
Sliding Encryption:
A Cryptographic Tool for Mobile Agents

A d a m Young*, Moti Yung**

A b s t r a c t . The technology of mobile agents, where software pieces of

active control and storage (called mobile agents) travel the network and

perform tasks distributively, is of growing interest as an Internet tech-

nology. Similarly, smartcard holders can be considered mobile users as

they access the network at various points. Such mobile processing can

be employed in large scale census applications in statistics gathering, in

surveys and tallying, in reading and collecting local control information,

etc.

This distributed computing paradigm where local pieces of data are get-

ting accumulated in a mobile unit presents new information security chal-

lenges. Here, we point at some problems it poses and suggest solutions.

The basic problem considered involves the design of a mobile agent that

is capable of traversing an untrusted (curious) network while gathering

and securing data from the nodes that it visits. We assume that some

subset of the nodes may collaborate to track the agent, and we assume

that snapshots of memory are taken at each node at times that are unpre-

dictable to the agent. The data that is gathered must be securely stored

within the agent and the adversarial nodes must remain oblivious to what

is taken by the agent. In addition, the agent's movement throughout the

network should be made difficult to trace. Furthermore, we assume that

the agent is limited in storage capacity. To prevent the nodes from getting

decryption capability, the agent must carry a public key for (asymmetric)

encryption.

We present an economical solution that we call " s l id ing e n c r y p t i o n " .

This is a new mode of operation of public key cryptosystems that allows

the encryption of small amounts of plalntext yielding small amounts of

ciphertext. Furthermore, the encryption is performed so that it is intract-

able to recover the plaintext without the appropriate private key. We also

describe how to modify sliding encryption so that the resulting ciphertexts

are hard to correlate, thus making it possible to have mobile agents that

are not easy to trace. Sliding encryption is applicable to mobile agent

technology and may have independent applications to "storage-limited

technology" such as smartcards and mobile units.

K e y w o r d s : space-efficient encryption, sliding encryption, public key, RSA,

mode of operation, mobile comput ing , network software agents, smartcards, W W W ,

network computing, applets, spiders, worms, viruses, cryptoviruses.

* Dept. of Computer Science, Columbia University, New York, NY, USA. Emall:

ayotmg@cs.columbia.edu.

** Cer~Co New York, NY, USA. Email: moti@certco.com, moti@cs.columbia.edu

Sliding Encryption: A Cryptographic Tool for Mobile Agents

1 I n t r o d u c t i o n

231

Distributed agents is a relatively new technology which can be designed to per-

form many tasks. For example, an agent may travel from site to site in a network,

performing local searches and gathering data on certain parameters (e.g., traffic

load), so as to help control the network (e.g., redirecting the flow of packets

to alleviate traffic). In an untrusted environment of non-malicious but curious

nodes, such an agent needs to take measures to prevent traffic related data from

falling into the wrong hands. If this data can be intercepted, it can be used for

the purposes of traffic analysis, and if it can be tampered with, the performance

of the system can be greatly hampered. Like the traffic data example, there are

many distributed computations involving gathering of local pieces of data which

require hiding the data from non-local nodes. The data eventually reaches the

source of the agent. We will use the term originator to refer to the source entity

that dispatches the agent to perform a certain task.

It is imperative that a data collecting and encrypting mobile agent conceal its

decryption capability, thus our problem implies the use of public-key technology.

This was pointed out in the context of the cryptovirus agent in [YY96]. The

gathered data is made accessible exclusively to the originator when the gathered

data is returned to it. The corresponding private key is not contained within the

agent, and is kept secret by the originator.

In this paper we consider the problem of designing an agent that must gather

small amounts of data from several nodes on a network, where each node is

untrusted by the agent, and in particular the node may try to read information

carried around by the agent. We further assume that the agent is restricted in the

amount of data that it can store (e.g., on the order of kilobytes). As an example of

this problem, consider the following. An agent contains a 128 byte public key, and

must gather 1024 pieces of information from 1024 different nodes on a network.

Suppose that it need only gather 4 bytes of information from each node. The

greedy approach to this problem is to use a hybrid cryptosystem which selects a

symmetric key per node, or to use the public key cryptosystem itself, both in ECB

mode. In this case, ECB mode is most efficient. It follows that the agent must

have the capacity to store 128k worth of data. However, the 128k of ciphertext

would contain only 4k worth of plaintext. This is so, since each block of public

key encrypted data has only a 4 byte value if data is encrypted directly. The rest

of the block may be (should, in fact, be) random. The motivation for this work

is therefore to study ways in which to public key encrypt small amounts of data,

to yield small amounts of ciphertext, without compromising the overall security

of the system. Note that due to the agent's mobility and the security constraints,

it cannot accumulate a large block from many nodes and then encrypt it.

Specifically, we introduce what we call 'sliding' encryption that accomplishes

exactly this. In a nutshell, sliding encryption is a way of enciphering a small

amount of data within a larger block, and sliding away a small fraction of the

result. This fraction constitutes the 'ciphertext' of the small piece of input plain-

text. The sliding encryption scheme that we describe is based on RSA [RSA78],

though the scheme is general enough to be used with any deterministic public

key encryption algorithm.

232 Adam Young, Moti Yung

2 D e f i n i t i o n s a n d B a c k g r o u n d

Sliding encryption is a mode of operation of public key cryptosystems akin to

using symmetric algorithms for stream ciphers. It is aimed at conserving space,

rather than "fast" encryption (due to technological constraints the solution is

public-key, and thus cannot be too fast). Recall that a self-synchronous stream

cipher is a cipher in which each key block is derived from a fixed number n of

preceding ciphertext blocks (e.g., [De83]). Sliding encryption has the same flavor,

and it incorporates the idea of chaining from the mode of operation known as

Cipher Feed-Back. However, in the scheme that we describe, each ciphertext

block is derived from a state affected by all preceding ciphertext blocks, not just

the preceding n blocks. It is possible to implement a sliding scheme that uses

a fixed dependency of length n, but this is not applicable to our purposes. In

this paper we do not concern ourselves with serial communications, but rather

the problem of implementing efficient agents. Hence, the fact that all preceding

encrypted data is lost if a ciphertext block is lost is not applicable to our problem

(an interfering party can simply delete the entire agent if it is found).

Def in i t ion 1:

Sliding Encryption is a mode of operation of public key cryptosystems based on

chaining, satisfying the following properties:

1. Encryption is granular, that is, a small amount u of plaintext bytes can be en-

crypted using a sufficiently large public key (We cannot delay the encryption

by accumulating many small pieces together!)

2. It is computationally difficult to determine each u byte piece of plaintext

without knowing the correct private key

3. The system is resistant against known plaintext attacks

The purpose of (1) is so that an agent that employs sliding encryption can

gather small amounts of data from several nodes across the network, and public

key encrypt each piece of data without wasting an excessive amount of storage

space. Since we assume that an adversary may take a snapshot of the agent at

any time, we cannot simply gather small amounts of data until we have enough to

perform a space efficient encryption, because during this period a snapshot may

be taken. The purpose of (2) goes without saying. Requirement (3) is needed

in the case that an adversary has a good chance of guessing what the agent

has gathered, and merely wishes to know what the agent has gathered. The

sliding implementation that we present incorporates the notion of probabilistic

encryption [GM84] so as to foil such an attack. Hence, the adversary must guess

the random string used in the probabilistic encryption to verify that the guessed

plaintext is correct.

Sliding Encryption: A Cryptographic Tool for Mobile Agents 233

At times throughout the rest of this paper we will refer to the agent as a

probabilistic Turing machine (coin flipping computation). This model of compu-

tation is necessary, since a deterministic agent cannot hope to conceal, at the

very least, the nature of the information which it gathers (its location, its struc-

ture, etc.), and cannot resist known plaintext attacks for small plaintexts. This

randomization is achieved via inclusion of a function that generates random bits

using events in the environment, such as AT&T's truerand function [MB95].

R e l a t e d W o r k

Agents are loosely defined as personal software assistants with authority deleg-

ated from their users [Ch96]. Agent technology traces back to the early 1980's

when the notion of a worm was invented at Xerox Palo Alto Research Center

[Mc89]. John Shoch and Jon Hupp, two researchers at PARC, were interested in

the concept of distributed processing, and thought that worms may be a novel

way of accomplish distributed computing [S194]. Agent technology has evolved to

include computer viruses, worms, web wanderers, etc. In the Crypto community

they were suggested for factoring and other exhaustive search tasks [Wh89]; also,

more recently, malicious agents called cryptoviruses have been proposed that

make use of public key cryptography to mount attacks on their hosts [YY96].

Modern Internet technology gives rise to mobile applets and other mechanisms

that exploit agents. An example of collective computation tasks and an algorithm

allowing agents to "meet" after their deployment within a network has been dis-

cussed in [YuYu96].

Agents can be roughly categorized into those that are mobile and those that

are immobile. Web wanderers, like Matthew Gray's W W W Wanderer (1993), are

immobile, and gather information about the W W W for its user, while worms and

distributed migratable tasks are examples of mobile agents. In this paper we will

concern ourselves with the study of mobile agent technology in untrusted network

environments. Also, smartcard technology which is readable, can nevertheless use

encryption to perform secure and economical mobile data collection.

R e m a r k : We note that there are numerous other security concerns with mo-

bile agents. For example, validating the authenticity of the agent at the node and

tracing (audit trail kept at or for the agent), assuming that the processing at

the nodes is "as expected" and does not introduce "anomalies". Here we do not

treat such security concerns, concerns which should be part of "network wide

computing".

3 R S A B a s e d S l i d i n g E n c r y p t i o n

We will describe a sliding encryption implementation for m byte RSA keys (where

m is a power of 2) [RSA78]. We will assume that the granular size of the plaintexts

to be encrypted is (w.l.o.g.) fixed and that each is u bytes in length. Each piece

of plaintext will be encrypted along with a v byte random string, where v is at

least, say, 12 bytes in length. Let t = u concatenated with v. We assume that t is

234 Adam Young, Moti Yung

Fig. 1. Sliding Encryption Mode.

a power of 2 and t ~ m and also that t divides m. As we shall see, the v random

bytes that are added make the scheme a probabilistic encryption scheme. The v

bytes constitute the random string used in the probabilistic encryption (analogous

to an IV). The sliding encryption mode of operation (SE) makes use of a stack

S, an m byte accumulator A, and an m byte window W. Stack elements 5:[i] are

m bytes in length.

The procedure Push(x) pushes an m byte quantity onto the stack. The func-

tion Pop(z) returns an m byte quantity from the stack. The function Empty(X)

returns true iff stack X is empty. We assume the existence of an implicit state

variable that points to the top of the stack. Accumulator elements A[i] and win-

dow elements W[i] are t bytes in length, where 1 < i < m/t. A[1] contains the

least significant bytes of A, and A[rn/t] contains the most significant. The same

applies for W. We assume the existence of a source of truly random bits (the bits

must not be easily "guess-able"). Let the plaintexts be denoted by al , a2, ..., ak.

Let the public key encryption function be denoted by E 0 , and let the corres-

ponding private decryption function be denoted by D 0.

Initially the stack is empty, and the accumulator is set to a random element in

Z*. To encrypt, new data is put in A[1]. We take al, The u lower order bytes of

A[1] are then set to be al. The v upper order bytes of A[1] are set to be random.

E is then applied to the accumulator, thus modifying all the elements of the ac-

cumulator. Note that an uneven "Feistel-like" preprocessing as in [BR94] which

assures the accumulator is in Z n and which pseudo-randomizes the accumulator

based on the v random bits can take place here. In this case the definition of E 0

Sliding Encryption: A Cryptographic Tool for Mobile Agents 235

and D 0 will include this Feistel-like pre- and post-processing (the processing

involves running v through a pseudorandom generator generating a pad that is

EXORed with the rest of the bits then hashing the resulting value and EXOR-

ing the result with v.) Base on [BR94] the value encrypted is a "probabilistic

encryption" if the preprocessing is via "random oracle like functions". We then

set W[m/t] = A[1]. By setting W[m/t] = A[1] we thereby 'slide' (shift) t-bytes

of ciphertext from the accumulator into the window. To encrypt a2, we set the

u lower order bytes of A[1] equal to a2, and make the v upper order bytes of

A[1] random. We then apply E to A, and slide A[1] into W[(m/t) - 1]. To en-

crypt a3, we set the u lower order bytes of All] equal to a3, and make the v

upper order bytes of A[1] random. We then apply E to A, and slide All] into

W[(m/t) - 2]. This process is continued until am/t has been slid into W[1]. At

this point Push(W) is executed.

The next values a(m/t)+l through a2m/t are encrypted in the same way, and

also pushed onto S. A count of the number of array elements in W that are

currently in use is stored in the variable 'count' . This entire process is described

by the following pseudo-code.

f u n c t i o n I n i t i a l i z e S E

Inpu t : N i l

Output : S, A, W, count

/* I n i t i a l i z e s d a t a s t r u c t u r e s t o a l low s l i d i n g e n c r y p t i o n * /

b e g i n

count = 0 / * s t o r e s t h e number o f e l e m e n t s o f W i n u s e */

S = empty

I n i t i a l i z e A t o c o n t a i n a l l random b y t e s

A = E(A) / * make s u r e A i s l e s s t h a n p u b l i c k ey modulus * /

end

f u n c t i o n S l i d i n g E n c r y p t

I n p u t : RSA P u b l i c Key, S, A, W, coun t , a [1] , a [2] a[k]

Output : S, A, W, count

/* Encrypts one or more plaintext blocks using RSA in SE mode */

begin

for i = count up to k-1 do

set the v upper order bytes of A[I] to be random

set the u lower order bytes of A[1] to be a[i]

A = E(A)

index = i mod m/t

W[m/t - index] = A[1] /* slide ciphertext into W */

if index = m/t - 1 then

Push(W)

count = 0

e l s e

236 Adam Young, Moti Yung

count = count + 1

end

To perform sliding encryption, the function InitializeSE is first invoked to

initialize the necessary data structures. SlidingEncrypt is then invoked for each

plaintext value ai. Decryption is exactly the opposite of encryption. We pop

elements off the stack and slide elements from the window into the accumulator

and decrypt them. The following function decrypts all values at once.

function SlidingDecrypt

Input: RSA Private Key, S, A, %1, count

Output : a [k] , a [k - 1] a [1]

/* Dec ryp t s a l l c i p h e r t e x t b l o c k s c o n t a i n e d in A, W, and S. * /

begin

if count > 0 /* first empty out the window */

for i = (m/t - count + I) up to m/t do

set A[I] = W[i]

A = D(A)

output the u lower order bytes of A[1]

while Empty(S) = false do

W = Pop(S)

for i = I up to m/t do

set All] = Nil]

A = D(A)

output the u lower order bytes of A[I]

end

Note that any deterministic public key functions E and D can be used. Prob-

abilistic encryption where the ciphertext space is larger than the plaintext space

will not work. For example, if ElGamal [E185] were used, the accumulator would

double in size with each application of E, hence preventing efficient storage of

ciphertext.

Note also that A's state can be modified to be a function of various portions

of the history or be pseudo-randomized. In addition a number of data blocks can

be processed together, e.g., there are 10 elements so nine are put together and

one is put by itself with an indication that the previous block was size nine (so

that decryption can be made).

To perform the cryptographic operations (namely, the RSA encryption above)

the agent can utilize cryptographic libraries at the nodes or must include such

cryptographic tools which have to be small in size themselves. See the discussion

in the appendix.

4 Security of RSA Based Sliding Encryption

Consider the case of an agent that employs sliding encryption in an untrusted

environment. The data ai gathered by the agent is at risk of being included in a

Sliding Encryption: A Cryptographic Tool for Mobile Agents 237

snapshot from the time the agent gathers it through the time at which E is applied

to it. Consider the time before and after this event. In the case where the agent is

a probabilistic automaton and its choice of which data to encrypt is probabilistic,

and since we use probabilistic encryption the agent do not reveal its choice of

data ai to the observers. Namely, ai cannot be inferred from the state of the agent

prior to taking hi. After ai is encrypted, even assuming the adversary properly

guesses that ai was taken, the adversary must also guess v correctly, re-encrypt

with v and a/using a preimage of the agent, and compare with the current image.

If v is on the order of 96 bits in length (12 bytes), then an exhaustive comparison

will require 0(295) encryptions on the average. An exhaustive search for ai will

require at least that. Clearly any previous data that is within the stack is at

least as difficult to decrypt. (Recall that the Optimal Asymmetric Encryption

like mechanism, turn each block encryption to "probabilistic encryption"). Thus,

criterion 2 and 3 of the definition of sliding encryption is met. Clearly criterion

1 is met. The system therefore constitutes a sliding encryption scheme as defined

in definition 1.

Now consider the efficiency of the scheme. For each piece of plaintext we add

v bytes. For k pieces of plaintext, the scheme requires O(kv) storage in addition

to the O(ku) bytes corresponding to the plaintext. The total storage is therefore

O(k(u+v)) . This contrasts with the greedy approach that requires O(km), where

m >>v.

Note that overall we use more space than an ECB encryption would if we could

delay the encryptions and treat the entire gathered information as a stream of

data. But, recall that we cannot delay encryptions due to the risk of having the

plaintext captured in a snapshot.

5 A p p l i c a t i o n s

Sliding encryption can be used to efficiently store data in embedded crypto-

graphic devices such as smartcards that have limited storage capacity. Depending

on the "guess-ability" of the plaintext and the number of bytes in the plaintexts

hi, the number of additional v bytes of randomness may be tuned. In addition,

the accumulator can be a special machine register that is specifically designed to

have multi-precision arithmetic performed on it.

Another obvious application of sliding is for tracking the path traversed by an

agent generating private audit trails. In this case, the ai can be 32 bit IP addresses

corresponding to the nodes on the Internet that the agent has traversed. We can

take v to be 12 bytes. In this case t is a 16 byte quantity. By using a 512 bit RSA

key (trying to minimize size overall), we save 48 bytes on each encryption of an

IP address. For the sake of argument, suppose that b is 32. The agent therefore

contains an accumulator of 64 bytes, a window of 64 bytes, and an array S of

2048 bytes, for a total of 2,176 bytes. The originator releases several such agents,

and upon returning, the originator is able to see the last 32 Internet nodes that

were traversed by the returning agent. In this example, the adversaries clearly

know the plaintext.

238 Adam Young, Moti Yung

5.1 Making Agents Less Traceable

Another security consideration is traceability, which is apart from the security

of the plaintext itself and concerns concealing the agent's whereabouts from

the environment (related to the last application). Suppose that a subset of the

adversaries [lave realized that an agent passed through after the fact, and all

of them took snapshots of the agent, but failed to take snapshots while the ai's

were present in the agent in plaintext form (this is just a working assumption).

Suppose further that these adversaries are willing to collaborate and want to

verify that the same agent passed through their nodes, and they want to learn in

what order the nodes were traversed. So, here we are interested in what can be

learned about the path of the agent based on the state information of the agent.

The collaborating adversaries are equipped with a set of images of agents, and

with each image is a corresponding time stamp. We will assume that the agent

chooses the nodes that it traverses uniformly at random from the set of all nodes

on the network.

We must assume that the agent can modify the version of itself that moves

on just before moving to another node and that this cannot be caught by the

current node itself (otherwise untraceability is impossible). Alternatively, we can

assume that the subset of adversaries is disconnected in the network and the agent

manages to modify itself before it reappears at a node controlled by this set.

This problem is similar to problems of untraceability in anonymous remailing

schemes [Cha81]. In this respect, a mobile agent needs to be able to, in some

sense, anonymously "remail" itself. Note that we are trying to minimize the risk

here rather than avoiding the problem all-together. Our major problem being the

fact that an agent cannot "encrypt and decrypt" itself, since if it can, the nodes

can also decrypt it; decryption is made available only to the originator of the

agent.

To reduce traceability we need to pay careful attention to all the state inform-

ation in the agent that is revealed to the adversaries after the fact. This state

information consists of the accumulator values, the window values, the values as-

sociated with the stack, the count, and the stack pointer. As described, the stack

will grow monotonically in size. This will help reveal the order in which the nodes

are traversed. We must therefore conceal the size of the stack. We can minimize

this problem if we are willing to fix the maximum amount of information that

can be obtained, and if we adopt a 'most recently used' algorithm, for instance.

In this case, the agent stores only the most recently gathered information. S is

an array that initially contains random elements (that can be recognized after

decryption), and a pointer to S is maintained. Let this pointer be denoted by

'ptr ' . ptr is initially set at a random offset, and is incremented from the lowest

index to the highest index. When the highest index element is filled with m bytes

of ciphertext, the pointer wraps around back to the lowest index, thus overwriting

any data previously stored there.

So far we have shown how to fix the size of 5', thereby insuring that A, W, S,

count, and ptr remain fixed in size over time. Now consider the contents of

accumulator A. The accumulator cannot be used to link two images of agents,

Sliding Encryption: A Cryptographic Tool for Mobile Agents 239

since each accumulator value is a probabilistic RSA encryption of the previous.

So, it remains to consider W,S, count, and ptr. It turns that in the scheme

described thus far, both W and S can be used to successfully track the agent.

Let b denote the maximum number of m byte blocks that can be stored in S. If

b adversaries are willing to collaborate, then they have a chance at determining

a path of length b that the agent follows Similarly the window can be used to

trace out paths of length m/t - 1. In this case the adversaries track the agent by

comparing the contents of S and W, respectively.

The following is how the traceability problem with W can be minimized. Note

that when each ai is encrypted, v truly random bytes are incorporated into the

encryption. These v bytes of entropy can be used to seed a cryptographically

secure random number generator, to generate a s t ream of size (count*t) bytes.

This s tream is EXORed with the contents of W that is currently in use. A is

then encrypted as usual, thereby concealing the seed v. A[1] is then slid over to

the window. We redo this process if the resulting value for W will end up being

greater than or equal to the public modulus. The v random bytes are therefore

used to conceal the previous contents of the window and to probabilistically

encrypt ai, thereby concealing the previous contents of the accumulator as well.

It remains to show how to conceal the contents of the array S. To conceal S,

we take the same v random bytes and use them on S in much the same way as

we did for W. Using a different cryptographically secure pseudo-random number

generator, we proceed as follows. We generate a s t ream of length b * 7n bytes

and EXOR it with S. We can do so, since we will be overwriting the element

currently pointed to in S anyway. We then proceed as usual by overwriting the

value currently pointed to in S with the encryption of W, if necessary. We thus

distribute the v random bytes over the array S as well as over W.

The random choices for the probabilistic encryptions are thus critical in de-

crypting the gathered data. Unlike before, they cannot simply be discarded. The

pseudo-random key streams need to be reconstructed during decryption and

EXORed with the ciphertexts in order to decrypt.

Note that if an agent moves from A to B, then both count and ptr will have

increased by 1. Count reveals exactly how many elements of W are c:urrently

in use, and ptr reveals the next array element in S to overwrite. The values

for count and ptr can be used to help identify the order in which nodes are

traversed. It seems that there is no easy way to avoid revealing such information

when we require maintaining all information in order, unless "generalized secure

computation" is made possible. To reduce the problem we may "randomize"

the task of the agents. Namely, we replicate agents in nodes and add dummy

encryptions and 'detours ' as described in [GT96], allowing also the nodes along

the detour to encrypt "dummy" data elements randomly - thus making different

copies look differently and forcing tracing adversaries to follow the detours.

240 Adam Young, Moti Yung

6 C o n c l u s i o n

We have shown a new mode of operation of deterministic public key cryptosys-

tems. This sliding encryption technique can be used to encipher small amounts of

data, yielding small amounts of ciphertext, while insuring that the data remains

secure. This technique was shown to be applicable in smart card applications with

limited storage capacity. We also showed how to make tracing of an information

gathering agent somewhat difficult, by further randomizing its state and task.

R e f e r e n c e s

[BR94] M. Bellare, P. Rogaway, Optimal Asymmetric Encryption, Eurocrypt 94.

[Cha81] D. Chaum. Untraceable Electronic Mail, Return Addresses, and Digital

Pseudonyms. In Communications of the ACM, v. 24, n. 2, Feb 1981, pages
84-88.

[Ch96] F. Cheong. Internet Agents: Spiders, Wanderers, Brokers, and Bots. New
Riders Publishing, page 5, 1996.

[De83] D. Denning. Cryptography and Data Security, Addison-Wesley, page 137,
1983.

[E185] T. E1Gamal. A Public-Key Cryptosystem and a Signature Scheme Based on
Discrete Logarithms. In Advances in Cryptology--CRYPTO '8~, Springer-

Verlag, pages 10-18, 1985.

[GM84] S. Goldwasser, A. Micali. Probabilistic Encryption. In Journal of Computer
and Systems Science, v. 28, pages 270-299, 1984.

[GT96] C. Gulcu, G. Tsudik. Mixing Email with BABEL. In Proceedings of the 1996

Syrup. on Network and Distributed System Security ISOC, pages 2-16, 1996.

[MB95] D. Mitchell, M. Blaze. truerand.c, AT&T Laboratories, 1995.

[Mc89] J. McAfee. Computer Viruses, Worms, Data Diddlers, Killer Programs, and

other Threats to Your System. St. Martin's Press, page 29, 1989.

[RSA78] R. Rivest, A. Shamir, L. Adleman. A method for obtaining Digital Signatures

and Public-Key Cryptosystems. In Communications of the ACM, v. 21, n. 2,
pages 120-126, 1978.

[S194] R. Slade. Robert Slade's Guide to Computer Viruses. Springer-Verlag, page
49, 1994.

[Wh89] S.R. White, Covert Distributed Processing with Computer Viruses. In Pro-
ceedings of the Crypto 89, pages 616-619.

[WN94] D. Wheeler, R. Needham. Tiny Encryption Algorithm (TEA). In Fast Soft-

ware Encryption: second international workshop, volume 1008 of Lecture Notes
in computer science, Dec. 1994. Springer.

[YY96] A. Young, M. Yung. Cryptovirology: Extortion-Based Security Threats and

Countermeasures. In Proceedings of the 1996 IEEE Syrup. on Security and

Privacy, IEEE Computer Society Press, pages 129-140, 1996.

[YuYu96] X. Yu, M. Yung. Agent Rendezvous: A Dynamic Symmetry-Breaking Prob-

lem. In Proceedings of the 1996 ICALP. Lecture Notes in Computer Science,
Springer, July 1996.

Sliding Encryption: A Cryptographic Tool for Mobile Agents 241

A C r y p t o g r a p h i c M o b i l e A g e n t s

Currently, Cryptographic Application Programming Interfaces (CAPI) are avail-

able or in the process of being developed on many different computing platforms.

Mobile agents for such platforms need not have their own multi-precision code

and can utilize the node. However, there is evidence that such code can be imple-

mented in compact form [YY96]. They compiled the portions of the GNU MP

library that are needed to do 512 bit RSA encryptions with a public exponent of

3. The routines were compiled and run on a Macintosh SE/30. They made two

notable optimizations.

1. First, they computed the reciprocal of the originator's public RSA modulus

n, and included it within the agent. This allowed them to avoid including a

MP division routine in the agent.

2. By choosing the public exponent of 3, a MP modular exponentiation routine

was not needed since only two MP multiplications are required to encrypt.

The size of the compiled library, with C code and in-line assembly, is 4,372

bytes (cutting 70% of the general library). Note that using assembly language,

it is of course possible to make this even smaller. Their agent also contained the

TEA block cipher [WN94] in assembly, and it occupied a mere 88 bytes. TEA

encrypted at a rate of 47k bytes/sec and can be employed for pseudorandom

generation and hashing mentioned in this work, as well as for hybrid encryption.

Thus, there is evidence to suggest that even when the agent has to implement

the cryptographic procedures internally, the tools described in this paper can be

implemented using relatively small space.

