
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 58, NO. 5, MAY 2013 1269

Sliding Mode and Active Disturbance Rejection Control

to Stabilization of One-Dimensional Anti-Stable Wave

Equations Subject to Disturbance in Boundary Input

Bao-Zhu Guo and Feng-Fei Jin

Abstract—In this technical note, we are concerned with the boundary

stabilization of a one-dimensional anti-stable wave equation subject to

boundary disturbance. We propose two strategies, namely, sliding mode

control (SMC) and the active disturbance rejection control (ADRC). The

reaching condition, and the existence and uniqueness of the solution for

all states in the state space in SMC are established. The continuity and

monotonicity of the sliding surface are proved. Considering the SMC usu-

ally requires the large control gain and may exhibit chattering behavior,

we then develop an ADRC to attenuate the disturbance. We show that this

strategy works well when the derivative of the disturbance is also bounded.

Simulation examples are presented for both control strategies.

Index Terms—Boundary control, disturbance rejection, sliding mode

control (SMC), wave equation.

I. INTRODUCTION

In the last few years, the backstepping method has been introduced

to the boundary stabilization of some PDEs ([6], [13]). This powerful

method can also be used to deal with the stabilization of wave equa-

tions with uncertainties in either boundary input or in observation ([4],

[5]). Owing to its good performance in disturbance rejection and in-

sensibility to uncertainties, the sliding mode control (SMC) has also

been applied to some PDEs, see [1], [2], [8], [9], [11], [12]. Other ap-

proaches that are proposed to deal with the disturbance include the

active disturbance rejection control (ADRC) ([3]), and the adaptive

control method for systems with unknown parameters ([6], [7]). In

the ADRC approach, the disturbance is first estimated in terms of the

output; and then canceled by its estimates. This is the way used in [4],

[5], [7]. Compared with the SMC, the ADRC has not been used in dis-

tributed parameter systems.

Motivated mainly by [1], [11], we are concerned with the stabiliza-

tion of the following PDEs:
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where is the state, is the control input, is a constant

number. The unknown disturbance is supposed to be bounded mea-

surable, that is, for some and all . The

system represents an anti-stable distributed parameter physical system

([7]).

We proceed as follows. The SMC for disturbance rejection is pre-

sented in Section II. TheADRC for disturbance attenuation is presented

in Section III. Section IV presents some numerical simulations for both

control methods.

II. SLIDING MODE CONTROLLER

A. Design of Sliding Surface

Following [13], we introduce a transformation:

(2)

This transformation brings system (1) into the following system:

(3)

where is the design parameter. The transformation (2) is

invertible, that is

(4)

Let us consider systems (1) and (3) in the state space

with inner product given by

(5)

In this section, we consider as a real function space. In Section III,

is considered as the complex space.

Define the energy of system (3):

. Then

It is seen that in order to make non-increasing on the sliding sur-

face for system (3), which is a closed subspace of , it is natural

to choose (so ), i.e.

(6)

In this way, on , and on , system (3)

becomes

(7)

It is well-known that for any initial value ,

there exists a unique -semigroup solution

to
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(7), where the norm in is the induced norm of . Moreover,

system (7) is exponentially stable in , that is, there exist ,

independent of initial value such that

(8)

Transforming by (2) into the original system (1), that is

(9)

we get the sliding surface for system (1) as

(10)

on which the original system (1) becomes

(11)

which is exponentially stable by (8) and the equivalence between (7)

and (11).

B. State Feedback Controller

To motivate the control design, we differentiate (9) formally with

respect to to obtain

(12)

This suggests us to design the boundary controller

(13)

where and is defined by (9). Note that controller (13)

deals with the worst case of disturbance by the high gain . Under the

feedback (13), the closed-loop system of (1) reads

(14)

By the transformation (4), the corresponding controller for system

(3) is

(15)

Then, satisfies formally that

(16)

The closed-loop system of system (3) under the state feedback con-

troller (15) is

(17)

Note that (16) is just the well-known “reaching condition” for system

(3) but we do not know if makes sense for the initial value in the

state space in present. This issue is not discussed in [1]. It would be

studied in Section III.

C. Solution of Closed-Loop System

In this section, we investigate the well-posedness of the solution to

(14). Since (14) and (17) are equivalent, and (17) takes a simpler form,

we study the solution of (17) outside the sliding surface.

Define an operator as follows:

(18)

A direct computation shows that the adjoint operator of is given by

(19)

Take the inner product on both sides of (17) with

to get

where is the dual of with the pivot space . Then

system (17) can be written as

(20)

and is the Dirac distribution.

Proposition 1: Suppose that is bounded measurable in time. Then

for any , there exists a , depending

on initial value, such that (17) admits a unique solution

and for all . Moreover,

is continuous and monotone in .
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Proof: We first suppose that . In this case, it follows

from (17) that in the beginning of

(21)

Let be defined by (18). For any , it has

So is dissipative. Since by argument below, , the resolvent

set of , it follows that generates a -semigroup of contractions

on by the Lumer-Phillips theorem ([10, Theorem 4.3, p.14]).

Consider the observation problem of dual system of (20)

(22)

Then we can easily show that

(23)

A straightforward computation shows that is bounded

on . This together with (23) shows that is admissible for the

-semigroup generated by ([14, Theorem 4.4.3, p.127]).

Therefore, system (20) admits a unique solution which satisfies, for

all , that

(24)

Set in the first identity of (24) to obtain

(25)

This shows that is continuous in the interval where .More-

over, (16) holds true. Therefore, there exists a such that

is monotone in and for all . In particular, if

, then . This completes the proof.

Returning to the original system (14) by the inverse transformation

(4), we obtain the first main result of this technical note.

Theorem 1: Suppose that is bounded measurable in time. Then

for any , there exists some , depending

on initial value, such that (14) admits a unique solution

and for all . Moreover, is contin-

uous and monotone in , where is the sliding surface

of system (14) determined by

(26)

Any solution of (14) in the state space will reach the sliding surface

in finite time and remains on afterwards.

III. ACTIVE DISTURBANCE REJECTION CONTROL

It is well-known that the so-called chattering behavior is associated

with the SMC, due to discontinuity of control. In this section, we shall

use a direct approach to attenuate rather than to reject the disturbance.

This is the key to the ADRC method in finite-dimensional systems

([3]). The idea is first to estimate the disturbance and then to cancel

the estimate in the feedback-loop. Unlike the SMC which usually uses

high gain control, the control effort in ADRC is found to be moderate.

In estimating the disturbance, we assume that the derivative of the

disturbance is bounded: for some and all .

Again, by equivalence, we discuss (3) only for it has a simpler form.

The objective now is to design a continuous controller which can

stabilize system (3) in the presence of disturbance. In view of (15), this

controller is designed as follows:

(27)

where , also continuous, is to be designed in what follows. Under

control (27), the closed-loop of system (3) becomes

(28)

Introduce a variable . Then the boundary condition at

in (28) gives that

(29)

It is seen that (29) is an ODEs with state and control . Then we

are able to design an extended state observer to estimate both and

as follows ([3]):

(30)

where is the tuning small parameter. The errors ,

satisfy

(31)

which can be rewritten as

(32)

A straightforward computation shows that the eigenvalues of thematrix

are

(33)

and
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Since

the first term above can be arbitrarily small as by the exponen-

tial stability of , and the second term can also be arbitrarily small

as due to boundedness of and the expression of . As

a result, can be arbitrarily small as .

Since is an approximation of , we can design the controller for

system (28) by cancelation/feedback as

(34)

under which the overall closed-loop system of (28), (29), and (30) be-

comes

(35)

Using the error dynamics (31), we see that (35) is equivalent to

(36)

It is seen that in (36), the variable is independent of the “

part”, and can be made as small as desired as , . Thus,

we need to consider only the “ part” that is rewritten as

(37)

System (37) will be considered in the state Hilbert space

also with the norm defined in (5). Define system

operator of (37) by

(38)

A direct computation gives

(39)

Similar to (20), system (37) can be rewritten as an evolution equation

in as

(40)

where is defined in (20).

Proposition 2: Suppose that both and are uniformly bounded

in time. Then for any , there exists a unique

solution to (40). Moreover, can

reach arbitrary vicinity of zero as , in (36).

Proof: We consider only the case of . The case of

can be treated similarly. Introduce an auxiliary system as follows:

(41)

which can be rewritten as an evolution equation in

(42)

where

(43)

It is a trivial exercise to show that is skew self-adjoint:

. Compute the eigenvalues , and the eigenfunctions

corresponding to of , to get

(44)

A direct computation shows that . Actually, we have

(45)

So is compact on by the Sobolev embedding theorem.

It follows from a general result in functional analysis that the eigen-

functions form

an orthonormal basis for . Decompose as

By the norm defined in (5), , and

. Define a map

Then is an isometric from to . It is further seen that

, , where

(46)

Since form an orthonormal

basis for , it is equivalent to saying that

form an orthonormal basis for .
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Now we go back to system (40). When , the eigenvalues

and the eigenfunctions corresponding to

of are found to be

(47)

It is obvious that . Let

for . Then it is found that

(48)

Hence, form a Riesz basis for

. Hence form a Riesz

basis for . Since

is -linearly independent and is quadratically close to

, it follows from the classical

Bari’s theorem that

form a Riesz basis for . This implies that generates a -semi-

group on , and that the spectrum-determined growth condition

is true for . Moreover, since ,

is exponentially stable.

Next, we show that is admissible for , or equivalently, is

admissible for . To this end, we find the dual system of (40) to be

(49)

Define functions

(50)

and

(51)

Similar to (23), we can show from (50) and (51) that

(52)

is then admissible for if we can show that is bounded

in . This is trivial since

(53)

Since generates an exponential stable -semigroup and is ad-

missible to , for any initial value , it

follows that there exists a unique solution to (40) provided that

, which can be written as ([15])

(54)

This is the first part of the theorem. Now we show the second part.

For any given , by assumption, we may assume that

for all , for some and . We can

write (54) as

(55)

Since the admissibility of implies that

(56)

for some constant that is independent of , and since is expo-

nential stable, it follows from Proposition 2.5 of [15] that

(57)

where is a constant that is independent of , and

(58)

Suppose that for some , . By (55), (56),

and (57), we have

(59)

As , the first two terms of (59) tend to zero. The result is then

proved by the arbitrariness of .

Remark 1: When , instead of (41), we choose the corre-

sponding auxiliary system as follows:

(60)
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Fig. 1. Displacements for disturbance with unbounded derivative (a) SMC (b)
ADRC.

Fig. 2. SMC for disturbance with unbounded derivative (a) Sliding surface (b)
Controller.

Going back to the original system, we have the second main result

of this technical note.

Theorem 2: Suppose that and are uniformly boundedmeasurable

and . Let

(61)

Then the closed-loop system of (1) described by

(62)

admits a unique solution , and can

reach arbitrary vicinity of zero as , in (62).

IV. NUMERICAL SIMULATION

In this section, we give some simulation results to illustrate the ef-

fects of both the SMC and ADRC.

Consider systems (14) with the equivalent control when

, and (62). Let the parameters be , ,

, , , and the disturbance . The

initial conditions are

(63)

Note that is bounded but is unbounded.

We apply the finite difference method to compute the displacement.

Fig. 1(a) and (b) show the displacements of system (14) and (62) re-

spectively. Here the steps of space and time are taken as 0.001 and

0.0005, respectively. It is seen from Fig. 1 that system (14) converges

Fig. 3. Displacements for disturbance with bounded derivative (a) SMC (b)
ADRC.

smoothly, but system (62) is oscillatory around the equilibrium before

. It shows that ADRC is not adequate to deal with the disturbance

with unbounded derivative. The corresponding control and sliding sur-

face are plotted in Fig. 2 in this case.

If the disturbance is described as . Then both and

are uniformly bounded. Take the steps of space and time by 0.005 and

0.001, respectively, which are larger than that in Fig. 1. We obtain the

displacements of the system (14) and (62), which are shown in Fig. 3(a)

and (b), respectively.

We point out that a chattering behavior is observed in Fig. 3(a) (see

also the sliding surface in Fig. 2(a)), although it is convergent. On the

other hand, the displacement in Fig. 3(b) is quite smooth. The results

shows that the ADRC yields more satisfactory performance than the

SMC in dealing with the disturbance with bounded derivative.
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