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ABSTRACT This study focuses on stabilization problem of a class of nonlinear systems. Generally,

Lyapunov stability-based sliding mode technique is widely used to design controllers for nonlinear systems

with uncertainties. In this paper, however, based on contraction property and sliding surfaces, the sliding

mode control is suggested to provide incremental stability for nonlinear systems with uncertainties. The

effectiveness of the method is illustrated by numerical simulations.

INDEX TERMS Sliding mode control, contraction theory, robust control, incremental stability.

I. INTRODUCTION

Stability theory plays an important role in system theory

and engineering, including the well-known equilibrium point

stability (EPS) and input-output stability (IOS), as well as

the incremental stability (INS) that has a complicated devel-

opment process. A simple explanation of the EPS is that

all solutions starting near the equilibrium point close to this

point [1]. IOS is a system stability property which can be

examined from the external characteristics of the system [2].

INS is a stronger property comparing arbitrary trajectories

with themselves, rather than with an equilibrium point or with

a particular energy function. There are some evidences that

EPS, IOS and INS are related [3]–[5]. Compared only on

the concepts of EPS and INS stability, researchers more

inclined to the stability of some particular solutions nearing

the equilibrium points in the early years. However, in some

cases it is more important to focus on the stability properties

of all solutions independent of equilibrium points. Especially,

The associate editor coordinating the review of this manuscript and

approving it for publication was Zheng Chen .

the stability conditions of all solutions are more general when

there are multiple equilibrium points in the systems, or when

dealing with synchronization problems of complex networks.

As another example, the construction of the energy function

for some systems with physical properties might be easy,

but it’s hard to find a pattern to follow in the cases of the

exceptions. The relationships (such as a distance) between

trajectories exist objectively, in other words, incremental

stability provides an analysis method for those unexpected

situations.

To recall the history of incremental stability, an important

concept is the Demidovich condition [6], [7], which provides

sufficient conditions for the convergence of incrementally

stable systems. A simple explanation of the Demidovich

condition is that the system is convergent if all system tra-

jectories converge to one trajectory on the whole time axis.

In general, however, the reason for the explosive growth

in the study of incremental stability is that Lohmiller and

Slotine introduced the Riemannian metric into the control

systems and defined the contraction properties (a generaliza-

tion of theDemidovich condition) of incremental stability [8].
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The contraction properties can be simply interpreted in

Riemannian geometry as: requires the decrease of a dis-

tance, defined through a Riemannian metric, along trajec-

tories. The number of applications of incremental stabil-

ity has increased in the past decade. Examples in stability

analysis of nonlinear systems [9]–[11], complex networks

for time-delayed communications [12], concurrent synchro-

nization [13], [14], switched networks [15], coupled iden-

tical nonlinear oscillators [16], construction of symbolic

models [17], observer design [18]–[20], nonlinear control

design [21]–[26].

From previous literature of authors’ knowledge, where in

terms of the control scheme, it involves feedback control

[17], [23], [26], matrix inequality condition [24], [25], and

backstepping design [14], etc. Motivated by above discus-

sions, a control scheme combined sliding mode technology

and incremental stability has not yet been investigated and

still remains a big challenging issue. Another motivation is

to expand the application of incremental analysis methods

on uncertain systems. A common technique for processing

uncertainties by contraction is the semi-contraction technique

[27], which does not require accurate estimates for uncertain

parameters, but the structure of the systems must be known.

A newly developed technology called robust control contrac-

tion metrics [5] can guarantee robust stability of arbitrary

trajectories via small gain arguments, but its calculations are

complex and even require software assistance.

It is well known that the sliding mode control has a good

robust performance for uncertain systems. In this technical

note, by investigating the design method of incremental slid-

ing control, the main contributions can be stated as following

two aspects.

• Developed a sliding design method for second-order

systems and provided controllers enforcing an incre-

mental asymptotic stability and not an equilibrium point

stability;

• Expand the application of incremental analysis methods

on uncertain systems. The advantages are uncomplicated

calculations and do not require a known structure;

However, the present technology is relative to the second-

order nonlinear systems. In other words, in the case of higher-

order [28]–[30], new technologies need to be developed. And,

research on contraction analysis in finite-time control [31]

is rare, one of the challenges in the future is the finite-time

control, especially with an incremental sliding technology.

Another challenge is the case of time-delayed systems [32],

[33], whether the incremental sliding technology can be intro-

duced.

The organisation of this paper is structured as follows.

The concept of incremental stability and contraction are dis-

cussed in Section II. The incremental sliding mode problem

is described in Section III. In Section IV, firstly, a sliding

surface is designed for a second-order uncertain system. Sec-

ondly, a sliding control method with incremental stability is

proposed. Thirdly, the case for interference of sliding surface

is discussed. Then, the problem of chattering on switching

delay is discussed. The results are described to verify the

effectiveness of the proposed distributed control algorithm in

Section V. Finally, some characterizations are pointed out in

Section VI.

II. INCREMENTAL STABILITY AND CONTRACTION

Considering a manifold M and a system

ẋ = f (x, t), (1)

where f is a nonlinear vector field which maps each (t, x) ∈

R × M to a tangent vector f (t, x) ∈ TxM.

Let C ⊂ M and denote by ψt0 (·, x0) the solution to (1)

from the initial condition x0 ∈ M at time t0. According to

[34], we can get following definition.

Definition 1: System (1) is incremental asymptotically

stability in a positively invariant set C ⊂ M, if there exists a

function α ∈ KL such that for any x1, x2 ∈ C and t ≥ t0,

‖ψt0 (t, x1) − ψt0 (t, x2)‖ ≤ α(‖x1 − x2‖).

In the case C = M we say that (1) is globally incrementally

stable, or just incrementally stable.

Let (1) be a differential form

δẋ(t) =
∂f (x, t)

∂x(t)
δx(t),

where δx(t) denotes an infinitesimal displacement at a fixed

time. According to [8], there exists following definition (a

contraction property) and lemma.

Definition 2: The metric G is a contraction metric and β

is a contraction rate, if there are a Riemann metric δxTG(x)δx

and a strictly positive constant β ∈ R
+ in (1), such that

d

dt
(δxTGδx) = δxT

(
∂f

∂x

T

G+ G
∂f

∂x
+ Ġ

)

δx < −δxTβGδx,

when G is independent of state, it is called a flat contraction

metric, which is similar to Demidovich condition.

Lemma 1: Given the system equations (1), any trajectory,

which starts in a ball of constant radius with respect to the

metric G(x, t), centered at a given trajectory, remains in that

ball. The distance of any trajectory within the ball is gradually

shortened until it is unified into the given trajectory.

Remark 1 [8]: If λmax(βG) is the largest eigenvalue of the

symmetric part of the Jacobian
∂f T

∂x
G+ G

∂f
∂x

+ Ġ, then

‖δx‖ ≤ ‖δx0‖e
∫ t
0 λmax(x)dt .

Remark 2: The purpose of given the definition of INS is

to distinguish it from EPS. We mainly use the concept of

contraction properties in this paper. A detailed explanation of

a contraction system is also an incremental stability system,

can refer to [35].
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III. PROBLEM FORMULATION

Considering a nonlinear system of the following form
{

ẋ = f (x, t) + g(x, t)u, (2a)

s = s(x, t), (2b)

where x ∈ R
n is the state, u ∈ R is the control input with

respect to state x, and f (x, t) and g(x, t) are unknown smooth

nonlinear functions. The sliding variables s and ṡ = ds
dt

are

assumed to be known.

Let ṡ = ds
dt

be a differential form

δṡ =
∂ ṡ

∂x
δx +

∂ ṡ

∂u
δu. (3)

Considering a contraction metric G and further to calculate

(3) with Definition 2, it yields

d

dt
(δsTGδs) = δṡTGδs+ δsTĠδs+ δsTGδṡ

=

(
∂ ṡ

∂x
δx +

∂ ṡ

∂u
δu

)T

Gδs+ δsTĠδs

+ δsTG

(
∂ ṡ

∂x
δx +

∂ ṡ

∂u
δu

)

=

(
∂ ṡ

∂x
δx +

∂ ṡ

∂u
δu

)T

G
∂s

∂x
δx + δsTĠδs

+

(
∂s

∂x
δx

)T

G

(
∂ ṡ

∂x
δx +

∂ ṡ

∂u
δu

)

. (4)

If there exists a control signal u
(

x, sgn(s), t
)

to cause (4) to

shrink, we can get a conclusion δx → 0 ⇒ δs → 0, that is,

system (2a) is incremental stable.

Remark 3: There are several well-known conventional

Lyapunov methods that can be used to analyze reachability

of sliding surface. However, it is not from an incremental

perspective. The conjecture in equation (4) illustrates the

possibility of incremental stability analysis for sliding mode

surfaces.

IV. CONTRACTION ANALYSIS OF SLIDING SURFACE

This section will follow four sequences to illustrate the next

work.

A. SLIDING SURFACE DESIGN

Considering a class of second-order systems, they can be

described as

ẋ1 = h1(x, t),

ẋ2 = h2(x, t) + g(x, t)u+ d(x, t), (5)

where x ∈ R
2 is the state, u ∈ R is the control input. h1(x, t)

is known smooth nonlinear function, h2(x, t) and g(x, t) are

unknown smooth nonlinear functions, d(x, t) is a bounded

interference.

Defining a sliding surface related to the state x, it yields

s = ax1 + h1(x, t), (6)

where a is a positive constant. Considering a sliding surface

that satisfies the following equation

ṡ = aẋ1 + ḣ1 = ah1 + ḣ1 = y(x1, x2, u, t). (7)

FIGURE 1. Graphical representation of Assumption 1.

Taking the differential form of system (7), it yields

δṡ = A1δx1 + A2δx2 + Bδu,

where A1 =
∂y
∂x1

, A2 =
∂y
∂x2

, B =
∂y
∂u
.

Remark 4: The reason of designed the sliding surface (6)

for system (5) can be explained by a formula

δs = aδx1 +
∂h1

∂x1
δx1 +

∂h1

∂x2
δx2

︸ ︷︷ ︸

δẋ1

, (8)

it can be see clearly that

δs = 0 ⇒ δẋ1 = −aδx1.

In [8], equation (8) is a contraction case of linear time-varying

system.

B. CONTROLLER DESIGN

Assumption 1: There exists a function ρ(x, t) that satisfies

the following inequalities
∣
∣
∣
∣

A1 + A2

B

∣
∣
∣
∣

≤ ρ(x, t), (9)

δ

∣
∣
∣
∣

A1 + A2

B

∣
∣
∣
∣

≤ δρ. (10)

Remark 5: As shown in Figure 1, there are some details of

sliding mode dynamics (7), it is that function
∣
∣A1+A2

B

∣
∣ with

respect to the tangent line satisfies a bounded condition ρ(x).

And δ
∣
∣A1+A2

B

∣
∣ ≤ δρ can be explained as

δ

∣
∣
∣
∣

A1 + A2

B

∣
∣
∣
∣
− δρ =

∂
∣
∣A1+A2

B

∣
∣

∂x
δx −

∂ρ

∂x
δx

= ∂

∣
∣
∣
∣

A1 + A2

B

∣
∣
∣
∣
− ∂ρ

≤ 0.

Theorem 1: Under Assumption 1, if there exists a function

β(x, t) greater than ρ(x, t) to that satisfies the controller

u =

{

−β(x, t)sgn(s), B > 0,

β(x, t)sgn(s), B < 0,
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sgn(s) =









1, s > 0,

0, s = 0,

−1, s < 0.

(11)

Then, the sliding mode dynamics (7) is shrink to zero,

the second-order system (5) is a contraction system. �

Proof: Consider the adjacent trajectories in the sliding

surface ṡ = aẋ1 + ẋ2. According to Definition 2, the metric

between the adjacent trajectories can be defined as δsTGδs.

Choose a flat contraction metric G = I , the change rate of

δsTδs between the adjacent trajectories can be defined as

d

dt
(δsTδs) = 2δsTδṡ

= 2δsT
(
A1δx1 + A2δx2

B

)

B+ 2δsTBδu.

Since the increment δx is an infinitesimal displacement at

a fixed time, the following inequality is obviously

∣
∣
∣
∣

A1δx1 + A2δx2

B

∣
∣
∣
∣
≤

∣
∣
∣
∣

A1 + A2

B

∣
∣
∣
∣
.

According to (9) in Assumption 1, we can get an inequality

d

dt
(δsTδs) = 2δsT(A1δx1 + A2δx2) + 2δsTBδu

≤

{

2|δsT|δρB+ 2δsTBδu, B > 0,

−2|δsT|δρB+ 2δsTBδu, B < 0.
(12)

To take β(x, t) = ρ(x, t) + β0, β0 > 0, it yields

δu =

{

−δ[(ρ + β0)sgn(s)], B > 0,

δ[(ρ + β0)sgn(s)], B < 0.
(13)

To merge (12) and (13), it yields

d

dt
(δsTδs) ≤

{

2|δsT|δρB− 2|δsT|Bδ(ρ + β0),

−2|δsT|δρB+ 2|δsT|Bδ(ρ + β0),

=

{

−2|δs|Bδβ0, B > 0,

2|δs|Bδβ0, B < 0.
(14)

According to Lemma 1, since d
dt
(δsTδs) ≤ 0, there exists a

λmax(s) that is uniformly strictly negative, it yields

‖δs‖ ≤ ‖δs0‖e
∫ t
0 λmax(s)dt .

It is not difficult to see that the incremental sliding surface

δs = aδx1 +
∂h1

∂x1
δx1 +

∂h1

∂x2
δx2

︸ ︷︷ ︸

δẋ1

= 0 at t → ∞, that is, all

trajectories of system (5) shrink to zero at t → ∞. �

Remark 6: As described in the problem description in

Section III, we performed a contraction analysis on the sliding

surface. Note that we used the flat metricG = I (independent

of state), so G is implied during the derivation.

C. SLIDING SURFACE WITH UNCERTAINTIES

The Theorem 1 stabilized h2 and gwith uncertainties, the next

is to stabilize h1 with uncertainties. Considering the case that

h1 is affected by the bounded interferences ω(x, t) and the

system (5) is changed to the following form

ẋ1 = h1(x, t) + ω(x, t),

ẋ2 = h2(x, t) + g(x, t)u+ d(x, t). (15)

As mentioned above, Theorem 1 used the standard sliding

surface s = ax1 + h1(x, t). However, the sliding surface

fluctuated as the addition of w(x, t), and it changed to

ŝ = ax1 + h1(x, t) + ω(x, t).

Now, ŝ is a disturbed sliding surface and its rate of change is

˙̂s = aδx1 + ẋ1 + ẇ(x, t). (16)

Taking the differential form of system (16), it yields

δ ˙̂s = A1δx1 + A2δx2 + Bδu+
∂ẇ

∂x1
δx1 +

∂ẇ

∂x2
δx2.

Theorem 2: If there exist a function β̂(x) satisfies the

inequality

∣
∣
∣
∣

A1+A2

B

∣
∣
∣
∣
+

∣
∣
∣
∣

∂ẇ
∂x1

+ ∂ẇ
∂x2

B

∣
∣
∣
∣
≤ ρ(x, t)+ρw(x, t) ≤ β̂(x, t), (17)

where

∣
∣
∣

∂ẇ
∂x1

+ ∂ẇ
∂x2

B

∣
∣
∣ ≤ ρw(x, t) , then the sliding mode dynamics

(16) is shrink to zero by a controller

u = û =

{

−β̂(x, t)sgn(s), B > 0,

β̂(x, t)sgn(s), B < 0,
(18)

and the second-order system (15) is a contraction system. �

Proof: Considering the adjacent trajectories in the slid-

ing surface ˙̂s = aẋ1+ ẋ2+w(x, t). According to Definition 2,

we also choose a flat contraction metric G = I , the change

rate of δŝTδŝ between the adjacent trajectories can be defined

as

d

dt
(δŝTδŝ)

= 2δ(s+ w)Tδ(ṡ+ ẇ)

= 2δ(s+ w)T
(
(A1 + ∂ẇ

∂x1
)δx1 + (A2 + ∂ẇ

∂x2
)δx2

B

)

B

+ 2δ(s+ w)TBδû. (19)

Taking β̂(x, t) = ρ(x, t)+ρw(x, t)+β0 and to derive (19) to

get an inequality

2δ(s+ w)Tδ(ṡ+ ẇ)

≤

{

2|δŝT|δ(ρ + ρw)B− 2|δŝT|Bδ(ρ + ρw + β0),

−2|δŝT|δ(ρ + ρw)B+ 2|δŝT|Bδ(ρ + ρw + β0),

=

{

−2|δŝ|Bδβ0, B > 0,

2|δŝ|Bδβ0, B < 0.
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According to Lemma 1, since d
dt
(δŝTδŝ) ≤ 0, there exists a

λmax(s) that is uniformly strictly negative, it yields

‖δŝ‖ ≤ ‖δs0‖e
∫ t
0 λmax(ŝ)dt . (20)

So the sliding surface δŝ = aδx1+
∂h1
∂x1
δx1+

∂h1
∂x2
δx2+

∂w
∂x1
δx1+

∂w
∂x2
δx2 = 0, that is, all trajectories of system (15) shrink to

zero at t → ∞. �

Remark 7: The boundary of standard sliding surface swith

an interference w can be expressed as

‖δŝ1‖ = ‖δs‖ + ‖δw‖.

A constraint
( ∂ẇ
∂x1
δx1+

∂ẇ
∂x2
δx2

B

)

B ≤ ρw(x, t) in (17) is like to

provide a bounded space to negatively determine the maxi-

mum eigenvalue λmax
(
∂w
∂x1
, ∂w
∂x2

)

, such that

‖δŝ‖ ≤ ‖δŝ0‖e
∫ t
0 λmax(ŝ)dt ,

it eventually forms incremental stability ‖δŝ‖ → ‖δs‖ → 0.

D. REDUCTION OF CHATTERING

Although the above theorems showed that a sliding mode

controller with incremental stability can be designed, but

the symbol switching controller has a switching delay. It

is generally known that zero-delay switching is difficult to

implement in practical systems, and the delay causes the chat-

tering of input. The disadvantage of chattering is obvious, it

may reduce control accuracy of system, increase energy con-

sumption, and other unfavorable factors. The conventional

saturation function sat is applicable in this paper, it reserves

enough reaction time for the control law u to reduction chat-

tering. The chattering reduction control law of the system (5)

can be rewritten as

u =

{

−β(x, t)sat(s/κ), B > 0,

β(x, t)sat(s/κ), B < 0,

sat(s/κ) =

{

s/κ, |s/κ| ≤ 1,

sgn(s/κ), |s/κ| ≥ 1.
(21)

As shown in Figure 2, sat function is approximately sgn

function in case of κ → 0. To analyze the performance

of the incremental sliding mode controller, we perform the

following two-step analysis. The first is outside the boundary

layer, that is, |s| ≤ κ . According to (14), we can get an

inequality

d

dt
(δsTδs) ≤

{

−2|δs|Bδβ0, B > 0,

2|δs|Bδβ0, B < 0.

Therefore, as long as |s(0)| ≥ κ , δs(t) are strictly decreasing,

until shrinking to set {|s| ≤ κ} within a limited time, and then

remain in it. The second is inside the boundary layer, that is,

ẋ1 = −ax1 + s, |s| ≤ κ. (22)

utilizing a flat metric δxT1Gδx1 to check the contraction prop-

erty in (22) and derive the rate of change, it yields.

d

dt
(δxT1Gδx1) = 2δxT1 (−aG)δx1 + 2δxT1Gδs. (23)

FIGURE 2. Sgn(s) and Sat(s/κ).

Since inside the boundary of sliding surface has |s| ≤ κ ,

we can get

−κ ≤ s+ δs ≤ κ, |s+ δs| ≤ κ.

Taking the boundary value of s, then δs should satisfy

−2κ ≤ δs ≤ 2κ, |δs| ≤ 2κ. (24)

This also means (23) can be change to

d

dt
(δxT1Gδx1) ≤ 2δxT1 (−aG)δx1 + 2|δxT1 |G2κ. (25)

After reaching the sliding surface, h1 is close to a small value

to ensure the stability of x1, here, let △ ≈ ∂h1
∂x1
δx1 + ∂h1

∂x2
δx2 ≈

0 in (8), we can get

−△ − 2κ ≤ aδx1 ≤ 2κ + △, |aδx1| ≤ 2κ + △.

This also means (25) can be change to

d

dt
(δxT1Gδx1) ≤ 2δxT1 (−aG)δx1 +

4(2κT + △T)Gκ

a
. (26)

Remark 8: Taking κ = 0, it is easy to see that x1 will

shrink to the boundary κ = 0, which is robust for ẋ2. But

κ = 0 is equivalent to a sgn function, the switching delay

cause chattering to be inevitable.

Remark 9: Taking κ > 0 and a sufficiently large a, then

(26) can be negative definite inside the boundary. Theoreti-

cally a larger gain a will have better convergence, it is shown

as Figure 3 (noted that this figure comes from Example 2).

Since a sat function inside the boundary no longer frequently

switches, the contraction inside the boundary reduces the

chattering.

Remark 10: Any trajectory within the boundary of the

sliding surface can be think that to be restrict by κ , so the

increment of any trajectories is limited from (24).

V. NUMERICAL SIMULATION

In this Section, two examples are performed to illustrate

the advantages. Firstly, compared with sliding mode control

based on Lyapunov stability theory, the advantages of sliding

mode based on contraction are explained. Then, compared

with the control contraction metrics technology, which illus-

trates the advantages of the sliding mode based contraction

technology.

Example 1: (The variable-single pendulum [36]) A

variable-single pendulum can be shown in Figure 4, R is the
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FIGURE 3. The effect under the changing of a.

FIGURE 4. Sketch of pendulum in Example 1.

distance from O to the mass m. x is the oscillation angle. The

pendulum is driven by an engine installed on the top side,

which is called control torque u. The mathematical model of

the pendulum can be described by

ẍ = −2
Ṙ

R
ẋ − g

1

R
sin(x) +

1

mR2
u, (27)

where m = 1Kg, g = 9.8m/s2 is the gravitational constant,

and R = 1 − 0.2 sin(t). The task here is to design the control

law u such that the oscillation angle x will track a given signal

xc = π
3
.

Let s = a(x − xc) + ẋ, to take the derivative of s yields

y = ṡ = a(x − xc) − g
1

R
sin(x) − 2

Ṙ

R
ẋ +

1

mR2
u, (28)

to take the differential form of system (28) yields

δṡ = A1δx1 + A2δx2 + Bδu, (29)

with

A1 =
∂y

∂x
= −g

1

R
cos(x) + a,

A2 =
∂y

∂ ẋ
= −2

Ṙ

R
,

B =
∂y

∂u
=

1

mR2
.

Choosing u = −
(∣
∣
∣
(A1+A2)

B

∣
∣
∣ + 20

)

sgn(s) and considering a

bounded interference d(x, t) = 2 sin(x) into (27) yields

ẍ = −2
Ṙ

R
ẋ − g

1

R
sin(x) +

1

mR2
u+ 2 sin(x),

and simulating with a = 5.

FIGURE 5. Pendulum: the state for θ .

FIGURE 6. Pendulum: the state for θ̇ .

In order to illustrate the advantages of the proposed control

method, we compared with the controller proposed in [37].

The so-called quasi-continuous 2-sliding mode algorithm in

[37] is

u = −
(

4 + 5ā(x)
)⌊˙̄s⌉4 + β41⌊s̄⌉

2

|˙̄s|4 + β41 |s̄|
2
, (30)

where s̄ = x − xc, ā(x) = 1
2
|ẋ| + 5

4
g, β1 = 1.5 and ⌊x⌉ν =

|x|νsgn(x),∀ν > 0.

Numerical simulation for the variable-single pendulum as

shown in Figure 5 to Figure 8, where CS denotes proposed

method in this paper, QS denotes proposed method (30) in

[37]. From Figure 5, it is clear that the reference signal can

be tracked with a good dynamical performance by CS and

QS. However, the convergence time of CS is 0.5s faster than

QS, the tracking error only has 0.005 and it can be irrelevant

almost. From Figure 6, it is clear that QS is about 0.05 higher

than CS on the fluctuation value of state ẋ. From Figure 7, it is

clear that the controllers have the property of sliding mode

control, namely the chattering. However, the input overshoot

of CS is 30 lower than QS. From Figure 8, it is clear that

finite-time reachability of sliding mode dynamics, and the

reach time of CS is 1.5s faster than QS.
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FIGURE 7. Pendulum: the input u.

FIGURE 8. Pendulum: the sliding surface s.

Example 2 (The Moore-Greitzer Model [38]): Amodel of

Moore-Greitzer was a simplified model of surge-stall dynam-

ics based on a Galerkin projection of the partial differential

equations on to a Fourier basis. The following reduced model

of the surge dynamics was described as

φ̇ = −ϕ −
3

2
φ2 −

1

2
φ3,

ϕ̇ = φ + u, (31)

where u is the input as a sensor on ϕ. ϕ and φ are a mea-

sure of the mass flow and pressure rise in the compressor,

under a change of coordinates. The source of difficulty is the

nonlinearity − 3
2
φ2 − 1

2
φ3 which does not satisfy any global

Lipschitz bound, and affects the dynamics of the variable φ,

which is not directly controlled or measured.

To take h1 = −ϕ − 3
2
φ2 − 1

2
φ3, h2 = φ, g = 1 and let

s = aφ + h1, referring to the design steps in Example 1,

it yields

A1 = −
3

2
a−

3

2
aφ2 + 3ϕ + 9φ − 6φ3 + 3φϕ

+
27

4
φ2 +

15

4
φ4 − 1,

A2 = −a+ 3φ +
3

2
φ2,

B = −1.

TABLE 1. CS compared to QS.

TABLE 2. CS compared to CCM.

FIGURE 9. Greitzer: the state φ, ϕ.

Considering a bounded interference w(x, t) = 2 sin(t)ϕ into

(27), it is clear that
∣
∣ ∂ẇ
∂ϕ
/B

∣
∣ ≤ 2. Then (31) is changed to

φ̇ = −ϕ −
3

2
φ2 −

1

2
φ3 + 2 sin(t)ϕ,

ϕ̇ = φ + u.

and simulating with u =
(∣
∣A1+A2

B

∣
∣ + 8

)

sat(s).

In order to illustrate the advantages over other contraction

methods, we compared with the contraction-based method

in [25]. The so-called control contraction metrics (CCM)

algorithm in [25] is

u = u⋆ −
1

2
ρ(φ, ϕ)W (φ, ϕ)−1B′(φ, ϕ)

[

φ − φ⋆

ϕ − ϕ⋆

]

, (32)

where, u⋆, φ⋆ and ϕ⋆ are target trajectories. To use Matlab

sum-of-squares tools [39] to set up a two decoupled convex

feasibility problems, that is, ρ and W .

Numerical simulation for the Moore-Greitzer model as

shown in Figure 9 to Figure 11, where CS denotes proposed

method in this paper (21), CCM denotes proposed method

(32) in [25]. As shown in Figure 10, the tracking task can be

completed by CS and CCM, but the CCM has a large error,

about 0.04. As shown in Figure 9, it is clear that CS has a

higher input overshoot, but it is stable in 0.2 seconds. As
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FIGURE 10. Greitzer: the input u.

FIGURE 11. Greitzer: the sliding surface s.

shown in Figure 11, it is clear that finite-time reachability of

sliding mode dynamics, and the reaching time is about 0.6s.

In summary, the proposedmethod (11) has two advantages,

the first is a smaller control signal, the second are a faster

reach time and a fast convergence time. The proposed method

(21) has a extremely small error, although the initial input is

large, it can be quickly stabilized. The performance index of

above examples are shown in Table 1 and Table 2. It also illus-

trates the advantages of the method proposed in this paper.

VI. CONCLUSION

A methodology for incremental sliding mode controller with

a simple structure for a class of second-order nonlinear

uncertain systems is proposed. The controller is able to steer

the initial trajectory of dynamic system with uncertainties

to the given trajectory at a short time, the initial trajectory

is generated in the contraction domain of the manifold s.

There are several perspective generalisations of interest to

be addressed in next researches among which dealing with

high-order systems, time-delayed systems. New chattering

reduction mechanism based on our method is also worth

considering.
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