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SUMMARY

The study of rotor–fuselage interactional aerodynamics is central to the design and performance analysis
of helicopters. However, regardless of its significance, rotor–fuselage aerodynamics has so far been
addressed by very few authors. This is mainly due to the difficulties associated with both experimental
and computational techniques when such complex configurations, rich in flow physics, are considered. In
view of the above, the objective of this study is to develop computational tools suitable for rotor–fuselage
engineering analysis based on computational fluid dynamics (CFD).

To account for the relative motion between the fuselage and the rotor blades, the concept of sliding
meshes is introduced. A sliding surface forms a boundary between a CFD mesh around the fuselage
and a rotor-fixed CFD mesh which rotates to account for the movement of the rotor. The sliding surface
allows communication between meshes. Meshes adjacent to the sliding surface do not necessarily have
matching nodes or even the same number of cell faces. This poses a problem of interpolation, which
should not introduce numerical artefacts in the solution and should have minimal effects on the overall
solution quality. As an additional objective, the employed sliding mesh algorithms should have small
CPU overhead. The sliding mesh methods developed for this work are demonstrated for both simple
and complex cases with emphasis placed on the presentation of the inner workings of the developed
algorithms. Copyright q 2008 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The study of rotor and rotor–fuselage aerodynamics with computational fluid dynamics (CFD)

methods, based on structured grids, requires complex multi-block topologies so that the exact
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shapes of the rotor blades and helicopter fuselage are represented. An additional difficulty stems

from the requirement to account for the relative motion between the rotor blades and the relative

motion between the rotor and the fuselage. In this paper, the concept of sliding grids with non-

matching cell faces is used to allow multi-block-structured grid solvers to cope with rotor–fuselage

flow cases. Figure 1 shows an example of multi-block structured fuselage and rotor meshes

which have non-matching topologies along the sliding-mesh interface separating the two domains.

The concept of non-matching cell faces is not new in CFD and has so far been used by many

researchers. References [3, 4], amongst others, present the fundamentals of interface conditions

for non-matching cell faces. Such methods are nowadays common in turbo-machinery [5], where

non-matching and rotating cell faces are used for the simulation of the flow between adjacent

blade-rows of aero engines.

Reference [3] introduced a conservative ‘zonal’ or ‘patched-grid’ approach in which two-

dimensional flow calculations are performed on grids patched at zonal interfaces. A conservative

scheme was obtained by constructing the flux through a cell face along the zonal boundary via

a weighted summation of the fluxes through the various parts contributing to each cell face. A

piece-wise constant variation of the numerical flux was used with a first-order accurate spatial

discretization of Euler’s equations. The flux computation was based on either Osher’s scheme [6]

Figure 1. Application example of sliding meshes for rotor–fuselage configurations: (a) multi-block topology
around the fuselage (ROBIN body [1, 2]); (b) multi-block topology on both sides of the sliding-plane
interface; (c) fuselage mesh on the sliding plane; and (d) rotor mesh on the sliding plane. The differences

in mesh topology and density between (c) and (d) are apparent.
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or the split-flux method of Steger and Warming [7]. First-order accurate explicit time integration

was employed. The method was applied to a range of two-dimensional test cases composed of the

supersonic flow over a cylinder, blast-wave diffraction by a wedge and the shock-tube problem.

The test cases involved a range of Cartesian as well as curvilinear meshes. For the cylinder

test case, a curved zonal interface was used. A detailed analysis showed that for the scheme in

Reference [3], a drift in the free stream conditions occurs near this curved zonal boundary which is

proportional to the curvature of the zonal boundary and is caused by terms that are second order in

magnitude. The presented results indicated that the conservative nature of the method permits the

smooth transition of the discontinuities in the considered flow fields across the zonal boundaries.

In Reference [4], the approach was extended to include relative motion between grid patches.

Furthermore, the method was demonstrated to work with an implicit relaxation method, for steady-

state and time-accurate simulations. A time-dependent simulation of a rotor–stator configuration

was also presented, demonstrating the method for time-dependent flows. The formulation and

the presented results were restricted to two-dimensional cases. The approach of References [3, 4]

was subsequently adopted by various researchers and extended to three-dimensional problems.

An example of such efforts can be found in Reference [5], where multi-blade row configurations

of gas turbines are analysed using RANS simulations on unstructured CFD meshes with sliding

surfaces forming the interfaces between the mesh parts with relative motion. In Reference [8],

the sliding-surface approach was employed for three-dimensional Euler calculations on structured

meshes for propellers and propeller-wing configurations.

In the context of rotorcraft CFD, the CHIMERA technique is established as the standard for

dealing with the relative motion of the rotor blades (due to the cyclic blade pitch actuation as

well as blade flapping) and the relative motion between the rotor and the helicopter fuselage. This

method allows intersecting and non-matching grids and is therefore more general than the sliding-

surface approach. Examples of applications to rotorcraft problems are given in References [9–12]

amongst others. In these works, a separate block-structured mesh is utilized for each rotor blade

overlaying a highly regular, structured background grid. A ‘hole-cutting’ approach is used at each

time step to determine the parts of the domain that are covered by overlapping grids and to create

a suitable amount of overlap between them. Halo cells are utilized to couple the solution between

grids. The required search and interpolation steps need to be conducted in a three-dimensional

space. For rotor–fuselage configurations, e.g. in References [10, 12], an additional block-structured

mesh for the fuselage must be used. For this case, additional complexity in the hole-cutting and

interpolation steps may arise when a three-fold grid overlap occurs, i.e. in certain parts of the

domain, the background, rotor blade and fuselage grids will overlap.

In this work, the sliding-mesh approach with non-matching cell faces is considered, in an effort

to develop a computational technique that allows rotor body as well as complex rotor cases to be

studied with minimal overhead and by re-using existing multi-block grids. In contrast to the large

number of CHIMERA applications in rotorcraft CFD, only a limited number of applications of

the sliding-mesh approach exist. In References [13, 14], an unstructured Euler solver is described

utilizing sliding planes to couple the mesh around the rotor with a stationary mesh around a

helicopter fuselage. The grid deformation due to the relative motion of the rotor blades is taken into

account by utilizing a mesh deformation algorithm based on the spring analogy. Further application

and validation of the same algorithm has also been presented in Reference [15].

In view of the above, the objectives of the present work are the development of a sliding-mesh

algorithm, its implementation in a well-validated finite-volume CFD method and its demonstration

for a wide range of test cases ranging from simple aerofoils to full rotor–fuselage configurations.
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The paper begins with a description of the employed solver in Section 2, and subsequently, the

sliding-mesh algorithms are detailed in Section 3. Section 4 presents demonstration test cases and

Section 5 presents conclusions and suggests future steps. With respect to structured multi-block

grids, this work is the first to address sliding planes for rotor–fuselage applications.

2. NUMERICAL METHOD

2.1. The HMB flow solver

The helicopter multi-block (HMB) CFD code [16–18] was employed for this work. HMB solves

the unsteady Reynolds-averaged Navier–Stokes equations on block-structured grids using a cell-

centred finite-volume method for spatial discretization. Implicit time integration is employed, and

the resulting linear systems of equations are solved using a pre-conditioned generalized conjugate

gradient method [19]. For unsteady simulations, an implicit dual time-stepping method is used,

based on Jameson’s pseudo-time-integration approach [20]. The method has been validated for

a wide range of aerospace applications and has demonstrated good accuracy and efficiency for

very demanding flows. Examples of work with HMB can be found in References [16–18, 21, 22]

and include dynamic stall [22], blade–vortex interaction [21] and rotors in hover and forward

flight [17]. Several rotor trimming methods are available in HMB along with a blade-actuation

algorithm that allows for the near-blade grid quality to be maintained on deforming meshes [17].

The same algorithm is used here for the mesh deformation of the rotor mesh. The solver has a

library of turbulence closures which includes several one- and two-equation turbulence models

and even non-Boussinesq versions of the k–� model. Turbulence simulation is also possible using

either the large-eddy or the detached-eddy approach. The HMB solver was designed with parallel

execution in mind. The MPI library along with a load-balancing algorithm is used to this end.

Good parallel performance has been demonstrated on Beowulf clusters with up to 150 CPUs

and on massively parallel machines such as the HPCx facility available to U.K. Universities.

For multi-block grid generation, the ICEM-CFD Hexa commercial meshing tool is used and

CFD grids with multi-million points and thousands of blocks are commonly used with the HMB

solver.

Two layers of halo cells are used in the HMB solver for imposing boundary conditions or to allow

communication between adjacent blocks. Figure 2(a) presents a schematic of this arrangement.

Each block is independent of its neighbouring blocks, and as long as the halo cells are populated

with values of the primitive variables, the solver can compute an update of the flow solution.

2.2. Governing equations in inertial frame of reference

The Navier–Stokes equations expressed in integral form in the arbitrary Lagrangian Eulerian

formulation for time-dependent domains, which may include moving boundaries, read

d

dt

∫

V (t)

wdV +

∫

�V (t)

(F(w)−Fv(w))ndS=S (1)

The above forms a system of conservation laws for any time-dependent control volume V (t) with

boundary �V (t) and outward unit normal n. The vector of conserved variables is denoted by

w=[�,�u,�v,�w,�E]T, where � is the density, u,v,w are the Cartesian velocity components

and E is the total internal energy per unit mass. F and Fv are the inviscid and viscous fluxes,
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(a) (b)

(c) (d)

Figure 2. Sliding-plane interface with matching and non-matching cell faces: (a) halo cells
and matching cells; (b) non-matching cells along the interface; (c) sketch of distance-based

interpolation; and (d) sketch of cell-area weighted interpolation.

respectively. The fluxes include the effect of the time-dependent domain, i.e. a mesh velocity is

included in the contra-variant velocity components. In the absence of volume forces and in an

inertial frame of reference, the source term S=0.

2.3. Spatial discretization

Equation (1) is discretized using a cell-centred finite-volume approach on structured multi-block

grids which leads to a set of ordinary differential equations in time of the form

�

�t
(wi, j,kVi, j,k)=−Ri, j,k(wi, j,k) (2)

where w and R are the vectors of cell variables and residuals, respectively. Here, i, j,k are the

cells indices in each block and Vi, j,k is the cell volume. The convective terms are discretized

using Osher’s upwind scheme [6]. MUSCL variable interpolation is used to provide third-order

accuracy with the Van Albada limiter [23] to prevent spurious oscillations near steep gradients.

Boundary conditions are imposed by using two layers of halo cells around each grid sub-domain.

In case of matching multi-block grids, the internal block boundaries are treated by copying flow

field data from the two layers of boundary cells of the neighbouring block into the halo cells.

At far-field boundary conditions, the flow field variables in the halo cells are simply set to the

prescribed far-field condition. For inviscid flow simulations, solid-wall boundary conditions employ

an extrapolation of the flow field variables from the interior to the halo cells such that the normal
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component of the velocity relative to the solid wall is zero. Similarly, for viscous flow simulations,

halo cell values are extrapolated at solid boundaries ensuring that the velocity takes on any wall

velocity.

2.4. Temporal integration and the dual time-stepping method

For time-accurate simulations, temporal integration is performed using an implicit dual time-

stepping method. Following the pseudo-time formulation [20], the updated mean flow solution is

calculated by solving the steady-state problems

R
∗
i, j,k =

3V n+1
i, j,kw

n+1
i, j,k−4V n

i, j,kw
n
i, j,k+V n−1

i, j,kw
n−1
i, j,k

2�t
+Ri, j,k(w

n+1
i, j,k)=0 (3)

where V n−1
i, j,k , V

n
i, j,k and V n+1

i, j,k represent the cell volumes at different time steps. Equation (3)

represents a nonlinear system of equations. This system can be solved by introducing an iteration

through pseudo-time � to the steady state, as given by

V n+1
i, j,k

w
n+1,m+1
i, j,k −w

n+1,m
i, j,k

V n+1
i, j,k��

︸ ︷︷ ︸

A

+
3V n+1

i, j,kw
n+1,m
i, j,k −4V n

i, j,kw
n
i, j,k+V n−1

i, j,kw
n−1
i, j,k

2V n+1
i, j,k�t

+
Ri, j,k(w

n+1,m
i, j,k )

V n+1
i, j,k

=0 (4)

where the mth pseudo-time iterate at real time step n+1 is denoted by wn+1,m and the cell volumes

are constant during the pseudo-time iteration. The unknown w
n+1
i, j,k is obtained when term A in

Equation (4) converges to a specified tolerance. An implicit scheme is used for the pseudo-time

integration. The flux residual Ri, j,k(w
n+1
i, j,k) is linearized as

Ri, j,k(w
n+1) =Ri, j,k(w

n
i, j.k)+

�Ri, j,k(w
n
i, j.k)

�t
�t+O(�t2)

≈R
n
i, j,k(w

n
i, j.k)+

�R
n
i, j,k

�w
n
i, j,k

(wn+1
i, j,k−w

n
i, j,k) (5)

Using this linearization in pseudo-time, Equation (4) becomes a system of linear equations. For

the solution of this system, the generalized conjugate gradient method with a block incomplete

lower–upper pre-conditioner is used. Typically, the pseudo-time integration in Equation (4) is

continued at each real time step until the residual has dropped three orders of magnitude.

3. SLIDING-MESH ALGORITHM

The underlying idea behind the sliding-mesh approach can be explained using the schematics of

Figure 2. Figure 2(a) shows the definition of two layers of halo cells around the boundary surface

of each block. In the sliding-plane algorithm, this concept is extended to deal with grids that

are discontinuous across the interface and can also be in relative motion. Figure 2(b) presents

a situation where two adjacent blocks have non-matching cell faces. If the halo cells of each

block could, however, be populated with interpolated values, the solver will have no difficulty in
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computing the flow. The application of the sliding-plane algorithm to non-matching grids as well

as grids in relative motion will result in non-matching cell faces as sketched in Figure 2(b). For

each pair of adjacent sliding planes, there are three main steps involved in populating the halo

cells: (i) identification of the neighbouring cells for each halo cell, (ii) interpolation of the solution

at the centroids of the halo cells and (iii) exchange of information between blocks associated with

different processors. The last step is important for computations on distributed-memory machines

only. Regardless of the identification and interpolation methods employed, the halo-cell values are

computed using

�halo=
i=n∑

i=1

wi�i (6)

where � represents any flow field variable, e.g. �,�ui , . . . , p, etc., wi is the weight associated with

the i th neighbour of the halo cell and n is the number of neighbours.

Figures 2(c) and (d) show two possible methods used to determine the halo-cell values when

neighbouring grids along a sliding-plane interface are discontinuous and may be in relative motion.

The distance-based interpolation (shown in Figure 2(c)) computes a weighted sum of flow field

data of neighbouring cells within an interaction radius. The weights are inversely proportional to

the distance of the cell centre from the projected point on the sliding plane interface and are scaled

to sum up to one. Figure 2(d) shows the cell-face overlap interpolation, in which case the weight for

each neighbour is directly proportional to the fraction of the projected overlapping cell face area.

In the context of finite-volume discretization methods for conservation laws based on numerical

fluxes through cell faces, the cell-face overlap interpolation is the preferred method. However, an

interpolation method based on the overlap weighting of Figure 2(d) does not necessarily enforce

conservation and differences in grid sizes between the sides of the sliding plane may act as a

spatial filter.

3.1. Interpolation method based on overlapping areas

The present implementation of the sliding-mesh algorithm is based on the cell-face overlap inter-

polation method presented in Figure 2(d). Sliding-mesh interfaces can be of arbitrary shape and

for this reason the contributing cell surfaces must all be projected on the curvilinear �,�,� axes

used in the solver. This step can be combined with a transformation from primitive to conservative

variables so that flux-weighted summations can also be computed.

Figure 3 presents the underlying idea of the cell-face overlap interpolation used in the present

sliding-mesh algorithm. The figure shows two adjacent non-matching meshes that are separated by

the sliding-mesh interface. For both meshes, two layers of halo cells are constructed. Figure 3(a)

shows how the first layer of halo cells of mesh 1 is obtained. At first, the face of each boundary

cell in mesh 1 is projected onto the sliding-plane interface. Subsequently, the neighbour cells

contributing to the halo data are identified. These cells belong to mesh 2 and their faces overlap

the projected cell face from mesh 1. In the figure, three neighbours are shown. The interpolation

weight assigned to each neighbour is the fraction of the projected cell face area occupied by the

overlapping area of the two cells. For the second layer of halo cells of mesh 1, the procedure is

presented in Figure 3(b). In this case, the face of the cell in mesh 1 is projected onto a plane

formed by the cell faces one cell size away from the block boundary. The neighbours are now

searched for in the second layer of cells below the block boundary of mesh 2. The present method
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assumes that the mesh spacing in the direction normal to the sliding-mesh interface is comparable

in the adjacent grids.

If, in combination with the identification method, a regular intermediate surface grid is used

to discretize the sliding plane, the interpolation method may also benefit. In this way, consistent

interpolation on both sides of the sliding plane can be achieved. Figure 4 presents the cell-face

(a) (b)

Figure 3. Sliding-plane algorithm employing ‘direct’ interpolation. The
cell face is projected on the sliding-mesh interface. The cell-face overlap
determines the interpolation weight for each of the donor cells: (a) first

and (b) second layers of halo cells (mesh 1).

(a) (b)

Figure 4. Sliding-plane algorithm employing ‘mid-plane’ interpolation. Four regu-
larly spaced mid-planes are created with a mesh width smaller than the mesh
spacing on either side of the sliding-mesh interface. First, mid-planes 1 and 2 are
defined with data from the solution on mesh 2. These data are then used to define

halo cell layers 1 (a) and 2 (b) of mesh 1.
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overlap interpolation using a regular intermediate plane. The cell spacing of this intermediate plane

needs to be smaller than the cell width on both sides of the sliding-plane interface. Combined with

the need for regularity, this method requires the storage of a large number of intermediate cell

values for large meshes with significant mesh stretching. Despite the benefits of the regularity of the

intermediate-mesh interpolation in terms of identification efficiency and interpolation consistency,

there is a significant memory overhead.

3.2. Identification of cell neighbours

Figure 5 shows the identification of neighbouring cells on a cylindrical sliding-plane interface

between an inner grid around a blunt-nosed cylinder and a coarser (rotating) outer grid. As an

example of the neighbour identification step, Figure 5(a) shows how cells on one of the block

faces of the sliding-plane interface and on the inner mesh overlap with cells of the outer mesh. For

the cell in the outer mesh indicated with shading in Figure 5(b), the six overlapping cell faces are

shown. Similarly, Figure 5(c) shows the two neighbours on the outer grid for a cell on the inner

sliding plane.

The neighbour identification method used in the present work involves a loop over all block

faces on the sliding-plane interface(s). First, for each block face on the sliding-plane interface, a

subset of block faces is constructed which are sufficiently close to have an overlap. To this end,

Figure 5. Identification of neighbouring cells on a cylindrical sliding-plane interface between
an inner grid around a blunt-nose cylinder and a coarser rotating outer grid: (a) example of
overlapping cells in one of the block faces of the interface; (b) example of a cell face on
the coarse patch overlapping with six neighbour cells; and (c) cell face on finer inner mesh

overlapping with two cells on the outer mesh.
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any metric of the block-face size can be used. For planar interfaces and highly regular block face

shapes, the mean of both diagonals would suffice. This metric may have to be adjusted for block

faces with highly stretched grids.

To check the potential of cell overlap, a search range is used which is based on the diagonals

of the cells considered. For cells within this interaction radius, the cell face overlap computation

is performed. The overlap computation can handle quadrangles of arbitrary shapes and involves

checks for a range of overlap patterns.

Without the interaction radius checks, the neighbour identification for a sliding-plane interface

with N1 cells along the interface on one side and N2 cells on the other side would involve N1×N2

overlap computations. The construction of the neighbour block face list reduces the computational

overhead. Although the cost of the above process remains O(N1×N2), it copes with complex

configurations such as the rotor–fuselage cases. For the cases considered in the present work, the

implemented identification method was found to have an acceptable computational overhead. For

the generic demonstration cases, the overhead was as little as 1–2% of the simulation time. For

the more complex rotor–fuselage test cases, with significantly larger mesh sizes, the simulation

needs to be performed in parallel, leading to a more complex identification process. This problem

was addressed by developing a separate parallel pre-processor for identification and interpolation

weight computation, which is described in the following section.

3.3. Parallelization of the method

The present implementation of the sliding-mesh method was designed for execution on a distributed-

memory multi-processor computer, typically a low-cost Linux cluster. The method is embedded in

the HMB flow solver, which, for parallel simulations on distributed-memory computers, divides

the sub-domains between processors, each of which stores only the flow field data and the mesh

for the assigned sub-domains. In the neighbour-identification step, the mesh coordinates for cells

along neighbouring block faces are required. The main challenge in the parallel execution arises

from the fact that the neighbouring block may be assigned to a different processor and, therefore,

the required mesh coordinates will not be readily available. Furthermore, if the grids bordering the

sliding-plane interface are moving, the multi-block topology is a function of time, and therefore

the communication pattern required for the neighbour identification step will vary for each time

step.

In the design of the parallel implementation of the neighbour-identification and weight-

computation steps, the main challenge is to limit the number of message-passing communications

and the amount of communicated data. In the present approach, a parallel pre-processor performs

the neighbour identification as well as the determination of the interpolation weights. For each

time step in the flow simulation, the pre-processor creates a file containing, for each cell on the

sliding-plane interface, a list of the neighbouring cells and corresponding weights. For each cell,

its block index and the indices of the neighbouring cells on the other side of the sliding plane are

stored. This out-of-core computation is necessary for large grids where storage of the whole grid

on each processor during parallel execution is not possible.

Parallel computations also require an efficient approach to exchange flow field data among the

processors which have one or more blocks assigned on the sliding plane. The parallel execution

of the sliding-plane method is illustrated in Figure 6 for a simple example with a 10-block mesh

distributed over four processors. A two-dimensional case is shown for clarity. In the parallel

execution, a parameter nCPU,SP defines the number of processors used to store the blocks adjacent to
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(a)

(c)

(b)

Figure 6. Example of parallel execution of a 10-block mesh on four CPUs. Processors 0 and 1
share the blocks along the sliding-mesh interface, whereas 3 and 4 receive the remaining blocks.
Processors 0 and 1 allocate a buffer to store two cell layers of data along the interface. Collective
broadcast operations distribute the buffer data: (a) 10-block mesh; (b) processor assignment and cell

indices in buffer; and (c) sliding-plane face list and buffer construction on two CPUs.

the sliding-plane interface (nCPU,SP=2 in the example). The parallel execution of the sliding-plane

method in the flow solver involves the following steps:

1. Load balancing: In this step, sub-domains having one or more faces along the sliding-plane

interface are identified. These sub-domains are assigned to the first nCPU,SP processors,

whereas the rest are assigned to the remaining processors. Among both batches of proces-

sors, the computational load is evenly distributed by a process in which the least loaded

processor is given additional blocks until all blocks are distributed. In the present MPI-based

implementation, an MPI_Communicator is created for the ‘sliding-plane’ processors.

This communicator enables collective communications among the ‘sliding-plane’ processors,

while the default MPI_Communicator, i.e. MPI_Comm_World, is used for collective

communications between all processors.

2. Sliding-plane buffer allocation: In this process, a linked list is constructed, in which each list

element holds the following: (i) the block index, (ii) block face index, (iii) a pointer to the

part of the flow solution buffer for this block (i.e. buffer in Figure 6(c)) and (iv) the size

of this part of the buffer. The flow solution buffer contains the flow field variables for the

two layers of cells adjacent to the sliding-plane interface. The need to store just two layers of

cell data means that the memory allocated on each processor for the buffer is low. It should

Copyright q 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2008; 58:527–549

DOI: 10.1002/fld



538 R. STEIJL AND G. BARAKOS

be noted that although the stride in the buffer index for adjacent cells is one in Figure 6,

the stride used in the flow solver equals the number of unknowns per cell. The list contains

elements for each of the block faces on the sliding-plane interface and is allocated on each

of the first nCPU,SP processors. In Figure 6, the list has five entries. The cell indices of the

neighbours pre-computed by the pre-processor are actually the indices of neighbour cells in

this buffer.

3. Sliding-plane weights allocation: In this step, a weights data structure is allocated for each

cell of the locally allocated blocks on the sliding-plane interface. The weights data type

holds (i) the number of neighbour cells, (ii) a variable-length array storing the block index,

(iii) the cell index and (iv) the weight for each neighbour cell.

4. Sliding-plane buffer update: This update consists of two steps. First, each processor copies

the most recent flow solution data into the flow solution buffers of the blocks assigned to

that processor. Figure 6 shows the parts of the buffer stored on each processor before data

communication. The blank entries in the buffer shown in the sketch indicate the parts which

need to be received from other processors. Collective broadcast (MPI_Bcast) operations

using the dedicated sliding-plane MPI_Communicator are used to update the remaining

flow solution buffer entries on each of the first nCPU,SP processors.

5. Sliding-plane weights update: In this step, the weights file created in the pre-processing stage

is read by each one of the first nCPU,SP processors. On each processor, only the relevant

interpolation data are stored.

Steps (4) and (5) are repeated at the end of each pseudo-time step (m in Equation (4)). Following

the above steps, the halo values required for the block faces on the sliding plane can be obtained

from the buffer data stored on each processor. For example, for halo cell A in Figure 6, only one

neighbour will be used (corresponding to buffer index 21), whereas for halo cell B, the halo data

are obtained from a weighted summation of buffer data at indices 2 and 3. For three-dimensional

problems with non-matching stretched grids, the number of neighbours will range from one to

tens or even hundreds.

4. DEMONSTRATION OF THE METHOD AND DISCUSSION OF THE RESULTS

The technique described in the previous section has been implemented in HMB and tested for a

variety of cases. The obtained results are presented in this section.

4.1. Flows over bumps and around aerofoils

The first test case considered was the inviscid flow over a bump. For this case, a matching multi-

block grid was generated with 6400 cells, as shown in Figure 7(a). The sliding-plane grid shown

in Figure 7(b) was obtained by introducing a horizontal split. The solution obtained with the inter-

block boundary treated as a normal block boundary is shown in Figure 7(c). The sliding-plane

solution is shown in Figure 7(d). The comparison shows that there is no difference between the

obtained results and this suggests that the existing interpolation method did not introduce any

numerical artefacts. This was expected since both sides of the sliding plane had matching grids.

Owing to the small size of the employed grid, the computational overhead for the case where the

sliding-plane algorithm is used is very low. Profiling of the solver revealed an increase of less than
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(a) (b)

(c) (d)

Figure 7. Inviscid subsonic flow over circular bump (M∞ =0.40). (a) An 8-block matching multi-block
grid is used, which for the sliding-plane test is split along the horizontal line indicated in (b). (a) Matching

multi-block mesh; (b) matching patched mesh; and (c) and (d) pressure distribution.

1% of CPU time. A small number of iterations, about 200, were needed for convergence and a

CFL of 25 was used for the implicit time marching.

A second test case attempted was the transonic inviscid flow around the ONERA213 airfoil,

shown in Figure 8. For this case, a multi-block grid was generated (see Figure 8(a)), which formed

the basis for two sliding-plane grids: a matching grid with the sliding-plane interface wrapped

around the upper half of the airfoil at a distance of 0.5 of the chord length (Figure 8(b)) and a

non-matching grid, obtained by refining the blocks within the sliding-plane interface by 50% in

the chord-wise direction (Figure 8(c)). The multi-block grid shown in Figures 8(a) and (b) has

40 cells in the wall-normal direction, 170 in the wrap-around direction and 30 in the stream-wise

direction in the wake. The wall spacing of the first cell is 10−3 of the chord. The non-matching grid

shown in Figure 8(c) has 125 cells in the wrap-around direction on the upper surface instead of 85

in the baseline grid. The iso-bars of the solutions for a free-stream Mach number of 0.75 for the

three cases are shown in Figures 8(d)–(f). The comparison shows no difference between the results

obtained with the standard multi-block formulation and the matching-grid sliding plane, whereas

the non-matching sliding-plane case shows a reduction in the shock thickness in the refined grid

blocks. Again, this was expected. In comparison with the previous test case, the sliding plane is

now curved and the interpolation is harder. In addition, significant flow gradients are now present.

Less than 300 iterations were necessary for convergence to be obtained and a CFL number of

15 was used. The refinement technique enabled by the use of a sliding-plane interface opens

possibilities for reducing the number of cells required to obtain an accurate solution compared
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(a) (d)

(b) (e)

(c) (f)

Figure 8. Transonic inviscid flow around ONERA OA213 airfoil (2◦ incidence, M∞ =0.75): (a) and (b)
mesh and pressure distribution obtained with regular multi-block formulation; (c) and (d) continuous
grids matched along a multi-segment curved sliding-plane interface; and (e) and (f) non-continuous grids

obtained by refining the leading-edge and upper surface blocks.

with normal multi-block grids. For the present case, the overhead in terms of CPU time due to the

presence of the sliding plane was less than 1%.

The third test case considered here is the transonic flow around the ONERA213 airfoil with

shock-induced separation of the boundary layer. Again, the free-stream Mach number is 0.75,

whereas the incidence has been increased to 8◦. The simulations for these conditions used the two-

equation k–� turbulence model, for a Reynolds number, based on the chord length, of 1 million.

The multi-block meshes and the obtained results are presented in Figure 9. The mesh topology is
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(a) (d)

(b) (e)

(c) (f)

Figure 9. Transonic turbulent flow around ONERA OA213 airfoil (8◦ incidence, M∞ =0.75), with
shock-induced boundary layer separation: (a) and (b) mesh and pressure distribution obtained with
regular multi-block formulation; (c) and (d) continuous grids matched along a multi-segment curved
sliding-plane interface; and (e) and (f) non-continuous grids obtained by coarsening blocks outside

sliding-plane interface by 50% in chord-wise direction.

identical to that for the previous inviscid test case. The number of cells in the wall normal direction

has been increased from 40 to 65 while the wall spacing of the first cell is reduced from 1×10−3

to 0.5×10−5 of the chord. The multi-block grid shown in Figures 9(a) and (b) has 250 cells in the

wrap-around direction and 45 in stream-wise direction in the wake. The non-matching grid shown

in Figure 9(c) has a reduced number of cells in the wrap-around direction in the blocks outside the

sliding-plane interface. The number of cells in this direction is reduced from 250 to 170, whereas
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Figure 10. Supersonic inviscid flow around blunt cylinder (0◦ incidence, M∞ =2.0): (a) mesh
and pressure distribution obtained with regular multi-block formulation and (b) non-matching
mesh and pressure distribution obtained with sliding-plane method. The non-continuous grid

was obtained coarsening the outer grid.

the grids in the two blocks on the upper surface maintain the same number of cells as the baseline

grid. As in the previous inviscid example, the sliding-plane method was used to simulate the flow

on a matching patched grid as well as a non-matching grid. The results are compared with results

for the conventional multi-block formulation in Figures 9(d)–(f). In this example, the sliding plane

intersects the boundary layer in the leading-edge normal direction as well as in the wall normal

direction at the trailing edge on the upper surface of the airfoil. It can be seen that the sliding-plane

interpolations do not introduce numerical artefacts for this test case.

As a final demonstration case, the supersonic flow around a blunt-nose cylinder was considered.

The multi-block topology and the location of the sliding-plane interface were previously shown

in Figure 5 and discussed in Section 3.2. This example was designed to test the sliding-plane

algorithm for curved three-dimensional interfaces with significant flow gradients, i.e. the bow

shock found around the cylinder. The results for the inviscid flow at free-stream Mach number

2.0 are shown in Figure 10(a) for a matching grid and in Figure 10(b) for a non-matching grid

obtained by coarsening the outer mesh. As in the previous example, the sliding-plane interface

did not introduce any numerical artefacts. The only significant effect of the coarsened outer grid

is the spreading of the bow shock wave, while the solution on the inner grid is not affected.

4.2. Rotor–fuselage test cases

The first rotor–fuselage test case involves the ROBIN model helicopter model [1, 2, 24]. The

overall configuration is shown in Figure 11(a). The four-blade rotor has an aspect ratio of 13 and

consists of a NACA0012 section, with a linear twist of 8◦. In the experimental set-up, the rotor is

suspended from the wind-tunnel roof, while the fuselage has a floor-mounted wind-tunnel support.

Both supporting structures are omitted in the geometry used here. The rotor hub is modelled as an

ellipsoidal surface. The geometry includes the 2-in rotorshaft offset from the fuselage centreline

and the 3◦ forward tilt of the rotor shaft. Figure 11(b) shows the locations of the surface pressure

taps and inflow measurements from the NASA experiments which are used here. The test case

considered here has a rotor tip Mach number of 0.5, the advance ratio is 0.15 and the rotor thrust

coefficient was CT/�=0.0656 in the experiment. The rotor trim state is that reported by Park

et al. [13], with collective, longitudinal and lateral cyclic pitch angles of 6.0, −2.2 and −2.0◦,

respectively. The inviscid flow simulations were conducted on multi-block-structured grids with
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Figure 11. ROBIN configuration used in the present CFD study. The wind tunnel supports for
the floor-mounted fuselage and the roof-mounted rotor are omitted: (a) sliding-mesh interface
is located 1.0 blade chord below the rotor disk and (b) location of pressure taps and inflow

measurements used in the present work.

Figure 12. Multi-block topology for ROBIN configuration. Around the fuselage, an O-topology is
used with a high degree of surface orthogonality: (a) fuselage and symmetry plane topology and

(b) fuselage and symmetry plane mesh.

the sliding-plane interface located one blade chord below the rotor disk. The fuselage grid has an

O-type topology in the direct vicinity of the fuselage, embedded in a domain with a cylindrical

side surface, with the same diameter as the rotor grid far-field boundary, and an upper surface

orthogonal to the rotor shaft. The grid has 240 blocks and 4.0×106 cells. The topology and mesh

are shown in Figure 12. The rotor grid has a C-H topology, with 456 blocks and 5.5×106 cells.

The rotor grid has 50 cells in the span-wise direction of each blade, 45 cells in the surface normal

direction, 150 cells around the blade chord and 40 cells in the stream-wise direction between the

blades. The simulation was run for four rotor revolutions using azimuthal steps of 1.0◦. For the

fourth rotor revolution, the thrust coefficient was CT/�=0.0066, which is within 0.6% of the value

for the third revolution, indicating a sufficient level of convergence, confirmed by surface pressure

plots for the third and fourth revolutions discussed later. The neighbour searches and interpolation

weights were pre-computed with the pre-processor discussed in Section 3.3, requiring about 5% of
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the total CPU time. The sliding-plane method added an additional 5–6% communication overhead

for the parallel simulation conducted on 40 Pentium four processors of a Linux cluster. The grid

blocks along the sliding-plane interface were allocated to the first six processors, i.e. the parameter

nCPU,SP defined in Section 3.3 was set to 6.

Figure 13 compares the time-averaged induced flow field components in the stream-wise and

rotor-disk normal direction from the experiment [25] with CFD data averaged over one rotor revo-

lution. The agreement is favourable, with a slight over-prediction of the stream-wise component.

This is an encouraging result, since any loss of continuity across the sliding plane would have an

effect on the obtained velocity field.

Time-averaged surface pressure coefficients are shown in Figure 14 for the cross sections x/L=

0.35 and 1.17. The small discrepancy at the lower surface for x/L=1.17 can be (partly) attributed

to the absence of the wind-tunnel support in the CFD geometry. Figure 15 shows the unsteady

pressure distribution for four rotor azimuth positions. In the figure, the revolution-averaged pressure

coefficient has been subtracted from the instantaneous pressure coefficients. At 	=90◦, the blade

at the front and back of the rotor disk crosses the fuselage centreline. A positive pressure change

leads this blade passing, while the maximum pressure occurs 5–10◦ after the centreline passing.

After the passage, a negative change to the average pressure occurs, which is particularly notable

behind the fuselage fairing in the plot for 	=110◦ in Figure 14. Figure 16 compares the predicted

(a) (b)

(c) (d)

Figure 13. In-plane (
i ) and normal (�i ) velocity ratios at 0
◦ (a, c) and 180◦ (b, d) azimuth angles. The

velocity was extracted above the rotor disk plane at z/c=1.1. The thrust coefficient was cT=0.0065,
Mtip=0.51, advance ratio 
=0.15.
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Figure 14. Time-averaged surface pressure coefficient for ROBIN configuration. Thrust coefficient
cT=0.0065, Mtip=0.51, advance ratio 
=0.15.

Figure 15. Unsteady surface pressure distribution for ROBIN test case. In the plots, the revolution-averaged
pressure coefficient has been subtracted from the instantaneous surface pressure coefficient to highlight

the blade-passing effect on the pressure field.

time-dependent surface pressure coefficients with the experimental data [24]. The pressure in the

four centreline positions defined in Figure 11(b) is shown in Figures 16(a)–(d). The pressure in

probe locations on the side of the fuselage fairing is shown in Figures 16(e) and 16(f), for the

retreating and advancing sides of the rotor, respectively. The peak-to-peak pressure fluctuations

agree favourably with the experiment, while a consistent phase shift relative to the experimental

data is present. This phase shift corresponds to that found previously by Park et al. [13]. Their

solution for this test case is also plotted on the same figure.
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(a) (b)

(c) (d)

(e) (f)

Figure 16. Surface pressure distribution for ROBIN test case: (a) centreline, x/L=0.096; (b) centreline,
x/L=0.201; (c) centreline, x/L=0.896; (d) centreline, x/L=1.368; (e) x/L=0.896, y/L=−0.07,

z/L=0.125; and (f) x/L=1.368, y/L=0.07, z/L=0.125.

A second rotor–fuselage test case demonstrates the capability of the method to handle more

complex, realistic helicopter geometries. The case considered here is the wind-tunnel model of a

medium-weight generic helicopter with the four-bladed ONERA 7AD rotor, equipped with anhedral

tips and parabolic taper. This configuration is under investigation for the GOAHEAD EC Sixth

Framework Research Project. The geometry and the multi-block topology are shown in Figure 17.

The multi-block mesh for the fuselage has 1624 blocks and approximately 6.5×106 cells, whereas
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Figure 17. Geometry and multi-block topologies for a realistic helicopter model.

Figure 18. Unsteady surface pressure distribution for the helicopter model of Figure 17, in
forward flight at different rotor azimuth angles. In the plots, the revolution-averaged pressure
coefficient has been subtracted from the instantaneous surface pressure coefficient to highlight

the blade-passing effect on the pressure field.

the rotor mesh has 856 blocks and 4.1×106 cells. The rotor shaft is mounted on the fuselage

with 5◦ forward inclination. The case considered corresponds to an economic cruise condition,

for which the free-stream Mach number is 0.204 and the tip Mach number of the rotor is 0.62. A

representative rotor trim schedule is used in the simulation, i.e. the rotor has a cyclic pitch change

as well as a harmonic blade flapping. The rotor multi-block topology is designed to handle the grid

deformation as discussed in Reference [17]. This test case was run in parallel on 96 Pentium four

processors, where the blocks with a face on the sliding-plane interface were stored on the first 16

processors. The simulations were run for three rotor revolutions with a time step corresponding to

0.25◦ rotor rotation and the k–� turbulence model was used. The effect of the blade passing on

the surface pressure distribution of the front part of the fuselage is shown in Figure 18, where the
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pressure pattern near the stagnation point formed at the front of the fuselage is altered every time

a blade is passing above. This test case represents a realistic helicopter configuration and further

proves the ability of the proposed method to cope with complex multi-block topologies.

5. SUMMARY AND FUTURE WORK

A CFD technique was presented which allows CFD computations on grids with non-matching cell

faces. The main application of the method is the analysis of rotor–fuselage configurations though

other configurations are possible. Results have been presented for several flow cases including

simple two-dimensional flows and even complete rotor–fuselage configurations. The obtained

results suggest that the proposed method is adequate in terms of both accuracy and efficiency. The

overhead of the method in terms of CPU time was found to be almost proportional to the size of

the employed grid. Issues regarding the parallel efficiency of the method had to be addressed since

a substantial amount of information must be communicated between processors sharing blocks

with faces on sliding planes. Further, the proposed search algorithm takes no advantage of the

prescribed rotational motion of the rotor and it is expected that further savings in CPU time can

be obtained by narrowing the search radius according to the employed grid and time step. In the

future, more advanced methods will be investigated, such as the method described in Reference [5]

and random walk search methods to allow further reductions in the overhead associated with the

sliding-plane method.
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