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Approach to Chaotic
Synchronization
Extensions of sliding-mode adaptive observer are presented for state reconstruct
nonlinear systems with uncertainty having unknown bounds. The observer uses non
gains that are smoothened versions of classical sliding-mode gains and they are co
ously updated to guarantee a globally stable observation error. This observer is ap
to Chua’s circuit in a chaotic synchronization scheme. A generalization to known w
form type disturbances and measurement uncertainties is pointed out.
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Introduction
In this paper, we present extensions of sliding-mode adap

observers for state reconstruction of continuous-time nonlin
systems with uncertainties. A departure from the usual varia
structure or minmax observers@1–3# is made in a way that the
uncertain elements in the model are not assumed to have kn
bounds, but the problem is tackled via the use of estimate
these bounds which are adaptively computed. This extra degre
robustness or insensitivity is needed in the area of particular
plication of these observers: chaotic systems. We know that s
systems are ‘‘super-sensitive’’ to perturbations in initial con
tions and parameters@4#. Therefore, with its superb robustne
properties, sliding-mode techniques have a lot of offer.

The use of variable structure techniques in state reconstruc
of nonlinear systems is shown in@2# to have some advantages lik
allowing the presence of matched uncertain elements in the m
and convergence speed over the other existing techniques
feedback linearization@5–7#, extended linearization@8# and tradi-
tional Lyapunov-based techniques@9–12#. Still, this type of ob-
server requires the knowledge of a bounding function on the
certainty ~the effect of incorrectly choosing that bound
investigated in@13#! which will not be needed in this work due t
the adaptation mechanism being introduced. Other adaptive
proaches in the context of variable-structure or minmax type
servers can be found in@14–18#.

The problem of designing a system whose behavior mimics
of another, chaotic system, is called synchronization. This i
difficult design problem since any error in the initial conditions
system parameters will result on exponential divergence of sys
orbits. In spite of this difficulty, the problem is of much practic
significance in signal, image, speech processing and secure
munications@19,20#. The use of nonlinear observer techniques
this area is relatively recent and the successful results are
@21,22#. Chua’s circuit@23# will be used here in application of ou
sliding-mode adaptive observers.

In this work, we are going to consider systems with uncert
functions with unknown functional bounds and design a rob
adaptive observer to reconstruct the state from the output m
surements in such a way that the observation error will be glob
stable. The observer will use continuous nonlinear gains and s
generalizations of these results will be applied to models dri
by known waveform type disturbances with unknown magnitu
and arrival times and with measurement uncertainties. A sim
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tion example will illustrate the design procedure and the effica
of this technique to be used in chaotic synchronizat
applications.

The following notation will be used in this paper.R1 is the set
of non-negative real numbers.xPRn (APRn3m) denotes an
n-vector~nxmmatrix! with real elements with the associated nor
ixi5(xTx)1/2 (iAis5l̄1/2(ATA)), where (.)T denotes transposi
tion, l̄(A) (lI (A)) denotes the maximum~minimum! eigenvalue
of a symmetric matrixA. The symbolexp or e is used for the
exponential function.C0 andC1 denotes the continuous and di
ferentiable functions, respectively.

System Model and Observer
Consider the nonlinear, nonautonomous system model g

below

ẋ~ t !5Ax~ t !1 f ~x,t ! (1)

and the linear measurement equation

y~ t !5Cx~ t ! (2)

wherexPRn, tPR1 is the system state to be reconstructed fro
the measurementsyPRp. f (x,t) represents the uncertainty in sy
tem dynamics that may include parameter perturbations, exte
disturbances, unmodeled dynamics, etc.

We make the following assumptions about the system:
(A1) ~A, C! is assumed to be detectable so that there exists a
KPRn3p such thatA05A2KC is a strictly Hurwitz matrix.
(A2) f :Rn3R1→Rn is separable into two parts

f ~x,t !5 f 1~x!1 f 2~x,t ! (3)

where the known nonlinearityf 1 satisfies a Lipshitz condition

i f 1~x1!2 f 1~x2!i<a f ix12x2i (4)

for all x1 ,x2PRn wherea fPR1 is a known constant.f 2 is, on the
other hand, assumed to satisfy a classical matching condition@1#

f 2~x,t !5P21CTz~y,t ! (5)

wherez:Rp3R1→Rp satisfies

iz~y,t !is<(
i 50

N

cir i~ t,y! (6)

for unknown values ofciPR1, known boundedr iPC0 such that
r i :R13Rp→R1, i 50,1, . . . ,N and P5PT is the unique posi-
tive definite solution to

PA01A0
TP52Q (7)

for someQ5QT.0.
(A3) The Lipshitz constant satisfies:

he

iate
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lI ~Q!

l̄~P!
(8)

Note that we may neither know the form ofz(t), nor the values
of ci . Still under these conditions, the adaptive observer to
proposed will estimateci and at the same time reconstructs t
state vector.

We will use the following nonlinear observer to reconstruct t
state from the measurementsy(t):

ẋ̂~ t !5Ax̂~ t !1 f 1~ x̂!1K~y~ t !2Cx̂~ t !!1S~ x̂~ t !,y~ t !! (9)

where K is picked to renderA0 a strictly Hurwitz matrix. The
nonlinear adaptive gain

S~ x̂~ t !,y~ t !!5

P21CT~y2Cx̂!(
i 50

N

ĉi~ t !r i~ t,y!

iy2Cx̂i2ḣ1~ t !h2S (
i 50

N

ĉi~ t !r i~ t,y!D (10)

will be used to account for the uncertain part of dynamics. N
that with a ‘‘known’’ bound on the uncertain part and with,h2
[0, we would get a generalized form of the classical slidi
mode or minmax gain

S~ x̂~ t !,y~ t !!5

P21CT~y2Cx̂!(
i 50

N

ci~ t !r i~ t,y!

iy2Cx̂i

for iy2Cx̂iÞ0 in @1#. Therefore, we can see that the ter
‘‘ 2ḣ1(t)h2(S i 50

N ĉi(t)r i(t,y))’’ in the denominator ofS in ~10!
functions as a~time-varying! boundary layer term~see @24#, p.
290 for details!. The estimates ofci , denoted by ĉi(t), i
50,1, . . . ,N are computed as

ċ̂i~ t !5qi iy2Cx̂ir i~ t,y!, ĉi~0!5 ĉi0PR1 (11)

for some choice ofqiPR1. Note that all ĉi(t)PR1 for all t
PR1.

~D! The functionsh1 andh2 satisfy the following design con
ditions: h1PC1,h1 :R1→R1 is such that sup

tPR1h1(t),` and

sup
tPR1ḣ1(t),0. h2PC0,h2 :R1→R1 is any function satisfying

th2(t)<0.5 for all tPR1.
One can see that functions likeg1e2g2t, arc cot(t), g1 /(t
Journal of Dynamic Systems, Measurement, and Control
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1g2) where g1 ,g2.0 will satisfy the properties of function
h1(t). On the other hand, functions such as 0.5e2gt and
0.5/(t1g) where tPR1, g.0 can be used forh2 . Note that
there is a freedom in the choice ofh1 and h2 which can be
explored depending on the system model at hand. Moreo
due to conditions ~D!, the ‘‘boundary layer’’ term
2ḣ1(t)h2(S i 50

N ĉi(t)r i(t,y))PR1. This general approach allow
one to have a boundary layer that vanishes in time. If a vanish
layer is to be implemented, thenh1 should be chosen in such
way that ḣ1 is decreasing slower than the convergence rate
‘‘ Ce’’ so that no ambiguity arises in the computation
S( x̂(t),y(t)).

Convergence of the Observer
Let us investigate the convergence property of this obser

We define the observation errore(t)8x(t)2 x̂(t) whose evolu-
tion is found from~1!, ~2!, and~9! as

ė~ t !5A0e~ t !1 f 1~x!2 f 1~ x̂!1 f 2~x,t !2S~ x̂,y! (12)

and use the Lyapunov-like function candidate

V~e,c̃i ,t !5eT~ t !Pe~ t !1(
i 50

N
1

qi
c̃i

2~ t !1h1~ t ! (13)

with c̃i(t)5 ĉi(t)2ci , i 50,1, . . . ,N. Note that V(e,c̃i ,t)
>eT(t)Pe(t)1S i 50

N 1/qi c̃i
2(t).0, soV is a positive definite func-

tion. It is also true thatV is radially unbounded~@24#, p. 64!. The
derivative ofV evaluated along the motions ofe(t) and ĉi(t) is
given by

V̇52eTP@A0e~ t !1 f 1~x!2 f 1~ x̂!1 f 2~x,t !2S#

12(
i 50

N

~ ĉi~ t !2ci !iy2Cx̂ir i~ t,y!1ḣ1~ t !

<2eT~ t !Qe~ t !12ie~ t !i2a f l̄~P!12eT~ t !P~ f 2~x,t !2S!

12iCe~ t !i(
i 50

N

~ ĉi~ t !2ci !r i~ t,y!1ḣ1~ t ! (14)

where ~4!–~7! are used together with the facts thatxTPy
<l̄(P)ixi iyi andy2Cx̂5Ce(t).

For the nonlinear gain in~10!, by usingQ>lI (Q)I for symmet-
ric Q, we obtain
V̇<2~lI ~Q!22l̄~P!a f !ie~ t !i212iCe~ t !i(
i 50

N

~ ĉi~ t !2ci !r i~ t,y!

12eT~ t !PS P21CTCz2

P21CTCe~ t !(
i 50

N

ĉi~ t !r i~ t,y!

iCe~ t !i2ḣ1~ t !h2S (
i 50

N

ĉi~ t !r i~ t,y!D D 1ḣ1~ t !

<2~lI ~Q!22l̄~P!a f !ie~ t !i21
1

iCe~ t !i2ḣ1~ t !h2S (
i 50

N

ĉi~ t !r i~ t,y!D F2iCe~ t !i2(
i 50

N

~ ĉi~ t !2ci !

3r i~ t,y!22iCe~ t !i(
i 50

N

cir i~ t,y!ḣ1~ t !h2S (
i 50

N

ĉi~ t !r i~ t,y!D 12iCe~ t !i2(
i 50

N

~ ĉi~ t !2ci !r i~ t,y!

22iCe~ t !i(
i 50

N

~ ĉi~ t !2ci !r i~ t,y!ḣ1~ t !h2S (
i 50

N

ĉi~ t !r i~ t,y!D G1ḣ1~ t !
DECEMBER 2000, Vol. 122 Õ 759



<2~lI ~Q!22l̄~P!a f !ie~ t !i22

2iCe~ t !i(
i 50

N

ĉi~ t !r i~ t,y!ḣ1~ t !h2S (
i 50

N

ĉi~ t !r i~ t,y!D
iCe~ t !i2ḣ1~ t !h2S (

i 50

N

ĉi~ t !r i~ t,y!D 1ḣ1~ t !

<2~lI ~Q!22l̄~P!a f !ie~ t !i21S 122(
i 50

N

ĉi~ t !r i~ t,y!h2S (
i 50

N

ĉi~ t !r i~ t,y!D D ḣ1~ t !

<2~lI ~Q!22l̄~P!a f !ie~ t !i2 (15)
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where~5!, ~6! and conditions~D! are used. So, due to the assum
tion (A3),V̇ is negative semi-definite. This means thatV(t)
<V(0) and sinceh1 is uniformly bounded, for all finite initial
errors,e(t) and c̃i(t), are uniformly bounded. Also, sinceV(t) is
lower bounded by zero and nonincreasing in time, it has a lim
V(`)8 lim

t→`
V(t). Using the results in@24#, p. 107 on the prop-

erties ofV and V̇, we conclude global stability of the error dy
namics.

We summarize these results as follows:

Theorem 1. Let conditions (A1), (A2), and (A3) hold, then the
robust adaptive observer~9!–~11! with the design condition~D!
for the model~1!–~2!, has globally stable observation and para
eter errors.

Note that another advantage of the proposed observer is i
global stability of the error dynamics rather than the ultima
boundedness of the existing schemes@1#.

A Generalization
In the following discussion, we will consider a more gene

system model and show how the previous observer developm
is applicable to this case. We start with the model

x8 ~ t !5Ãx̃1 f̃ 1~x!1 f̃ 2~ x̃,t !1B1d1~ t ! (16)

y~ t !5C̃x̃~ t !1g~ x̃,t !1B2d2~ t ! (17)

where f̃ 1 and f̃ 2 are the same type of nonlinearities as before. T
vector functiong:Rn3R1→Rp represents the uncertainties
measurement andd1(t),d2(t) are known waveform type~step,
ramp, sinusoid, etc.! disturbances in the spirit of@25–27# having
the state space models

ḋ1~ t !5D1d1~ t !1s1~ t ! (18)

ḋ2~ t !5D2d2~ t !1s2~ t ! (19)

with s1(t) and s2(t) being ‘‘sparsely populated’’ impulse se
quences@25#. The disturbancesd1(t) and d2(t) may have un-
known magnitudes and arrival times and note that it may not
possible to include these inf̃ 2 andg because they may sudden
assume large magnitude changes. This more general problem
mulation can be accommodated by redefining the state vecto

x~ t !5F x̃~ t !
y~ t !
d1~ t !
d2~ t !

G (20)

and adjoining the derivative of~17! together with~18! and~19! to
~16!, we obtain

ẋ~ t !5Ax~ t !1 f 1~x!1 f 2~x,t !1S~ t ! (21)

y~ t !5Cx~ t ! (22)

where
760 Õ Vol. 122, DECEMBER 2000
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A5F Ã 0 B1 0

C̃Ã 0 C̃B1 B2D2

0 0 D1 0

0 0 0 D2

G , f 1~x!5F f̃ 1~ x̃!

C̃ f̃ 1~ x̃!

0
0

G ,

f 2~x,t !5F f̃ 2~ x̃,t !

C̃ f̃ 2~ x̃1 ,t !1ġ~ x̃,t !
0
0

G S~ t !5F 0
B2s2~ t !
s1~ t !
s2~ t !

G ,

C5@0 I 0 0# (23)

The assumptions of Theorem 1 need to be valid for the new
of variables and the same type of observer~of higher dimension!
with the adaptive gain

ẋ̂~ t !5Ax̂~ t !1 f 1~ x̂!1K~y~ t !2Cx̂~ t !!1S~ x̂~ t !,y~ t !! (9)

S~ x̂~ t !,y~ t !!5

P21CT~y2Cx̂!(
i 50

N

ĉi~ t !r i~ t,y!

iy2Cx̂i2ḣ1~ t !h2S (
i 50

N

ĉi~ t !r i~ t,y!D (10)

ċ̂i~ t !5qi iy2Cx̂ir i~ t,y!, ĉi~0!5 ĉi0PR1 (11)

will lead to similar convergence properties if the impulse tra
s1(t) ands2(t) in ~18! and ~19! are ‘‘sufficiently sparse.’’ That
is, if these sequences are fairly infrequent, one can neglect
transients induced byS(t) via making the observer~9!–~11! suf-
ficiently fast through the choice ofK, g1 , g2 , andqi . The effect
of these design parameters will be investigated by comp
simulations.

Corollary 1. Let conditions (A1), (A2), and (A3) hold for the
new set of variables defined in~23!. Then the robust adaptive
observer~9!–~11! designed based on conditions~D! for the gen-
eralized model~18!–~23! has the same convergence propert
given by Theorem 1.

Simulation Results

Example: Chua’s Circuit. Chua’s circuit@23# is a nonlinear
electronic circuit that contains four linear elements~two capaci-
tors, one inductor, and one resistor! and a nonlinear resistor
called Chua’s diode, which can be built using off-the sh
opamps~see Fig. 1!. Since, Chua’s circuit is endowed with a
unusually rich repertoire of nonlinear dynamical phenomena
has become a universal paradigm for chaos. Chua’s circuit ca
described by the following differential equations:
Transactions of the ASME
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C1ṅ15G~n22n1!2 f ~n1~ t !!

C2ṅ25G~n12n2!1 i 3

L i̇ 352~n21R0i 3!

where G51/R and f (n1(t))5GbnR10.5(Ga2Gb)(unR1Eu
2unR2Eu) is then- i characteristic of the nonlinear resistor wi
a slope equal toGa in the inner region andGb in the outer region.
For the simulation results we have used the following change
variables@23#:

x15
n1

E
, x25

n2

E
, x35

i 3

GE

a5
C2

C1
, b5

C2

LG2 , m5
R0C2

LG

a5
Ga

G
, b5

Gb

G
, t→ t

RC2

This leads to the following model:

F ẋ1

ẋ2

ẋ3

G5F 2a a 0

1 21 1

0 2b 2m
G F x1

x2

x3

G2Fa f ~x1!

0
0

G
y5@1 0 0#x~ t !

This system can display a variety of limit sets. Figure 2 and Fig
represent two different kinds of chaotic orbits, obtained from
circuit using the forthcoming parameter sets.
Using Eqs.~9!–~11!, and selecting

h1~ t !5
g1

t1g2
and h2~ t !5

0.5

t1g

with

g151, g251, g51,

we obtain the following results: Figure 4 and Fig. 8 representx1
and its estimate for the two parameter sets. Figure 5 and Fi
representx2 and its estimate for the two parameter sets. Figur
and Fig. 10 representx3 and its estimate for the two paramet
sets. Due to extremely small errors in estimations the graphs o
lay almost perfectly. Figure 7 and Fig. 11 represent the abso
error in estimation of the state variables for the two parame
sets. The following parameters have been used in th
simulations:

First parameter set:

a59.100, b516.5811, m50.138083,

a521.39386, b520.75590

Second parameter set:

a510.0063, b516.5811, m50.138083,

a521.39386, b520.75590

Fig. 1 Chua’s circuit
Journal of Dynamic Systems, Measurement, and Control
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Initial conditions:

x1~0!521.0, x2~0!50.1, x3~0!51.0

x̂1~0!50.1, x̂2~0!520.01, x̂3~0!520.1

q050.1, ĉ0~0!50.70

The simulation results indicate that the choices ofg, g1 , andg2
have no major effect on the performance of this observer.
show this, we included the simulation results for the second

Fig. 2 Chaotic orbits for the first parameter set

Fig. 3 Chaotic orbits for the second parameter set
DECEMBER 2000, Vol. 122 Õ 761



Fig. 4 x 1 and its estimate for the first parameter set

Fig. 5 x 2 and its estimate for the first parameter set
762 Õ Vol. 122, DECEMBER 2000
Fig. 6 x 3 and its estimate for the first parameter set

Fig. 7 Absolute error in estimation of the state variables for
the first parameter set
Transactions of the ASME



Fig. 8 x 1 and its estimate for the second parameter set

Fig. 9 x 2 and its estimate for the second parameter set
Journal of Dynamic Systems, Measurement, and Control
Fig. 10 x 3 and its estimate for the second parameter set

Fig. 11 Absolute error in estimation of the state variables for
the second parameter set
DECEMBER 2000, Vol. 122 Õ 763
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Fig. 12 Absolute error in estimation of the state variables for
the second parameter set, using a different g value set

Fig. 13 Absolute error in estimation of the first state using the
second parameter set, for different q 0
764 Õ Vol. 122, DECEMBER 2000
rameter set withg510, g150.5, g255 and illustrate in Fig. 12
the absolute estimation error which is almost an exact replica
that of Fig. 11. On the other hand, the choice ofq0 has a major
impact on the performance. The higher theq0 , the faster the con-
vergence will become. To illustrate this point, we have includ
plots of absolute estimation errors for the first state using
second parameter set in Fig. 13 forq050.01 andq050.05, and
Fig. 14 forq050.1 andq050.5. One can see in comparison wi
Fig. 11, a faster and faster convergence rate is achieved
increasingq0 . Fig. 13 also shows the decrease in the steady-s
error. This decrease continues to a certain point forq0 , after
which it starts to increase. To further illustrate this effect, in Ta
1, we have calculated the mean squared error~MSE! for the pa-
rameters used in producing Fig. 13 and Fig. 14, for two differ
time intervals.

Conclusion
Nonlinear state observers are presented which adaptively re

struct the state of an uncertain system from output measurem
These observers use a modified version of nonlinear sliding m
gains in a particularly smoothed form with the resulting theore

Fig. 14 Absolute error in estimation of the first state using the
second parameter set, for different q 0

Table 1 MSE for the first state using second parameter set
and different q 0 values

q0

MSE ~0–50 s!
1st State

MSE ~50–100 s!
1st State

0.01 3.2065 0.67210
0.05 0.7921 0.00077
0.1 0.3946 0.00080
0.5 0.0826 0.00110
Transactions of the ASME
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cal simplicity and implementation ease and do not require
knowledge of bounds on the uncertain functions. A generaliza
to problems with measurement uncertainties and known wa
form type disturbances has been shown to be possible. The
ample taken from chaotic synchronization, illustrates the use
the proposed observer and its success in correctly estimating
state in simulations.
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