section, we first derive a relationship between the
CS-SCHT and WHT matrices, and then propose a fast algo-
rithm for computing the sliding CS-SCHT.

In [22], Aung et al. derived a matrix decomposition of H

as follows:
Hy = RyCy, (13)

where R is a permutation matrix, which permutes the NCHT
matrix Cu to CS-SCHT matrix Hp, and

[Cxya
Cy = Exn, 14
N I C,‘\'/QS N/2 N ()
By = |2 v] : (15)
| In/z —Ingo
_ _ -IZV/4
Snj2 = _ x| (16)
r C’ }
/’ . — 7\4/4 I\/—l , (17)
/2 C9\/4 ,N/4 CN/4I/V/4
i _ If\//b
N T i (18)

where Iy is the identity matrix.

TABLE 11
FAST ALGORITHM FOR LENGTH-4 CS-SCHT

X; | iy | Xz |.r_.-.; | Xiig

Proposed algorithm

ya(0,0) 1 1 1 1 Yl 0 1= v 0,0) (XrXia)
yal0,7+1) 1 1 1 1

val1,0) 1 V! - wal Lt D= 1L O-(emvig)]
ya1,i+1) l i -1 J

Yal20) 1 -1 1 -1 Y2)= 2,0 a)]
va(2,i+1) I -1 | -1

Yal3.0) 1 jo -l i Va3 D3,)X e)]
va(3,011} 1 - -1 /

In the following, we derive another matrix decomposition of
H . Using (14) and the properties

Ry' =Ry, Cyp=RylHyp (19)
Equation (13) becomes
Ry
Hy =Ry { N2 R’\’/2:|
HN/Q
‘ En. 20
8 [RN/QCTN/zsN/J N @0

It can be proved that (20) is equivalent to (the proof is shown in
Appendix A)

Hy/o
Hxy = Pn ! En, (21
N N [Qn/2P s Wiy2Snyo } v @D
where S /5 is defined in (16), W is the order-N WHT matrix,
and

Inv/a]

N =1 " , 22

QA'\/Q |: ']'1\7/4 ()

[1171% Lip N2 Litly Lith N/2415 -+ - s Lip N/2 -1 11711+AL1]T
=Py[wi Tit1s - Tign-_1]", (23)

where J x is the reverse identity matrix, that is, all the elements
of vice diagonal line are one, P » is the perfect (or ideal) shuffle
permutation matrix [44], which can be implemented by linear
time, in-place algorithms [45], [46], and

P, =P%. (24)
For example,
-1 -
1
1
1
Py = . (25)
1
1
L 1]
Since [9]
Wy Dy s W;
PIJ\}/QWZ\I/Q — 1\/4]\/4 V/4 (26)

Whre —DnpaWayg |’

TABLE III

FAST ALGORITHM FOR LENGTH-8 CS-SCHT
X; |) | Xien | Xis3 | Xiea | Fies | Xies | Ko7 | Xy Xisn Proposed algorithm
(0D [1 1 1 1 1 1 e(0,iH+2)=
vi(0,i+2) 1 1 1 1 1 1 1 1 e 0uD)=[{ % = Xpss HH Kierm Xien)]
ys(Lid) 1 L L T) el LiH2)=
ral1,i42) 1) T S S R | 5 s 1)- [0 % - g - Xio)]}
w2 [0l L yo2,it2)=
¥l 2,+2) 1 il 7 l i -1 - {3200 3 - o) x0- Xeo)]
e e ¥o(3,42)=
Ts(3,i+2) 1 o B R ! 1 J P30T x: - xeg)-(o= xe9)]}
V(4 0) 1 - 1 1 1T 1 1 - yy(4i12)=
ve(d,i+2) 1 1 1 -1 I -1 1 -l (-1 - i) Xim xi-a)]
¥al5.0) 1 -1 i 4 -l 1 7 vyl 5,i42)
vl 5,+2) 1 -1 i f -1 I i F i 3,01 % - Xaa) Xoi- X))
¥u(6.0) 1 - -1 i] — j yy(6.512)=
14(6,i12) 1 5 -1 1 5 -1 - {0,010 X - X Xi- Xeo)]
ys(7.0) 1 1 4 4 -1 i J »(1.42)=
Wl(7.042) 1 1 i 4 -l -1 i Fs(T [0 - X s Xeo)] b
(21) can also be expressed as [ts(0,4), ts(1,4), ... ts(7,0)] = H§/4[dg(i), ds(i+1)]7,
(35)
Hy, L I,
H]\r :PJV Q . WN/4 DN/4W1\,'/4 S . Ej\g 1/4 H4/ P_1 |:W282:|
N2\ Wiy —DnyaWiya| N2 Hy =Ps | W, | =Ps W, (36)
(27) JQWQ J W‘
where D is a diagonal matrix whose elements alternate be- 2¥V2
tween +1 and —1. S, = 1 (37)
We are now ready to propose our fast algorithm, which com- 7l
putes the values of length-/V sliding CS-SCHT of window ¢ + de(i+u) = i1y — Tiygu, w=0,1, (38)

N/4 from those of window i and one length-N/4 WHT and one
length-N/4 MWHT.
A. Fast Algorithm for N = 4

The proposed algorithm is shown in Table II, from which we
have

yalk,i+1) = (_.7‘)]‘7[.7/4(& i) = ta(k,9)], k=0,1,2,3,

(28)
[ta(0,), ta(1,4), ta(2,), ta(3,6)]" = HY *[da(3))

= [da(3), da(i), da(i), da ()], (29)
da(i) = 2 — Ziya, (30)

where H}i/ * is shown in (9). For complex input data, 2 multi-
plications with j, 10 real additions, and a memory size of 10 are
needed. For the real input data, from (12) and (28), we have

o054 1) = [5s(0,4) — £4(0,)]. G1)
ya(1i+1) = —jlya(1,9) — ta(1,0)] = 3(3,i + 1),
(32)

Since y4(0,1), y4(2,4) and £4(k, i), k = 0,1, 2 are real values,
but y4(1,7) is a complex value, for the implementation of
ya(1,4) — t4(1, %), we can just read the real part of y4(1,7) and
then subtract the real value t4(1,). Therefore, 1 multiplication
with 7, 4 real additions, and a memory size of 5 are needed for
real input data.

B. Fast Algorithm for N = 8

The proposed algorithm is shown in Table III, from which we
have

yS(kv 7+2):(_1)k[y8(k7 1)_t8(k71)]7 k:()v 1., 77 (34)

where Hé/ * and Pg are shown in (10) and (23), respectively.
For complex input data, 5 multiplications with 7, 26 real addi-
tions, and 36 size of memory are needed. For real input data,
similar to the analysis of length-4 CS-SCHT, 3 multiplications
with 7, 10 real additions, and 16 size of memory are needed.

C. Fast Algorithm for N = 2".n > 3
By using the same strategy as for N = 4 and NV = 8, we have

yn(kyi+ N/4) = (=) lyw (k. i) — ty (k)]

]gj:O,l’...,N_:L (39)
[tir\r(()’ Z)' tt\"(l? Z)' tre tj\"(N a 1, Z)}T
= HY [dx (i) du (i +1).....dn(i + N/4= D],
(40)
HY?
s N/2
Hy =Py Wia
JN/4WN/4
- Hyyy
_py | LQwaP WSy (41)
N/4
JN/4WN/4
dn(i+u) = Tiva = Tignpu, v =0,1,... N/4 =1,
(42)

where Hl\,/’L and H}\/2 are defined in (8). Sy, Qn, and P are
defined in (16), (22), and (23), respectively.

The derivation of (39) is given in Appendix B. Fig. 1 shows
the signal graph of the proposed algorithm, whose computa-
tional complexity and memory storage requirement are ana-
lyzed as follows:

1) The computation of (42) for v = N/4 — 1 needs only 2

real additions for complex input data (1 real addition for

2)

3)

X = dfi) ¢ <5 ot
Xitr I-'II- (faw’;+“ ', j}; E - o
v .'. = & . _,r_)
hyE i+ \ 4-2) ?F’I“ 1u(N-8, 1)
=~ .
(i Nd-1) - ivN4,i)
o e tal 2,1
= T D
125 e T Y
§J = 3o N6
~ o]
T - n(N-20)
- taf 1}
18 . (3,4
E-O = 1l L N2-300
-]
'llll tn(N2- 1,00

= (N2 LD
= = (N2 30)

N1

Fig. 1. Signal flow graph of the length-/V sliding CS-SCHT transform.

real input data). Note that the values of dy (i + u),u =
0,1,...,N/4 — 2, have already been obtained during the
computation of yn(k,i + v),v = 1,2,...,N/4 — 1, re-
spectively. A memory size of N/2 for complex input data
(/4 for real input data) is required for storing dy (i + u),
w=0,1,...,N/4 — 1. The input 2, and z; ., for
w=0,1,..., N/4—1,needs N memory for complex input
data (N/2 for real input data), which can be released after
performing (42) since it will not be used in the following
steps.

The computation of (41) needs one length-N /4 CS-SCHT,
one length-N/4 WHT, which can be computed by the
algorithms [29], [31]-[33], one length-N/4 modified
WHT (W y/4Sn/4). Note that for the modified WHT,
the input data is first multiplied by Sy 4, resulting in the
change of two inputs: dy (i) replaced by jdn (i + N/4)
and jdn (i + N/8) by dn (i + N/8). This change makes
the implementation of Wy,4 Sy/4 not exactly the
same as that of Wy /4. It seems that the algorithms in
[31]-33] are difficult to deal with the modified WHT.
However, we notice that the two changed inputs are
just that of necessary updated in the algorithm of [29],
which can be chosen to implement the modified WHT,
costing 2 additional multiplications with 7 when com-
pared to WHT. For the implementation, size 3V/2
memory for complex input data is needed for storing the
values ty(k,i + u),u € {0,1,....N/2 — 2, N/2 —
1} U {N/2 N/242,...,N — 4,N — 2}, since Jy/4
Wy is just row change operations of Wy (Size
3N/4 memory for real input data for ¢ty (k,i + u),u €
{0,4,...,N/2 — 4,N/2} U {2,6,...,N/2 — 6, N/2 —
2} U {L,3,.. ,N/2 - 3,N/2 - 1}) We also assume
that the memory storage requirements of length-N/4
complex (real) CS-SCHT, length-N/4 complex (real)
WHT, and length-N/4 complex (real) modified WHT

are M(’"NC/‘Z(M(’RC/E) M(ﬁ\”//4 (M(}"\‘%) and]\xfﬁ“\‘fr
(MeQ‘f“

, respectively. Note that the multiplication by j
or —j can be realized by switching the real and imaginary
parts of the input with one sign changing, so that there is
no memory requirement.

The computation of (39) needs N /2 multiplications with j
and 2N real additions for complex input data (V/4 mul-
tiplications with j and 3N /4 real additions for real input

data). The values of yx (k, 1), yn(k, i+ 1) cyn(k, i+
N/4 — 1) can be obtained by simply using the CS-SCHT
block algorithm [22]. For the implementation, we first dis-
tribute 2N memory for yn (k i),k=0,1,...,N — 1 for
complex 1nput data, which is then overlaid by yn(k, i+
N/4), k = 0,1,...,N — 1 after performing (39). (For
the real input data we should distribute 3N /4 memory for
Re{yn(k,)}, k€ {O,N/2YU{1,3,... ., N/2—3, N/2—
1} and yn(k, i), k € {2,4,6,...,]\//2—4 N/2—2})
Thus, the computational complex1ty and memory require-
ment of the proposed algorithm for complex and real input data
is given by

M§F® = MEGE + N/2 42,)
AcCS _ A(;Vc}_z Ag\”/éL ARD/[F + 2N 4 2, 44)
M€LCS N/2

—|—IIld,X{7N/2 Mecwg}‘z +Mei’\”/4 + Me R}/[P }7

(45)

where M5E° and ASE® mean the multiplications and ad-

ditions needed by length -N complex CS-SCHT, ASY, and

N/4
ARA/IZIV mean the additions needed by length-V/4 complex

WHT and MWHT, respectively, and the initial values are

M98 = 2,465 = 10; M = 5,A8°% = 26, and
Mes®S =10, Meg®S = 36.
MiES = MG+ N/4+2, (46)
S = S+ A+ AR SN, @)
M67C'S N/4
+ max {3N/2, 1\46%’;3 + MeR/Y}4 + Me T\A/T } ;

(48)

where M and A7 mean the multiplications and additions

needed by length- N real CS-SCHT, AI\W4 nd A7, L/[W mean

the additions needed by length-N/4 real WHT and MWHT,
respectively, and the initial values are M;“S = 1, A7¢° =
4 MECS =3, AZ9S = 10; and Mef©% =5, Meg©s = 16.

Since we use the algorithm presented in [29] to compute the
Modified WHT, we have

A =N —4, (49)
Mey)" = (N/2)logys N — 5N/4, (50)
and
AR = AR —4=N -3, (51

enfi = Meg}V — N/2 = (N/2)logy N — TN/4.
(52)

In the following, we discuss two different ways for computing
the length-V/4 WHT. The computational complexity and the
memory storage requirements of the sliding WHT algorithms
in [29] and [33], we use in the following, are shown in Table V.

Scheme 1: Implementation of the Length-N /4 WHT by [33]
and the Length-N/4 MWHT by [29]: From (44), (45), (49),
(50), and Table IV, we have (53) and (54) at the bottom of the

page. From (47), (48), (51), (52), and Table V, we have (55) and
(56) at the bottom of the page.

Scheme 2: Implementation Both the Length-N/4 WHT and the
MWHT by [29]: From (44), (45), (49), (50) and Table IV, we
have

AT = AT+ (N —4) + (N —4) + 2N 42

= AN/i+4N -6 (57)

N 7 5
MesES = > + max{EN Mcﬁ\c}“z +N (logQN - 5)}

(58)
From (47), (48), (51), (52) and Table V, we have
ARES = AT + (N/2 - 2) + IN/A =7
= A5 +9IN/MA-9 (59)
Me}’\,?s = % + max { 3N]\/./eT\g’;i
+<3—log2N—BN>} (60)

It can be seen from (53) to (60) that Scheme I requires less
number of additions and memory complexity than Scheme 2.
However, Scheme I needs two different modules to implement
length-N/4 WHT and MWHT, while Scheme 2 only needs one
module which makes its implementation more simpler than the
one of Scheme 1. Note that length-N /4 WHT can also be imple-
mented by GCK algorithm [32], whose most important advan-
tage is that it requires less computation complexity than [29] and
[31] when only a small number of projection values are com-
puted, however, two more additions are needed when all pro-
jection values are computed. Since in the proposed algorithm,
all projection values are needed, so, it seems more suitable to
use [29] and [33] than GCK algorithm [32] in terms of compu-
tational complexity.

Compared to our previous conference paper [43], we mainly
have the following four improvements: 1) We provided a

rigorous mathematical proof of the algorithm and also applied
the algorithm to complex signal channel equalization and real
speech signal filtering. 2) We reanalyzed the computational
complexity of sliding WHT in [33], which leads to the reduced
computational complexity compared to [43]. 3) We provided
the computational complexity analysis of sliding CS-SCHT
algorithm for real input, for which the conjugate symmetric
property can be used to reduce the computational complexity
significantly. 4) The expression of (41), which is the most
important equation in the proposed algorithm, is optimized
than that of (6) in [43], which leads to more regular and fast
permutation operations.

Note that the proposed sliding CS-SCHT algorithm shares the
same idea as that of sliding ISCHT one [37], that is, computing
the projection values of window ¢ + N /4 from those of window
:. However, the construction of CS-SCHT matrix is different
from that of ISCHT matrix. In fact, the CS-SCHT matrix is gen-
erated based on the WHT matrix and direct block matrix oper-
ation while ISCHT matrix is generated based on the products
of the row vectors of complex Rademacher matrices [17], [22].
Therefore, the sliding fast algorithms for CS-SCHT and ISCHT
are also different. The key of the proposed sliding CS-SCHT
algorithm is to establish the relationships between length-N
CS-SCHT matrix and the length-N/4 WHTs, the latter can be
computed by many mature sliding algorithms [29], [31]-[33].
However, the sliding ISCHT algorithm is based on the rela-
tionships between length-N ISCHT matrix and the length-N/4
ISCHTs.

The comparison results of the proposed algorithm and the al-
gorithms in [13], [14], [22], [25], [26], [29], [31]-[33], [37] are
shown in Tables IV (complex input) and V (real input). It can be
seen from the tables that the proposed algorithm reduces signif-
icantly the real additions compared to the block CS-SCHT al-
gorithm [22], block parametric WHT algorithm [13], and block
parametric DFT/DHT algorithm [14], but at the cost of more
memory requirement. For complex input, the proposed sliding
CS-SCHT algorithm is less efficient than that of sliding ISCHT
[37]; however, for real input, it is more efficient than that of
[37] owing to the conjugate symmetric property of CS-SCHT
shown in (12). The proposed algorithm is more efficient than the

AT = A+ AN+ (N =9 +2N 42

20
AS /4+< N+210g4N——>,N:Z",n:4?6,...
3
- N\ 16 (53)
AR /4—|—<3 N—|—210g4<2)—§>j]\7:2 “n=>57,...
(‘CS ﬂ Z cCS
MeR 5 +max 2]\7, Mem/-f" (log>2 N-1) (54)
ATES = Aggf + AV, +TN/A =T
AN+ (25N/12 +logy N —28/3), N =2", n=4,6,... 55)
ANS +(25N/12 + logy(N/2) — 26/3), N =2", n=57,...
N N 11
MerEs = T + max{ =N, Me7“\c/;1g (7 logy N — §N> } . (56)

TABLE IV
COMPARISON RESULTS OF THE PROPOSED ALGORITHM OF THE COMPLEX INPUT DATA WITH THE BLOCK-BASED ONE [22], SLIDING ISCHT [37], THE SLIDING
FFT [25], [26], AND RECIPROCAL-ORTHOGONAL DFT TRANSFORM [14] FOR N = 2", n > 4. “AM uls” REPRESENTS REAL MULTIPLICATIONS, “Muls(j)”
MEANS MULTIPLICATION WITH j, “Adds” MEANS REAL ADDITIONS. “ME” DENOTES MEMORY (WORDS). SUPERSCRIPT “#”DENOTES “Muls(j)”

Complex input 4 8 16 32 N=2"n=4
Muls(j) 2 5 12 23 N3 R2log.N-Ri3, N=2", n=4.6....
INI3H2lopaN2)-T13, N=2" n=5,7....
Adds 10 26 66 142 44NI9+(log:N-14/3)(log,N-1)-86/9, N=2", n=4.6,...
Proposed algorithm 44N9+(10g N 2)-10/3)log(N2)-1)-118/9, N=2", n=5.7,...
Me 10 36 | 64 128 N2+max {TN2, MeiCS+N(logaN-1)/2}
Block CS-SCHT Muls(j) 1 3 7 15 Ni2-1
algorithm [22] Addls 16 48 128 320 2Nlog N
Me 8 16 32 64 2N
Muls(j) 2 5 13 28 INAG+Hlog N-Ti3, N=2", n=4.6,...

SNB+loga(N/2) —8/3, N=2", n=5.7,...

Sliding ISCHT Adds 10 26 36 120

AN-2log.N-4, N=2", n=4,6,...

37 AN-2log(Ni2) -4, N=2" n=57,...
Me 10| 28 56 112 NiZ+max {3N, Me]"" +N(log,N-5/2)2}
Muls 1] 8 32 4 AN-Rlog. N
Sliding FI'T Muls(j) 1 2 3 4 log.N-1
[25, 26] Ades 6 18 | 46 106 AN-4og:N-2
Me 12 | 44| 124 | 316 2Nlog:N-4
Muls 1" 4 16 68 (43)Nog N-(A4/NN-(1O/9)(-1)"* ™+ 10
Reciprocal-orthogonal Shifts 0 0 8 16 (2NN
DIT (RDFT) [14] Adds 16 | 52| 144 | 372 (24NN og:N-(| 6FNNH24H D 0gN-(24HN(- 1" og, A+ 118/9)(-1)"¥-34/3
Me & 18§ | 48 96 3N

sliding FFT in [25] and [26]. This is because the proposed algo-
rithm only needs the multiplications with 7 and real additions.
The proposed algorithm also requires less memory complexity
than sliding FFT [25], [26]. But it requires more computational
and memory complexity than that of sliding WHT algorithms
shown in [29], [31]-[33]. For comparison purpose, Tables IV
and V show the real multiplications, multiplications with 5 and
real additions where one complex multiplication (or one rota-
tional matrix) is implemented by four real multiplications and
two real additions. Note that for the particularity of multiplica-
tions with j, we count once whatever j multiplied by a complex
number or a real number.

IV. TwWO APPLICATION EXAMPLES

In this section, we provide two application examples of the
sliding CS-SCHT.

Transform domain least-mean-square adaptive filters
(TDLMSAF), introduced by Narayan et al. [47], exploit the
de-correlation properties of some well-known signal transforms
such as DFT, DCT, DHT and WHT, in order to pre-whiten the
input data and speed up filter convergence (p. 413, [48]).

Similar to the DFT domain LMS adaptive filter [47], [48],
the CS-SCHT domain LMS adaptive filter algorithm, shown in
Fig. 2, is described as follows:

Yn(i) = HyXn (i),

2(i) = (Wi ()Y n (i), e(i) =d'(i) — 2(3),
(61)
Wi(i+1) = Wi(i) + 2 u(D'(i)) e(i) Y (5), (62)

where * denotes the complex conjugate operator, X (¢) is the
input signal vector, Y y (i) = [yn(0,4), yn{(1,4), ..., yn(IN —
1,2)]" is the CS-SCHT domain coefficients. Wi (1) =
[(0,8), Wi (1,8), ..., w(N 1,i)]T is the adaptive
weight vector. z(¢),d’(7), e(¢) are the filter output signal, the
desired signal, the error signal, respectively. p is a positive

step-size and D’(#) is a diagonal matrix of the estimated input
powers which is given by

D'(i) = diag{o®(k,i)}, k=0,...,N -1,
o?(k,i) = Bo(kyi — 1)+ (1 = B)lyn (k)% 0 < B < 1.
(63)

In the following, we apply the aforementioned transform do-
main LMS adaptive filters for both complex and real input. Note
that the fast algorithms have been implemented using “C” pro-
gramming language. The comparison results of execution time
are carried out on a PC machine, which has an AMD single core
CPU with speed of 3200 MHz and 4096 MB RAM. The run time
of these algorithms have been calculated using MinGW GCC
complier version 3.4.5.

A. Channel Equalization (Complex Input)

In this example, a quadrature phase shift keying (QPSK)
signal of length 1024 is transmitted over the additive white
Gaussian noise channel (AWGN channel). The channel intro-
duces intersymbol interference using a finite impulse response
type model. The transfer function of the channel H(z) can be
expressed as

—0.7edT 4 i T 71

) = — g7,

At the output of the channel, a white Gaussian noise sequence
with variance o2 = 0.1 is added. The input signal, which is the
sum of the channel output and the noise sequence, is processed
by the 32-tap equalizer (filter). The parameters are set as
1 = 0.3 and # = 0.2. Fig. 3 shows the received signal scatter
plot and the equalized signal scatter plot by sliding CS-SCHT
based sequency domain equalizer (filter). Fig. 4 illustrates the
learning curves for sliding FFT/ISCHT/CS-SCHT based adap-
tive equalizer (filter) using the aforementioned QPSK signal.
Table VI shows the execution time of the sliding transforms
of the corresponding adaptive equalizer (filters). It can be seen

(64)

TABLE V

COMPARISON RESULTS OF THE PROPOSED ALGORITHM OF THE REAL INPUT DATA WITH THE BLOCK-BASED ONE [22], THE SLIDING ISCHT [37], THE SLIDING

WHT [29], [31]-[3

3], THE SLIDING FFT [25], [26], RECIPROCAL-ORTHOGONAL WHT [13] AND DHT [14] FOR N = 2", n > 4. “MULS” REPRESENTS REAL

MULTIPLICATIONS, “M wls(j)” MEANS MULTIPLICATION WITH j, “4DDS” MEANS REAL ADDITIONS. “M ¢” DENOTES MEMORY (WORDS)

Rcal input 4 8 16 32 N=2"nz=4
Muls) | 1 | 3 7 13 Ni3+2log,N-7/3, N=2", n=4.6,...
Ni3+2log,(N/2)-5/3, N= 2 n=5.7,...
Adds 4 [10] 30 | 70 25N9+(loguN-1)(log:N-50/3)/2-64/9, N=2", n=4.6,,...
Proposed algorithm 25N9+(loga(N2)- D{log,(N/2)-46/3)/2-110/9, N=2", n=5.7,...
Me 5|16 28 | 60 Nid+max [3N72, MeCS +(N/2)logN-1 1N/8}
Block CS-SCHT algorithm Muls) | 1 | 3 7 15 Ni2-1
[22] Adds 7 | 21| 57 | 145 Nlog, N-Ni2+1
Me 4 | 8 [16 |3 N
Sliding ISCHT Mulsg) | 2 | 5| 13 | 26 SNAG+HogN-7/3, N=2", n=4.6,...
[37] SNAG+loga(N/2) —8/3, N=2", n=5,7,...
Adds | 5 | 151 38 | 90 AN3 NV 2236 logN-9)(logaN-1), N=2", n=4.6,...
AN3 N 12 29-(6 logaN-9)(loga(N/2)-1), N=2", n=5,7,...
Me 5| 18 | 48 | 100 Nfdtmax {3N-4, aze +(N2)log N—15N/8}
Radix-2 DIT [29] Adds 6 | 14 | 30 | 62 IN-2
Radix-2 DIS [31] Me 6 | 20| 56 | 144 Nog-N-Ni2
Shiding GCK [32] Adds 8 |16 [3 64 2N
WHT Me 8 | 16| 32 | 64 2N
Radix-4 DIS [33] Adds 5011 22 | 44 AN +Hog N-4/3, N=2", n=4.6,...
AN Hogy(N2)-213, N=2", n=5,7...
Me 5 |12 | 24 | 48 3N/2-1, N=4; 3IN2, N=8
Muls 0 | 4 | 16 | 44 2N-4log.N
Sliding FFT Mulsg) | 1 | 2 3 4 log,N-1
(25, 26] Adds 4 | 12] 3 76 IN-4log,N
Me 5 |20] 58 [150 Nlog-N- Nid-2
Reciprocal-orthogonal WHT Muls 6 12 | 24 48 IN2
(RWHT) [13] Adds 8 | 24 | 64 | 160 Nog-N
Me 10 | 20 | 40 | 80 SNI2
Muds 0 2 8 34 (13/18)NlogN-(169/5H)N+1 Noga N-(4(- 1" Mog: N+(98/2T)(-1)°="-30
Reciprocal-orthogonal DHT | Skifis [0 | 0 | 0 | 2 (1/36)MogaN-(1 1/5HN+210g:N+H4/9)(- 1) log: N-(62/2T)(-1) -6
(RDHT) [14] Adds 8 | 22 | 62 | 176 | (55/36)NlogN-(161/54)N+10logN+(28/9)(- 11" log, N-(446/27)(-1) **"-24
Me 4 | 9]2 48 3NI2

-.jt*“r

‘ Lengfh-,\- Sliding CS-SCHT

P.\(-'\" i)

7

W0yl
¥ Y
wi (0, x)/ /{w ALY r/)! AN
s T
L |
x.__x.. o L
et _ o
4 m}z\wﬁr
\l/ z(i)
e(i) d'(i)

Fig. 2. Block diagram of CS-SCHT domain adaptive filtering.

Received Sigral Scatter Plot

Equalized Signal Scattar Plot

2 2

Jl. Jl +a%‘..
= = *
g 0- - g} ot O A
= ¢l E .

-1 -1 > A

-2 5 -2

-3 -

g 0 2 -2 0 2
Realx] Real[x]

Fig. 3. Scatter plot of received signal and equalized signal.

Learning curves for TOLMSAF

-45
| FFT
) ISCHT
= CS-SCHT
_E& \ :
W
g -60
g™
W 1
2 -es k|,'1'. ['l -
JLgF o A 1 AN t u
V]| A T M, |"'|I..\. 'y W
| ! W
-70 i Vi
-5
80 . - .
o 100 200 300 400 500 600 700 800 900 1000
Iteration

Fig. 4. Learning curves for sliding FFT/ISCHT/CS-SCHT based adaptive
equalizer (filter) using a QPSK signal.

from Fig. 4 that the learning curves for TDLMSAF using the
sliding CS-SCHT algorithm, sliding ISCHT algorithm, and
sliding FFT algorithm are exactly the same. The proposed
Scheme 1 of sliding CS-SCHT algorithm (1.178 ms) allows
us to save 40.0% in terms of computational time compared to
block CS-SCHT one (1.962 ms), 28.8% compared to sliding
FFT one (1.515 ms), and 79.7% compared to block FFT one
(5.791 ms) in the process of sliding transformations. However,
the proposed sliding CS-SCHT algorithm is 9.3% slower than
sliding ISCHT one (1.069 ms).

TABLE VI
COMPARISON OF EXECUTION TIME FOR SLIDING TRANSFORMS IN QPSK SIGNAL ADAPTIVE EQUALIZATION

Sliding CS-SCHT Block Sliding FFT Block FFT Sliding ISCHT
Scheme | | Scheme 2 CS8-SCHT
LExecution time {ms) 1.178 1.195 1.962 1.515 5.791 1.069
Impulse response of a room model Leaming curves for TDLMSAF
o : : : A “ SCHT
| i
i FFT
] 0.08) k» ROHT
E Mﬂﬂ\ ﬁw T -,.a.q,w!v.wmm 1.
< -5 | i“ l | [[C8-SCHT||
100 200 300 400 500 600 700 800 900 1000 g [W‘W “
peiu g || T m n)
Magnitude response of a room mode| = l 1
04 . : . . : e, | ’ |H H Uil f,
[

@“ g | | |
@ i i’ i l 1} ! I whd
g .ul'f :..‘ I;-"‘* l\u{ilwuﬁiplﬁj .II‘. .Hg.r hmll Ii
g} s
= . | _m[) 05 1 15 2 25

5 S0 1000 1500 2000 2500 3000 3500 4000 Iberation x10*

Hz
Fig. 5. Impulse and frequency response of a room model. Fig. 7. Learning curves for sliding transforms based TDLMSAF for acoustic

AR

Echo signal

a2 04 06 o8 1 12 14 16 18

Error for CS~-SCHT based skding window TOLMSAF

0 6z 04 08 08 1 12 14 186 18

Reconstructed signal for C5-SCHT based sliding window TOLMSAF

04 08 08 1 12 14 18 18

o
o
X

Fig. 6. The top row shows the loudspeaker signal, the second row shows
the corresponding echo and the last two rows show the resulting error
and reconstructed signal for CS-SCHT based sliding window TDLMSAF.

Note that the QPSK signal is a complex one that is employed
in many wireless network standards, such as IEEE 802.11a [49]
in which the DFT-based complex adaptive equalizer [50] is
used for multicarrier demodulation. In this situation, we can
simply substitute the DFT module by that of CS-SCHT with
little change. However, if we want to use the WHT as the com-
plex adaptive equalizer, similar to DCT-based system reported
in [51], it would be necessary to construct an intermediate com-
plex transform by using two WHTs. This may lead to higher
computational complexity and larger change to conventional
DFT-based system.

B. Acoustic Echo Cancellation (Real Input)

According to the Computer Project VI (acoustic echo can-
cellation) in [48], we use a synthetic signal of 1400 samples
that emulates the properties of speech. Concatenating 15 such
blocks to form a loudspeaker signal and feed it into the echo
path. Fig. 5 illustrates the measured impulse and frequency

echo cancellation. RWHT means reciprocal-orthogonal WHT. RDHT means
reciprocal-orthogonal DHT.

response sequence of an echo path in a room, which con-
tains 1024 samples. In this example, we process the acoustic
echo canceller with 512 taps TDLMSAF with ¢ = 0.15 and
[= 0.45. We use the echo as an input signal and the loud-
speaker signal as the desired signal to the adaptive filter.
Fig. 6 shows the loudspeaker signal, the echo signal, the
error signal and filtered signal after CS-SCHT based sliding
window TDLMSAF. Because the 512-tap sliding algorithms
use the first 512 tap signals as the first input block, so, the
first 511 tap indices of error and filtered signals are zeros.
Fig. 7 illustrates the learning curves for FFT, RDHT, WHT,
RWHT, ISCHT, CS-SCHT based sliding window TDLMSAF
for aforementioned echo cancellation scheme. Considering the
3N/2 independent parameters of the RWHT introduced in
[13], we simply set all the N parameters in S; to 0.75 and
the first N/2 parameters in S_; to 1.25. It can be seen from
the Fig. 7 that the learning curves for TDLMSAF using the
sliding CS-SCHT, sliding ISCHT, sliding FFT, sliding DHT,
sliding WHT are exactly the same and are somewhat better
than sliding RWHT. Table VII shows the execution time of
the sliding transforms of the corresponding TDLMSAF. The
proposed Scheme 1 of sliding CS-SCHT (0.901 s) saves 34.6%
compared to block CS-SCHT (1.379 s), 42.1% compared to
sliding FFT (1.557 s), 66.1% compared to RDFT (2.661 s),
11.5% compared to sliding ISCHT (1.018 s), —14.3% com-
pared to sliding WHT (0.772 s), 25.0% compared to RWHT
(1.202 s) and 68.2% compared to RDHT (2.831 s) in terms
of the execution time.

From the two application examples, we can see that,
compared to other sliding transforms, the proposed sliding
CS-SCHT seems to be more appropriate for the adaptive fil-
tering system requiring low computational complexity when
dealing with both complex and real signals. Compared to real
transforms, the sliding CS-SCHT is more suitable for applica-
tions where the phase information is needed, for example, PSI
measure [39], [40], phase based image retrieval [41]. Further
research is still in progress on these applications.

TABLE VII

COMPARISON OF EXECUTION

TIME FOR SLIDING TRANSFORMS IN ACOUSTIC ECHO CANCELLATION

Sliding CS-SCHT Block Sliding Reciprocal Sliding Sliding Reciprocal Reciprocal
Scheme 1 | Scheme 2 | CS-SCHT FFT -orthogonal ISCHT WHT -orthogonal -orthogonal
DFT WHT DHT
Execution |, o) 0.921 1379 1.557 2.661 1018 0.772 1202 2.831
lime (5}

V. CONCLUSION

In this paper, we have presented a fast algorithm for com-
puting the sliding CS-SCHT. The arithmetic complexity order
of the proposed algorithm is N, a factor of log, N improve-
ment is made over the block-based algorithm for the length-/V
CS-SCHT. The proposed algorithm is also more efficient than
the sliding FFT algorithm, but less efficient than the sliding
WHT algorithms. Compared to the recently proposed sliding
ISCHT algorithm, the proposed algorithm is more efficient for
real input but less efficient for complex input. The application
of the sliding CS-SCHT in TDAF to complex signal channel
equalization and real speech signal acoustic echo cancellation
has also been investigated.

APPENDIX A
DERIVATION OF (21)

To demonstrate the equivalence between (21) and (20), it suf-
fices to verify that the following two relationships are true:

Py =Ry [RN/ 2] =RnyBxy. (AD
Ryyo
R]V Ci\r = QIVP?\WWW]\H (Az)
where
Ry/o }
Br = / } A3
N { Ry/2 (43)
Proof of (A1): Let i = (in—1,%p—2,...,%1,%) and

I = (lp-1,0n2,...,01,l0), n = logy N, be respectively
the binary representation of the two integers ¢ and 7, let
Ry = (Ri), By = (By) and By = (B;) be the product of
Ry and By, by the definition, we have

L,
Ry = {0‘/
L,
B = {07

iflk:inflfk, k:O,l,...,nfl,
otherwise.

(A4)

if i, = Z‘(n727k)modnn k= 0,1,....n—1,

otherwisc.
(A5)
Using (A4), we have
N-1
1l - Z leBml — (A6)
m=0

where ¢’ is the integer corresponding to the bit reversed of :.

Using (AS5), (A6) becomes (A7) at the bottom of the page.
(A7) is equivalent to

B/ _ 1: lf lk :i(k+1)modn7]{,':0./17...771—17
it 0, otherwise.
(A8)
which is just the (i, {)th element of the matrix P . d

Proof of (A2): Using (19), it can be easily seen that (A2)
is equivalent to

Cy = RyQaPL Wy = RyQYWx = Ry Wy, (A9)
where
Qx = QnP%, and Ry =RxQly. (A10)
Let PL = (pa). Qn = (Qu), Qy = (Q}) and Ry = (R})).
From (A8), we have
o 1‘/ if ik :l(k-f—l)modn: k= 0517"'7”7 1,
pa = 0, otherwise.
(A11)

From (22), we have

1, ifi=1 and 0<i<N/2-1,
Qu=1<1, ifl=3N/2—-1—dand N/2<i<N -1,
0, otherwise.
(A12)
Using (A12), we have
N-1
Q Q’\/P?\—:f ; Z anpml
m=0
_) pas ifo<i<N/2-1
B {p3N/2—l—i,l7 if N/2<i<N-1 (AL3)
The elements of the matrix R’y are computed as
N-1
Ll - Z lele (A14)
m=0

To determine the value of R, two cases are distinguished. Let

=, 0 g zl,zo) be the 1nteger corresponding to the
bit reversed of ¢ = (z,L Tobn—9,...,01,%0).
Case 1. ¢ is even (iy = 0)

1, ifl,

.
B;l =By = {O - L(n—Z—k)modn

otherwise.

= in—l—[("‘2‘k‘) modn]s

E=0,1,...,n—1,

(AT)

In this case, we have i/, _; = 0, so thati’ < N/2 — 1. Using
(A4), (A13) and (A11), (A14) becomes

;:z = Q;:/z = Pin
— 17
0,

Equation (A15) shows that I, takes no-zero value only if the
following relationship holds

if/lj;c:l(k-i-l)modna 147:0./1_,...771—17
otherwise.

(A15)

. . . .
b1 = by o =11, ln2= Ty =12,

lo =i =in_0,l1 =iy =in_1,l0 =14, 4 =0,
(A16)
so that
n—1 n—2
1= 12 =) i, 2 =20 (A17)
i=0 j=0
Therefore, for even value of %
1, it =24,
it {0, otherwise. (AL8)
Case 2. i is odd (ig = 1)
In this case, we have
n—2
= N/2+ > 2" PR = N2+ (A19)
k=0
(A14) becomes
fz = Q’uz =P3N/2-1-i' 1 = PN-1-" 1
_ 1/ if (]V—l—i”)k :l(k+1)1n0dn7 k:(), 1, ceeyN— 1
10, otherwise.
(A20)
Since
n—1 n—2
N—1—i"=3 2k i om >k
k=0 k=0
n—2
=21+) (1 —iaoak)2 (A2D)
k=0
thus
lh=1 L =1-1_1,
12 = 1_7:7L—2'/"'7lﬂ—2 = 1_7"27 l'n—l =1 _il7 (A22>
so that
n—1 n—1
1= 120 =Y (1 iy)2 + 1. (A23)
j=0 i=1
From (A21), we also have
n—1
AN —1—i") =N+ > (1—in)2" (A24)

Combining (A19) with (A24), we have

f (1 —ip_2)2" =2N -2 -2/, (A25)
k=1
Substituting (A25) into (A23), we have
[=2N—1-2. (A26)
Therefore, for odd value of ¢
o7 1 _ 9
=10 oo, 2D
Combination of (A18) and (A27) leads to
1, if 1 =2¢,4iis even,
=<1, ifl=2N —1-27iis odd, (A28)

0, otherwise.

So, we have constructed the matrix R’y Using the definition
of the two matrices CQV and Wy, it can be easily verified that
(A9) is true. O

APPENDIX B
DERIVATION OF (39)

To prove (39), we need the following lemma:
Lemma I: Lethy (k,1) be the (kth, Ith) element of the matrix
H, then we have

hy(k,I+N/4) =5 hy(k, 1), forl=0,1,...,3N/4—1,

hy (b 0+3N/4) = (=) rhy(k, 1), forl=0,1,..., N/4—1.

Proof: To prove the lemma, we need the following rela-
tionship
(_1)y,,,71(_j)fr,,,71 — (_1)k7 (_1)yn,72(_j)fn,fz :jk.,
(B1)

where G = (.971.717 v 7{]13!]0) and F = (fn*lv ceey f17 f[))agT
is a binary gray code of the bit reversal of k,. and f,. is the th bit
of the binary bits of the highest power of 2 in ¢(k) /2 where ¢ (k)
is the decimal number obtained through a bit-reversed conver-
sion of the decimal k& = (k,,_1..... k1. ko). By the definition,

we have
0, ifs=n-—1,
fs:{l, ifs=n—-2-1, (B2)
0, otherwise.
and
In—1 = ko, gn—o = (k1 + ko) mod 2,
gn—r = (kr—1 + kr_2) mod 2, for2<r <mn, (B3)

where ¢ appeared in (B2) is the minimal value between 0 and
n — 2 such that k, = 1.
To prove (B1), two cases are distinguished.
a) k is even, thatis, kg = 0.
From (B2) and (B3), we have

fnfl =gn—-1 = 07

fn72 =0, gn-2= ki mod 2 = k. (B4)

So
(L= (g = (D () ()R =L
(B5)
and
b= J-Z’ N
= =(-DF, (-D)"=1. (B6)
Combination of (B5) and (B6) leads to (B1).
b) kisodd, ie., kg = 1.
In this case, we have
fnfl = 0: In—-1 = 1
fn72 =1, gno2= (kl + 1) mod 2. (B7)
So
(-7 ()t = -1,
(71)977—2(7j)frr—2 — (71)((k:1+1)mod2)+1j — (*1)’“1].,
(B3)
and
n—1 .
(-1F =1, =g
= = ()R, (B9)

It can be deduced from (B8) and (B9) that (B1) is also true for
odd value of .

We are now ready to prove the Lemma. By the definition, we
have

hy(k,1+ N/4)
n—1 n—1
IR D RUSTL/EBIEE Y DR R L/ES

(
(=120 D LIS @ ey)
(D=2 by (k, 1)

= (=1)"2(-,
= *hn (kD). (B10)
For Ay (k,l + 3N/4), we have

hN(k,l-l— 3]\7/4)

_ (_1)2’;‘ 9L+ (BN/4).) j)z:’;; Felle+(3N/4).)

= (—1)23:5 gr(2" 712477,

n—1 , ro— n—:
X (=) 2o T ()
:(l)qn 1+gn— 2(J)fn71+f7172hjv(k’l)
- (7J) 'hN(kal)' (Bll)

The proof of Lemma has been completed. O
Based on the above lemma, we provide the derivation of (39) in
the following.

(11) can be written as

yi\"(k?i)
= H (k)X n(4) Z hov (b, i
N/4—1 3N/4-1
= Z bk, Daigr + Z w (b L+ N4z nyag-
1=0

(B12)

Similarly,

yn (k. i+N/4)
N-1
= HY (B)Xn(i+N/4) = > b (b, Dainjay
1=0
3N/4—1 Nj4-1
> bk Dzignjap+ D, hy(k 143N/4)zi vy
=0 1=0
(B13)
Using Lemma 1, (B12) and (B13) become
Nj4-1
Z ha (b, Dwig
1=0
3N/4-1
Z hn(k, Dy nyagn (B14)
1=0
3N/4-1
yn(kyi+ N/4) = > hy(k,Dmigpnyag
1=0
Nj4—1
+(=)F D0 Ak Dripng
=0
(B15)
(B14) can be rewritten as
3N/4-1
> bk Dy = (=) yn(k, i)
=0
Nj4-1
(=" > halkDzig. (B16)
1=0
Substituting (B16) into (B15), we have
yx’\r(kt L + N/4)
N/4—1
= ()" lunv (ki) = Y b (B Ddn(i+1)
=0
= (=) lyn (ki) = tn (k. 9)], (BI17)
where
d]\r(i +]) =Tt — 17511+N+l~l =0.1,..., N/4 -1, (B18)
tJ\'(]{,I): [hN(]ﬁ 0) h?\T(]l 1)7 h]\(k‘ N/4—1]

[d‘\()(l?\(1)(i\(I+N/4—1)]
k=0,1,...,N—1. (B19)

The above equation can be expressed in a matrix representation
as

tN(O,Z‘) dN(i)

tN(l,Z‘) _ Hl/_;L (]7\7(Z—|— 1) (B20)
tA,*(N—l,i) dA,(Z+N/4—1)
Since

HY' = Hy [0 T/] , (B21)

(3N/4)% (N/4)

Iyr

HY? = Hy [“/2} , B22
N N ON/Z) ()

Substituting (27) into (B21), we have

1/4
HY
=Py Qu o |:WN/4 Dn/aWiyy Sz I://j
‘ Wy —Dpyn/usWi : o
N/4 N/aW N4 Ox/4
1/2
Hy), -|
=Py HWNM “ . (B23)
In/aWinys

Substituting (21) into (B22), we have

HY? = { N2 (B24)

NN QPR WivpSwye |

Substituting (B24) into (B23), we obtain (41). The proof of (39)
has been completed. O

ACKNOWLEDGMENT

The authors are thankful to Dr. Aye Aung for providing his
MATLAB code for constructing the CS-SCHT matrix, Dr. Yair
Moshe for providing his C code for GCK WHT algorithm, Dr.
Wanli Ouyang for many helpful discussions, and Dr. Gouenou
Coatrieux for careful corrections on the manuscript. The au-
thors are also grateful to the associate editor and anonymous
reviewers for their constructive comments and suggestions to
greatly improve the quality of this work and the clarity of the
presentation.

REFERENCES

[1] N. Ahmed and K. R. Rao, Orthogonal Transforms for Digital Signal
Processing. New York: Springer, 1975.

[2] A. D. Poularikas, The Transforms and Applications Handbook, 3rd
ed. Boca Raton, FL: CRC, 2009.

[3] S. G. Johnson and M. Frigo, “A modified split-radix FFT with fewer
arithmetic operations,” /EEE Trans. Signal Process., vol. 55, no. 1, pp.
111-119, Jan. 2007.

[4] Y. Voronenko and M. Puschel, “Algebraic signal processing theory:
Cooley-Tukey type algorithms for real DFTs,” IEEE Trans. Signal
Process., vol. 57, no. 1, pp. 205-222, Jan. 2009.

[5] L. Tao and H. K. Kwan, “Novel DCT-based real-valued discrete Gabor
transform and its fast algorithms,” IEEE Trans. Signal Process., vol.
57, no. 6, pp. 2151-2164, Jun. 2009.

[6] M. Garrido, K. K. Parhi, and J. Grajal, “A pipelined FFT architecture
for real-valued signals,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol.
56, no. 12, pp. 2634-2643, Dec. 2009.

[7] O.Nibouche, S. Boussakta, and M. Darnell, “Pipeline architectures for
radix-2 new Mersenne number transform,” IEEE Trans. Circuits Syst.
I, Reg. Papers, vol. 56, no. 8, pp. 1668—1680, Aug. 2009.

[8] J. S. Wu, H. Z. Shu, L. Senhadji, and L. M. Luo, “Mixed-radix al-
gorithm for the computation of forward and inverse MDCTs,” IEEE
Trans. Circuits Syst. I, Reg. Papers, vol. 56, no. 4, pp. 784-794, Apr.
2009.

[9] Y. A. Geadah and M. J. G. Corinthios, “Natural, dyadic, and sequency
order algorithms and processors for the Walsh-Hadamard transform,”
IEEE Trans. Comput., vol. C-26, no. 5, pp. 435—442, May 1977.

[10] S. Boussakta and A. G. J. Holt, “Fast algorithm for calculation of both
Walsh-Hadamard and Fourier transforms (FWFTs),” Electron. Lett.,
vol. 25, no. 20, pp. 1352-1354, 1989.

[11] D. Sundararajan and M. O. Ahmad, “Fast computation of the discrete
Walsh and Hadamard transforms,” IEEE Trans. Image Process., vol. 7,
no. 6, pp. 898-904, Jun. 1998.

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]
[22]

[23]

[24]

[25]

[26]

[27]
[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

B. J. Falkowski and S. X. Yan, “Ternary Walsh transform and its op-
erations for completely and incompletely specified boolean functions,”
IEEE Trans. Circuits Syst. I, Reg. Papers,vol. 54,n0. 8, pp. 1750-1764,
2007.

S. Bouguezel, M. O. Ahmad, and M. N. S. Swamy, “A new class of re-
ciprocal-orthogonal parametric transforms,” IEEE Trans. Circuits Syst.
I, Reg. Papers, vol. 56, no. 4, pp. 795-805, Apr. 2009.

S. Bouguezel, M. O. Ahmad, and M. N. S. Swamy, “New parametric
discrete Fourier and Hartley transforms, and algorithms for fast com-
putation,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 58, no. 3, pp.
562-575, 2011.

S. Rahardja and B. J. Falkowski, “Family of unified complex
Hadamard transforms,” IEEE Trans. Circuits Syst. II, Analog Digit.
Signal Process., vol. 46, no. 8, pp. 1094—1100, 1999.

S. Rahardja and B. J. Falkowski, “Complex composite spectra of uni-
fied complex Hadamard transform for logic functions,” IEEE Trans.
Circuits Syst. 1l, Analog Digit. Signal Process., vol. 47, no. 11, pp.
1291-1297, 2000.

A. Aung, B. P. Ng, and S. Rahardja, “Sequency-ordered complex
Hadamard transform: Properties, computational complexity and appli-
cations,” IEEE Trans. Signal Process., vol. 56, no. 8, pp. 3562-3571,
Aug. 2008.

A. Aung, B. P. Ng, and S. Rahardja, “A robust watermarking scheme
using sequency-ordered complex Hadamard transform,” J. Signal
Process. Syst., vol. 64, pp. 319-333, 2011.

B. Wang, J. S. Wu, H. Z. Shu, and L. M. Luo, “Shape description using
sequency-ordered complex Hadamard transform,” Opt. Commun., vol.
284, no. 12, pp. 2726-2729, 2011.

G. Bi, A. Aung, and B. P. Ng, “Pipelined hardware structure for se-
quency-ordered complex Hadamard transform,” IEEE Signal Process.
Lett., vol. 15, pp. 401-404, 2008.

A. Aung and B. P. Ng, “Natural-ordered complex Hadamard trans-
form,” Signal Process., vol. 90, no. 3, pp. 874-879, Mar. 2010.

A. Aung, B. P. Ng, and S. Rahardja, “Conjugate symmetric sequency-
ordered complex Hadamard transform,” IEEE Trans. Signal Process.,
vol. 57, pp. 2582-2593, Jul. 2009.

V. Kober, “Fast algorithms for the computation of sliding discrete
sinusoidal transforms,” [EEE Trans. Signal Process., vol. 52, pp.
1704-1710, Jun. 2004.

V. Kober, “Fast algorithms for the computation of sliding discrete
Hartley transforms,” IEEE Trans. Signal Process., vol. 55, no. 6, pp.
2937-2944, Jun. 2007.

B. Farhang-Boroujeny and Y. C. Lim, “A comment on the computa-
tional complexity of sliding FFT,” IEEE Trans. Circuits Syst., vol. 39,
pp. 875-876, Dec. 1992.

B. Farhang-Boroujeny and S. Gazor, “Generalized sliding FFT and its
application to implementation of block LMS adaptive filters,” IEEE
Trans. Signal Process., vol. 42, no. 3, pp. 532-538, Mar. 1994.

E. Jacobsen and R. Lyons, “The sliding DFT,” IEEE Signal Process.
Mag., vol. 20, pp. 74-80, Mar. 2003.

E.Jacobsen and R. Lyons, “An update to the sliding DFT,” IEEE Signal
Process. Mag., vol. 21, no. 1, pp. 110-111, Jan. 2004.

B. Farhang-Boroujeny, “Order of N complexity transform domain
adaptive filters,” IEEE Trans. Circuits Syst. II, Analog Digit. Signal
Process., vol. 42, no. 7, pp. 478480, Jul. 1995.

B. Mozafari and M. H. Savoji, “An efficient recursive algorithm and
an explicit formula for calculating update vectors of running Walsh-
Hadamard transform,” in Proc. IEEE ISSPA, Feb. 2007, pp. 1-4.

Y. Hel-Or and H. Hel-Or, “Real time pattern matching using projec-
tion kernels,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 27, pp.
1430-1445, Sep. 2005.

G. Ben-Artzi, H. Hel-Or, and Y. Hel-Or, “The gray-code filter kernels,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. 29, pp. 382-393, Mar.
2007.

W. Ouyang and W. K. Cham, “Fast algorithm for Walsh Hadamard
transform on sliding windows,” IEEE Trans. Pattern Anal. Mach. In-
tell., vol. 32, pp. 165-171, Jan. 2010.

Y. Moshe and H. Hel-Or, “Video block motion estimation based
on gray-code kernels,” IEEE Trans. Image Process., vol. 18, pp.
2243-2254, Oct. 2009.

W. Ouyang, R. Zhang, and W. K. Cham, “Fast pattern matching using
orthogonal Haar transform,” in Proc. IEEE CVPR, San Francisco, CA,
Jun. 2010, pp. 3050-3057.

R.Tao, Y.L.Li,and Y. Wang, “Short-time fractional Fourier transform
and its applications,” IEEE Trans. Signal Process, vol. 58, no. 5, pp.
2568-2580, May 2010.

J. S. Wu, H. Z. Shu, L. Wang, and L. Senhadji, “Fast algorithms for
the computation of sliding sequency-ordered complex Hadamard trans-
form,” IEEE Trans. Signal Process., vol. 58, no. 11, pp. 5901-5909,
Nov. 2010.

1334

[38] B. Farhang-Boroujeny, Adaptive Filters: Theory and Applications.
New York: Wiley, 1998.

[39] G. Nolte, A. Ziehe, V. V. Nikulin, A. Schlogl, N. Krdamer, T. Brismar,
and K. R. Miiller, “Robustly estimating the flow direction of infor-
mation in complex physical systems,” Phys. Rev. Lett., vol. 100, pp.
234101:1-234101:4, Jun. 2008.

[40] C. Yang, R. Le Bouquin Jeannés, G. Faucon, and H. Shu, “Extracting
information on flow direction in multivariate time series,” IEEE Signal
Process. Lett., vol. 18, no. 4, pp. 251-254, 2011.

[41] I Bartolini, P. Ciaccia, and M. Patella, “Warp: Accurate retrieval of
shapes using phase of Fourier descriptors and time warping distance,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. 27, pp. 142-147, Jan.
2005.

[42] T. Adali and S. Haykin, Adaptive Signal Processing: Next-Generation
Solutions. Hoboken, NJ: Wiley, 2010.

[43] J.S. Wu, L. Wang, L. Senhadji, and H. Z. Shu, “Sliding conjugate sym-
metric sequency-ordered complex Hadamard transform: Fast algorithm
and applications,” in EUSIPCO, Aalborg, Denmark, Aug. 2010, pp.
1742-1746.

[44] H.S. Stone, “Parallel processing with the perfect shuffle,” /[EEE Trans.
Comput., vol. C-20, no. 2, pp. 153-161, 1971.

[45] J. Ellis, T. Krahn, and H. Fan, “Computing the cycles in the perfect
shuffle permutation,” Inf. Process. Lett., vol. 75, no. 5, pp. 217-224,
Oct. 2000.

[46] P. Jain, “A simple in-place algorithm for in-shuffle,” 2008, Arxiv
preprint arXiv:0805.1598.

[47] S. S. Narayan, A. M. Peterson, and M. J. Narashima, “Transform do-
main LMS algorithm,” JEEE Trans. Acoust., Speech, Signal Process.,
vol. 31, pp. 609—615, Jun. 1983.

[48] A. H. Sayed, Adaptive Filters. New York: Wiley, 2008.

[49] High-Speed Physical Layer in the 5 GHz Band—Part 11: Wireless LAN
Medium Access Control (MAC) and Physical Layer (PHY) Specifica-
tions, IEEE Std. 802.11a, 1999.

[50] P. Tan and N. C. Beaulieu, “A comparison of DCT-based OFDM and
DFT-based OFDM in frequency offset and fading channels,” /IEEE
Trans. Commun., vol. 54, no. 11, pp. 2113-2125, Nov. 2006.

[51] S. U. H. Qureshi, “Adaptive equalization,” Proc. IEEE, vol. 73, no. 9,
pp. 1349-1387, Sep. 1985.

Jiasong Wu (M’09) received the B.S. degree in
biomedical engineering from the University of South
China, Hengyang, in 2005, and is currently working
toward the joint Ph.D. degree with the Laboratory
of Image Science and Technology (LIST), Southeast
University, Nanjing, China, and Laboratoire Traite-
ment du signal et de I’'Image (LTSI), University of
Rennes 1, Rennes, France.

His research interest mainly includes fast al-
gorithms of digital signal processing and its
applications.

Lu Wang (SM’11) received the B.S. degree in
computer science and engineering from the Uni-
versity of Shanghai for Science and Technology,
Shanghai, China, in 2008, and the joint M.S. degree
from the Southeast University, Nanjing, China, and
University of Rennes 1, Rennes, France, in 2011. He
is currently working toward the Ph.D. degree with
the LTSI, University of Rennes 1, Rennes, France.

His research interest mainly includes fast al-
gorithms of digital signal processing and its
applications.

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 59, NO. 6, JUNE 2012

Guanyu Yang received the B.S. and M.S. degrees in
biomedical engineering from Southeast University,
China, in 2002 and 2004, respectively, and the Ph.D.
degree in signal processing and telecommunications
from the University of Rennes 1, Rennes, France, in
2008.

He was a Postdoctoral Fellow with the Division
of Image Processing, Leiden University Medical
Center, Leiden, The Netherlands, from 2009 to
2011. He is now with the LIST of the Department
of Computer Science and Engineering of Southeast

University, Nanjing, China. His research interest mainly focuses on image
analysis and pattern recognition.

Lotfi Senhadji (M’95-SM’99) received the Ph.D.
degree from the University of Rennes 1, Rennes,
France, in signal processing and telecommunications
in 1993.

He is a Professor and the Head of the INSERM
Research Laboratory (LTSI), Rennes, France. His
is also Co-Director of the French-Chinese Labora-
tory CRIBs “Centre de Recherche en Information
Biomédicale Sino-Frangais.” His main research ef-
forts are focused on nonstationary signal processing
with particular emphasis on wavelet transforms.

Dr. Senhadji is a Senior Member of the IEEE EMBS and the IEEE Signal

Processing Society.

Limin Luo (M’90-SM’97) received the Ph.D.
degree in signal processing and telecommunications
from the University of Rennes 1, Rennes, France, in
1986.

He is a Professor and the Head of the Laboratory
of Image Science and Technology, Southeast Univer-
sity, Nanjing. His research interests include image
analysis, computer-assisted systems for diagnosis
and therapy in medicine, and computer vision.

Dr. Luo is a Senior Member of the IEEE Engi-
neering in Medicine and Biology Society.

Huazhong Shu (M’00-SM’06) received the B.S. de-
gree in applied mathematics from Wuhan University,
China, in 1987, and the Ph.D. degree in numerical
analysis from the University of Rennes 1, Rennes,
France in 1992.

He is a Professor of the LIST Laboratory and the
Codirector of the CRIBs, Nanjing, China. His recent
work concentrates on the image analysis, pattern
recognition, and fast algorithms of digital signal
processing.

