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Abstract

In this paper, we are concerned with the boundary stabilization of a one-dimensional anti-

stable Schrödinger equation subject to boundary control matched disturbance. We use both the

sliding mode control (SMC) and the active disturbance rejection control (ADRC) to deal with

the disturbance. By the SMC approach, the disturbance is supposed to be bounded only. The

existence and uniqueness of the solution for the closed-loop system is proved and the “reaching

condition” is obtained. Considering the SMC usually requires the large control gain and may

exhibit chattering behavior, we develop the ADRC to attenuate the disturbance for which the

derivative is also supposed to be bounded. Compared with the SMC, the advantage of the

ADRC is not only using the continuous control, but also giving an online estimation of the

disturbance. It is shown that the resulting closed-loop system can reach any arbitrary given

vicinity of zero as time goes to infinity and high gain tuning parameter goes to zero.
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1 Introduction

For a system described by partial differential equations (PDEs), the boundary control dominates

the research tread in the past two decades, see [3, 6, 17, 20] and the references therein. Traditionally,

the system is controlled in the ideal operational environment with exact mathematical model and

no internal and external disturbances. This can be found in many researches for the stabilization

of infinite-dimensional systems described by Schrödinger, wave and flexible beam equations ([3, 20,

21]).

Basically speaking, two different type of control methods can be used to stabilize the PDEs

without disturbance. The collocated control design is based on the passive principle that makes

the closed-loop system dissipative and hence stable at least in the sense of Lyapunov ([3]). The

non-collocated method is systematically applied, due to the introduction of backstepping method

to PDEs in the last few years ([17], see also [6]), to stabilize some unstable or even anti-stable wave

and heat equations ([15, 17, 27]).

However, “if there is no uncertainty in the system, the control, or the environment, feedback

control is largely unnecessary” ([2]). When the external disturbances enter the system from bound-

ary or the internal of the spatial domain, the new approach is needed to deal with the uncertainties.

The adaptive control method is powerful in dealing with the systems with the unknown parameters

([7, 8, 16]). The general method to reject the disturbance is the sliding mode control (SMC) method

([1, 4, 5, 23, 26]). In [23], based on the semigroup theory, the SMC is used to deal with a class

of abstract infinite-dimensional systems where the control and disturbance are all assumed to be

bounded (mainly in distributed control). The boundary stabilization for a one-dimensional heat

equation with boundary disturbance is studied in [5], where the SMC is designed for the first-order

PDEs obtained through an integral transformation on the heat equation (which is second order

in spatial variable). Very recently, the sliding mode boundary stabilizer is designed for a one-

dimensional unstable heat and wave equation in [4] and [9] respectively. Another powerful method

in dealing with the disturbance is the active disturbance rejection control (ADRC) method. The

ADRC, as an unconventional design strategy, was first proposed by Han in 1990s ([13]). It has been

now acknowledged to be an effective control strategy for lumped parameter systems in the absence

of proper models and in the presence of model uncertainty. The numerous applications have been

carried out in the last decade (see e.g., [28]). Its convergence has been proved for lumped parameter

systems in [10]. Very recently, it has been successfully applied to the attenuation of disturbance

for a one-dimensional anti-stable wave equation in [9]. Other method in dealing with uncertainty

includes the Lyapunov function based method, see [11, 25] and the references therein.

Motivated mainly by [9] and [14], we are concerned with, in this paper, the stabilization of a

one-dimensional Schrödinger equation which is suffered from the unknown external disturbance on

the input boundary by both the SMC approach and the ADRC approach, respectively.
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The system that we are concerned with is governed by the following PDEs:




ut(x, t) = −juxx(x, t), x ∈ (0, 1), t > 0,

ux(0, t) = −jqu(0, t), q > 0, t > 0,

ux(1, t) = U(t) + d(t), t > 0,

(1.1)

where u is the complex-valued state, j is the imaginary unit, U is the control input. The unknown

disturbance d is supposed to be uniformly bounded measurable, that is, |d(t)| 6 M0 for some M0 > 0

and all t > 0. The system represents an anti-stable distributed parameter system: all eigenvalues

of the free system (with no control and disturbance) are located on the right-half complex plane.

The main contribution of this paper is to apply both the SMC and the ADRC approaches

to reject and attenuate respectively the disturbance in the stabilization of the system (1.1). The

distinguish feature of this problem that is contrast to the wave and beam equations is that the state

variable is complex valued. This gives rise to some problems in terms of mathematical rigorousness.

For instance, the sliding modes are actually two by its real and imaginary parts while that of beam

or wave is only one in the real number field space ([9]).

The rest of the paper is organized as follows. Section 2 is devoted to the disturbance rejection

by the SMC approach. The sliding mode control is designed and the existence and uniqueness of

solution of the closed-loop system are proved. The finite time “reaching condition” is presented

rigorously. In Section 3, we use the ADRC approach to attenuate the disturbance by designing a

high gain estimator to estimate the disturbance. After canceling the disturbance by the approxi-

mated one, we design the state feedback controller. The closed-loop system is shown to attend any

arbitrary given vicinity of zero as the time goes to infinity and the gain tuning parameter tends to

zero. Some concluding remarks are presented in Section 4.

2 Sliding mode control approach

We consider system (1.1) in the state space H = L2(0, 1). Following [27], we introduce a transfor-

mation:

w(x, t) = u(x, t)−
∫ x

0
k(x, y)u(y, t)dy, (2.1)

where the gain kernel k satisfies the following PDE:




kxx(x, y)− kyy(x, y) = cjk(x, y), c > 0,

ky(x, 0) + jqk(x, 0) = 0,

k(x, x) = −cj

2
x− jq.

(2.2)

The existence of solution to problem (2.2) can be proved by transforming it into an integral equation

using the variable change ξ = x + y, η = x− y, which is Lemma 2.1 below (see [27]).

Lemma 2.1 The problem (2.2) admits a unique solution which is twice continuously differentiable

in 0 6 y 6 x.
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Proof. We introduce new variables

ξ = x + y, η = x− y (2.3)

and denote

G(ξ, η) = k(x, y) = k

(
ξ + η

2
,
ξ − η

2

)
. (2.4)

To derive equation in terms of these new variables, we compute

kx(x, y) = Gξ(ξ, η) + Gη(ξ, η),

ky(x, y) = Gξ(ξ, η)−Gη(ξ, η),

kxx(x, y) = Gξξ(ξ, η) + 2Gξη(ξ, η) + Gηη(ξ, η),

kyy(x, y) = Gξξ(ξ, η)− 2Gξη(ξ, η) + Gηη(ξ, η),

k(x, x) = G(ξ, 0), ky(x, 0) = Gξ(ξ, ξ)−Gη(ξ, ξ), k(x, 0) = G(ξ, ξ).

Substitute these derivatives into (2.2) to yield

Gξη(ξ, η) =
cj

4
G(ξ, η), 0 6 η 6 ξ 6 2 (2.5)

with the boundary conditions:




Gξ(ξ, ξ)−Gη(ξ, ξ) + jqG(ξ, ξ) = 0 0 6 ξ 6 2,

G(ξ, 0) = −ξcj

4
− jq, 0 6 ξ 6 2.

Gξ(ξ, 0) = −cj

4
.

(2.6)

Integrate (2.5) over [0, η] with respect to η, and use the third condition of (2.6), to obtain

Gξ(ξ, η) = −cj

4
+

cj

4

∫ η

0
G(ξ, s)ds. (2.7)

Integrate (2.7) over [η, ξ] with respect to ξ to give

G(ξ, η) = G(η, η)− cj

4
(ξ − η) +

cj

4

∫ ξ

η

∫ η

0
G(τ, s)dsdτ. (2.8)

To find G(η, η), we use (2.6) to write

d

dξ
G(ξ, ξ) = Gξ(ξ, ξ) + Gη(ξ, ξ) = 2Gξ(ξ, ξ) + jqG(ξ, ξ). (2.9)

Using (2.7) with η = ξ, we can write (2.9) in the form of differential equation for G(ξ, ξ):

d

dξ
G(ξ, ξ) = −cj

2
+

cj

2

∫ ξ

0
G(ξ, s)ds + jqG(ξ, ξ). (2.10)

Integrate (2.10) by making use of the variation of constants formula to obtain

G(ξ, ξ) = −jqejqξ − cj

2

∫ ξ

0
ejq(ξ−τ)dτ +

cj

2

∫ ξ

0
ejq(ξ−τ)

∫ τ

0
G(τ, s)dsdτ. (2.11)
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Substitute the above result into (2.8), to obtain an integral equation for G(ξ, η):

G(ξ, η) = −jqejqη − cj

2

∫ η

0
ejq(η−τ)dτ +

cj

2

∫ η

0
ejq(η−τ)

∫ τ

0
G(τ, s)dsdτ

−cj

4
(ξ − η) +

cj

4

∫ ξ

η

∫ η

0
G(τ, s)dsdτ.

(2.12)

We now use the method of successive approximations to show that this equation has a unique

continuous solution. Set



G0(ξ, η) = −jqejqη − cj

2

∫ η

0
ejq(η−τ)dτ − cj

4
(ξ − η),

Gn(ξ, η) =
cj

2

∫ η

0
ejq(η−τ)

∫ τ

0
Gn−1(τ, s)dsdτ +

cj

4

∫ ξ

η

∫ η

0
Gn−1(τ, s)dsdτ, n > 1.

(2.13)

Then one can readily show that

|G0(ξ, η)| 6 q +
c

2
η +

c

4
|ξ − η| 6 2c + q = M.

Suppose that

|Gn(ξ, η)| 6 Mn+1 (ξ + η)n

n!
.

Then, we have the following estimate

|Gn+1| 6 cMn+1

4n!

∣∣∣∣2
∫ η

0

∫ τ

0
(τ + s)ndsdτ +

∫ ξ

η

∫ η

0
(τ + s)ndsdτ

∣∣∣∣

6 cMn+1

4n!
4
(ξ + η)n+1

n + 1

6 Mn+2 (ξ + η)n+1

(n + 1)!
. (2.14)

By mathematical induction, (2.14) is true for all n > 0. It then follows from the Weierstrass M-test

that the series

G(ξ, η) =
∞∑

n=0

Gn(ξ, η)

converges absolutely and uniformly in 0 6 η 6 ξ 6 2. Furthermore, by [19, Theorem 4.17, p.156],

we deduce that

G(ξ, η) =
∞∑

n=0

Gn(ξ, η) = −jqejqη − cj

2

∫ η

0
ejq(η−τ)dτ − cj

4
(ξ − η)

+
∞∑

n=1

cj

2

∫ η

0
ejq(η−τ)

∫ τ

0
Gn−1(τ, s)dsdτ +

∞∑

n=1

cj

4

∫ ξ

η

∫ η

0
Gn−1(τ, s)dsdτ

= −jqejqη − cj

2

∫ η

0
ejq(η−τ)dτ − cj

4
(ξ − η)

+
cj

2

∫ η

0
ejq(η−τ)

∫ τ

0

∞∑

n=1

Gn−1(τ, s)dsdτ +
cj

4

∫ ξ

η

∫ η

0

∞∑

n=1

Gn−1(τ, s)dsdτ

= −jqejqη − cj

2

∫ η

0
ejq(η−τ)dτ − cj

4
(ξ − η)

+
cj

2

∫ η

0
ejq(η−τ)

∫ τ

0
G(τ, s)dsdτ +

cj

4

∫ η

ξ

∫ η

0
G(τ, s)dsdτ.

(2.15)
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This shows that G(ξ, η) is a continuous solution of Equation (2.12), and hence is twice continuously

differentiable in 0 6 η 6 ξ 6 2, and |G(ξ, η)| 6 M exp(M(ξ + η)). We claim that this solution is

unique. To this purpose, it suffices to show that the equation

G(ξ, η) =
cj

2

∫ η

0
ejq(η−τ)

∫ τ

0
G(τ, s)dsdτ +

cj

4

∫ ξ

η

∫ η

0
G(τ, s)dsdτ (2.16)

has zero solution only. Define the mapping F0 : Ω0 → Ω0,Ω0 = {G| G(ξ, η) is continuous in 0 6
η 6 ξ 6 2}:

(F0G)(ξ, η) =
cj

2

∫ η

0
ejq(η−τ)

∫ τ

0
G(τ, s)dsdτ +

cj

4

∫ ξ

η

∫ η

0
G(τ, s)dsdτ, ∀ G ∈ Ω0.

Then F0 is a compact operator on Ω0. By (2.14), the spectral radius of F0 is zero. So 0 is the

unique spectrum of F0. Therefore, (2.16) has zero solution only. The proof is complete.

Remark 2.1 The proof of Lemma 2.1 shows that

lim
N→∞

N∑

n=0

Gn(ξ, η) = G(ξ, η) = k(x, y), ξ = x + y, η = x− y (2.17)

uniformly in x ∈ [0, 1], y ∈ [0, x], where Gn(ξ, η) is given by (2.13). This can be used to approximate

the kernel function k numerically.

The transformation (2.1) transforms system (1.1) into the following system:




wt(x, t) = −jwxx(x, t)− cw(x, t), x ∈ (0, 1), t > 0,

wx(0, t) = 0, t > 0,

wx(1, t) = U(t) + d(t)− k(1, 1)u(1, t)−
∫ 1

0
kx(1, y)u(y, t)dy, t > 0.

(2.18)

Set the sliding mode surface as

SW =
{

f ∈ H
∣∣

∫ 1

0
f(x)dx = 0

}
, (2.19)

which is a closed subspace of the state space H. The corresponding sliding mode function for

system (2.18) is

SW (t) =
∫ 1

0
w(x, t)dx. (2.20)

On the sliding mode surface SW (t) ≡ 0, the system (2.18) becomes




wt(x, t) = −jwxx(x, t)− cw(x, t), x ∈ (0, 1), t > 0,

wx(0, t) =
∫ 1

0
w(x, t)dx = 0, t > 0.

(2.21)

The Proposition 2.1 below shows that system (2.21) decays exponentially in H as t →∞ with

the decay rate −c. This is the advantage of the transformation (2.1). If we use the analytic

backstepping transformation presented in exercise 6.2 of [17] on pages 76-77 (see (3.1) in next

section), it is hard to find the sliding mode surface in H.
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Proposition 2.1 The system (2.21) associates with a C0-semigroup of contractions on SW , and

is exponentially stable in SW with the decay rate −c.

Proof. Define the operator A : D(A)(⊂ SW ) → SW as follows:
{

Af(x) = −jf ′′(x)− cf(x),∀ f ∈ D(A),

D(A) = {f ∈ SW ∩H2(0, 1)
∣∣ f ′′ ∈ SW , f ′(0) = 0}.

It is easy to show that for any f ∈ D(A), f ′′ ∈ SW if and only if f ′(1) = 0. So we can write A as
{

Af(x) = −jf ′′(x)− cf(x),∀ f ∈ D(A),

D(A) = {f ∈ SW ∩H2(0, 1)
∣∣ f ′(0) = f ′(1) = 0}.

Now for any f ∈ D(A),

Re〈Af, f〉 = −Rej
∫ 1

0
f ′′(x)f(x)dx− c

∫ 1

0
|f(x)|2dx = −c

∫ 1

0
|f(x)|2dx 6 0. (2.22)

Hence A + cI is dissipative and so is for A. For any g ∈ SW solve Af = g, that is
{
−jf ′′(x)− cf(x) = g(x),

f ′(0) = f ′(1) = 0,

to get the unique solution f as




f(x) = c0

(
e

√
c(j+1)x√

2 + e
−
√

c(j+1)x√
2

)
+

1√
2c(j + 1)

∫ x

0

(
e

√
c(j+1)√

2
(x−s) − e

−
√

c(j+1)√
2

(x−s)
)

g(s)ds,

c0 = − 1
√

2c(j + 1)
(

e

√
c(j+1)√

2 + e
−
√

c(j+1)√
2

)
∫ 1

0

(
e

√
c(j+1)√

2
(1−s) − e

−
√

c(j+1)√
2

(1−s)
)

ds.

So, A−1 exists and is bounded on SW . By the Lumer-Phillips theorem ([24, Theorem 4.3,p.14]), A

generates a C0-semigroup of contractions on SW , and so does for A+ cI. Therefore, the semigroup

generated by A is exponentially stable with the decay rate −c.

Now we are in a position to seek the finite time “reaching condition” for target system (2.18).

Formally, it has

ṠW (t) =
∫ 1

0
wt(x, t)dx =

∫ 1

0
[−jwxx(x, t)− cw(x, t)]dx

= −jwx(1, t)− c

∫ 1

0
w(x, t)dx = −jwx(1, t)− cSW (t),

(2.23)

and hence

ṠW (t) = −j

[
U(t) + d(t)− k(1, 1)u(1, t)−

∫ 1

0
kx(1, y)u(y, t)dy

]
− cSW (t)

Design the feedback controller:

U(t) = k(1, 1)u(1, t) +
∫ 1

0
kx(1, y)u(y, t)dy + cjSW (t) + U0(t), (2.24)
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where U0 is a new control. Then

ṠW (t) = −jU0(t)− jd(t).

Let

U0(t) = −j(M0 + η)
SW (t)
|SW (t)| for SW (t) 6= 0.

Then

ṠW (t) = −(M0 + η)
SW (t)
|SW (t)| − jd(t) for SW (t) 6= 0. (2.25)

Therefore,

d

dt
|SW (t)|2 = 2ReSW (t)ṠW (t) = −2(M0 + η)|SW (t)| − 2Re(jd(t)SW (t)) 6 −2η|SW (t)|, (2.26)

which is just the finite time “reaching condition” to be proved rigorously later. The sliding mode

controller is

U(t) = k(1, 1)u(1, t) +
∫ 1

0
kx(1, y)u(y, t)dy + cjSW (t)− j(M0 + η)

SW (t)
|SW (t)| for SW (t) 6= 0. (2.27)

Under the control (2.27), the closed-loop of the target system (2.18) becomes




wt(x, t) = −jwxx(x, t)− cw(x, t),

wx(0, t) = 0,

wx(1, t) = cjSW (t)− j(M0 + η)
SW (t)
|SW (t)| + d(t) = cjSW (t) + d̃(t), SW (t) 6= 0,

(2.28)

where

d̃(t) = −j(M0 + η)
SW (t)
|SW (t)| + d(t). (2.29)

The next result confirms the existence and uniqueness of the solution to (2.28) and the finite

time “reaching condition” to the sliding mode surface SW .

Proposition 2.2 Suppose that d is measurable and |d(t)| 6 M0 for all t > 0, and let SW be defined

by (2.20). Then for any w(·, 0) ∈ H, SW (0) 6= 0, there exists a tmax > 0 such that (2.28) admits a

unique solution w ∈ C(0, tmax;H) and SW (t) = 0 for all t > tmax.

Proof. Write system (2.28) as

d

dt
w(·, t) = A0w(·, t) + B0d̃(t), B0 = −jδ(x− 1), (2.30)

where A0 is given by




A0f = −jf ′′ − cf,

D(A0) =
{

f ∈ H2(0, 1)
∣∣ f ′(0) = 0, f ′(1) = cj

∫ 1

0
f(x)dx

}
.

(2.31)

We claim that A0 generates a C0-semigroup on H. To this purpose, it suffices to show that A∗0,
the adjoint operator of A0, generates a C0-semigroup on H.
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A straightforward calculation shows that



A∗0g = jg′′ − cg + cg(1),

D(A∗0) =
{
g ∈ H2(0, 1)

∣∣ g′(0) = g′(1) = 0
}

.
(2.32)

The dual system of (2.30) is hence given by




w∗t (x, t) = jw∗xx(x, t)− cw∗(x, t) + cw∗(1, t),

w∗x(0, t) = w∗x(1, t) = 0,

y(t) = B∗0w∗ = −jw∗(1, t).

(2.33)

It is an exercise to get the eigen-pairs (λn, ϕn) of A∗0 are

λn = −c− j(nπ)2, ϕn(x) = cos nπx− c
cos nπ

c− j(nπ)2
, n = 0, 1, 2, · · · .

By Bari’s theorem, {ϕn}∞n=0 forms a Riesz basis for H. So A∗0 generates a C0-semigroup on H, and

so does for A0. Moreover, for any w∗(·, 0) ∈ H, suppose that

w∗(x, 0) =
∞∑

n=0

anϕn(x).

Then

w∗(x, t) = eA
∗
0tw∗(x, 0) =

∞∑

n=0

eλntanϕn(x),

and hence

y(t) = −j
∞∑

n=0

eλntanϕn(1).

By Ingham’s inequality ([18, theorems 4.3]), there exists a T > 0, such that

∫ T

0
|y(t)|2dt 6 CT

∞∑

n=0

|anϕn(1)|2 6 DT ‖w∗(·, 0)‖2 (2.34)

for some constants CT , DT that depend on T only. This shows that B∗0 is admissible for eA∗0t and

so is B0 for eA0t ([29, 30]). Therefore, for any T > 0 and w(·, 0) ∈ H, if SW ∈ C[0, T ], SW (t) 6= 0

for all t ∈ [0, T ), then there exists a unique solution w ∈ C(0, T ;H) to (2.28).

Suppose that SW ∈ C[0, T ], SW (t) 6= 0 for all t ∈ [0, T ). Since f(x) ≡ 1 ∈ D(A∗0), by the

admissibility just verified, take the inner product with f = 1 on both sides of (2.30) to get

d

dt

∫ 1

0
w(x, t)dx = 〈w,A∗0f〉+ d̃(t)〈f,B∗0f〉 = −jd̃(t) = −(M0 + η)

SW (t)
|SW (t)| − jd(t), ∀ t ∈ [0, T ] a.e.

or

ṠW (t) = −(M0 + η)
SW (t)
|SW (t)| − jd(t),∀ t ∈ [0, T ] a.e., (2.35)

which is just (2.25). So if (2.35) admits a unique continuous, nonzero solution, then (2.28) admits

a unique solution w ∈ C(0, T ;H).
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Suppose that t0 > 0 and SW (t0) = S0 6= 0. Then it follows from (2.35) that

SW (t) = S0 − (M0 + η)
∫ t

t0

SW (τ)
|SW (τ)|dτ − j

∫ t

t0

d(τ)dτ, ∀ t > t0. (2.36)

Define a closed subspace of C
[
t0, t0 + |S0|

4(2M0+η)

]
by

Ω =
{

S ∈ C
[
t0, t0 + |S0|

4(2M0+η)

] ∣∣∣∣ S(t0) = S0,

|S(t)| > 3|S0|
4

,∀ t ∈
[
t0, t0 +

|S0|
4(2M0 + η)

]}
,

(2.37)

and a mapping F on Ω by

(FS)(t) = S0 − (M0 + η)
∫ t

t0

S(τ)
|S(τ)|dτ − j

∫ t

t0

d(τ)dτ. (2.38)

Then for any S ∈ Ω, it has

|(FS)(t)| > |S0| − (t− t0)(2M0 + η) > 3|S0|
4

.

This shows that FΩ ⊂ Ω. Moreover,

|(FS1)(t)− (FS2)(t)| 6 (M0 + η)
∫ t

t0

∣∣∣∣
S1(τ)
|S1(τ)| −

S2(τ)
|S2(τ)|

∣∣∣∣ dτ

6 2(M0 + η)
∫ t

t0

|S1(τ)− S2(τ)|
|S1(τ)| |dτ 6 2(M0 + η)

3(2M0 + η)
‖S1 − S2‖Ω,

where ‖S‖Ω = ‖S‖
C

[
t0,t0+

|S0|
4(2M0+η)

]. The aforementioned inequality shows that the mapping F

defined by (2.38) is a contraction mapping on Ω. By the contraction mapping principle, there

exists a unique, nonzero solution SW to (2.36) in C
[
t0, t0 + |S0|

4(2M0+η)

]
.

The aforementioned arguments show that when SW (0) 6= 0, there exists a unique continuous

solution SW to (2.35) in the maximal interval [0, tmax), where it must have SW (tmax) = 0. It then

follows from (2.26) that |SW (t)| must be decreasing in [0, tmax) and |SW (t)| > 0 for all t ∈ [0, tmax).

Since SW (t) is continuous, the reaching condition (2.26) implies that SW (t) ≡ 0 for all t > tmax.

The proof is complete.

Returning back to the system (1.1) under the transformation (2.1), feedback control (2.27), we

obtain the main result of this section from Proposition 2.2.

Theorem 2.1 Suppose that d is measurable and |d(t)| 6 M0 for all t > 0, and let SU be the sliding

mode function given by

SU (t) =
∫ 1

0
u(x, t)dx−

∫ 1

0

∫ x

0
k(x, y)u(y, t)dydx. (2.39)
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Then for any u(·, 0) ∈ H, SU (0) 6= 0, there exists a tmax > 0 such that the closed-loop system of

(1.1) under the feedback control (2.27) is




ut(x, t) = −juxx(x, t),

ux(0, t) = −jqu(0, t),

ux(1, t) = k(1, 1)u(1, t) +
∫ 1

0
kx(1, y)u(y, t)dy + cjSU (t)

−j(M0 + η)
SU (t)
|SU (t)| + d(t), SU (t) 6= 0,

(2.40)

which admits a unique solution u ∈ C(0, tmax;H) and SU (t) = 0 for all t > tmax. On the sliding

mode surface SU (t) = 0, the system (1.1) becomes




ut(x, t) = −juxx(x, t),

ux(0, t) = −jqu(0, t),
∫ 1

0
u(x, t)dx−

∫ 1

0

∫ x

0
k(x, y)u(y, t)dydx = 0,

(2.41)

which is equivalent to (2.21) and hence is exponentially stable in H with the decay rate −c.

It is remarked that system (2.28) is equivalent to system (2.40) under the equivalent transfor-

mation (2.1).

3 The active disturbance rejection control approach

In this section, we suppose in addition that |ḋ| is also uniformly bounded. Following exercise 6.2

of [17] on pages 76-77, we introduce a transformation:

w(x, t) = u(x, t) + j(c0 + q)
∫ x

0
ejq(x−y)u(y, t)dy, c0 > 0. (3.1)

Its inverse transformation is found to be

u(x, t) = w(x, t)− j(c0 + q)
∫ x

0
e−jc0(x−y)w(y, t)dy. (3.2)

The transformation (3.1) transforms system (1.1) into the following system:




wt(x, t) = −jwxx(x, t), x ∈ (0, 1), t > 0,

wx(0, t) = jc0w(0, t), t > 0,

wx(1, t) = U(t) + d(t) + j(c0 + q)w(1, t) + c0(c0 + q)
∫ 1

0
e−jc0(1−x)w(x, t)dx, t > 0.

(3.3)

It is seen that the anti-stable factor −jqu(0, t) in (1.1) becomes the dissipative term jc0w(0, t)

in (3.3) under the transformation (3.1), both at the end x = 0. In what follows, we consider
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the stabilization of system (3.3) until the final step to go back the system (1.1) under the inverse

transformation (3.2). Introduce a new controller U0(t) so that

U(t) = U0(t)− j(c0 + q)w(1, t)− c0(c0 + q)
∫ 1

0
e−jc0(1−x)w(x, t)dx. (3.4)

Then (3.3) becomes 



wt(x, t) = −jwxx(x, t), x ∈ (0, 1), t > 0,

wx(0, t) = jc0w(0, t), t > 0,

wx(1, t) = U0(t) + d(t).

(3.5)

We write (3.5) into the operator form. Define the operator A as follows:
{
Af(x) = −jf ′′(x),

D(A) = {f ∈ H2(0, 1)
∣∣ f ′(0) = jc0f(0), f ′(1) = 0}.

(3.6)

Its adjoint A∗ is found to be
{
A∗f(x) = jf ′′(x),

D(A∗) = {f ∈ H2(0, 1)
∣∣ f ′(0) = −jc0f(0), f ′(1) = 0},

(3.7)

with

A∗−1f = C − j

∫ x

1
(x− τ)f(τ)dτ, C = − 1

c0

∫ 1

0
f(x)dx + j

∫ 1

0
xf(x)dx,∀ f ∈ H. (3.8)

Then we can write (3.5) in H as

d

dt
w(·, t) = Aw(·, t) + B(U0(t) + d(t)), B = −jδ(x− 1). (3.9)

Lemma 3.1 Let A be defined by (3.6). Then each eigenvalue of A is algebraically simple, and there

exists a sequence of eigenfunctions of A, which form a Riesz basis for H. Therefore, A generates

an exponential stable C0-semigroup on H.

Proof. Solve Af = −jλ2f , that is,
{

f ′′(x) = λ2f(x),

f ′(0) = jc0f(0), f ′(1) = 0,
(3.10)

to get

f(x) =
λ + jc0

λ− jc0
eλx + e−λx, (3.11)

where λ satisfies

e2λ =
λ− jc0

λ + jc0
= 1− 2jc0

λ
+O(|λ|−2) as |λ| → ∞. (3.12)

Notice that λ 6= ±jc0, λ 6= 0 for nonzero f by (3.10). Solve (−jλ2 − A)ϕ = f where f is given by

(3.11), that is {
ϕ′′(x) = λ2ϕ(x)− jf(x),

ϕ′(0) = jc0ϕ(0), ϕ′(1) = 0,
(3.13)
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to get

ϕ(x) = c̃

[
λ + jc0

λ− jc0
eλx + e−λx

]
− j

∫ x

0

eλ(x−s) − e−λ(x−s)

2λ
f(s)ds

for general constant c̃. By ϕ′(1) = 0, it follows that

∫ 1

0

[
eλ(1−s) + e−λ(1−s)

]
f(s)ds = 0.

Substitute (3.11) into above to get

2e−λ λ2 − jc0 + c2
0

λ2 + c2
0

=
e−λ

2λ

(
4λ + e2λ − e−2λ

)
= 0.

So λ2 = jc0−c2
0 and e2λ = −2λ±√4λ2 + 1. But λ = ±

√
jc0 − c2

0 does not satisfy the characteristic

equation (3.12) by Mathematica. Hence each eigenvalue of A is algebraically simple.

Next by the second equality of (3.12), it has

λ = nπj +O(n−1), n →∞. (3.14)

Substitute (3.14) into (3.12) to obtain O(n−1) = −c0/(nπ) and so

λ = nπj − c0

nπ
+O(n−2), −jλ2 = −2c0 + j(nπ)2 +O(n−1), n →∞. (3.15)

It is straightforward to verify that all eigenvalues of A have negative real parts. This also explains

that why the system (1.1) is anti-stable: all eigenvalues of the free system (replace c0 by −q) are

located on the right half complex plane.

From (3.14) and (3.11), we get

f(x) = cos nπx +O(n−1), n →∞. (3.16)

Since from (3.8), A∗−1 is compact on H and so is A−1. Hence A is a discrete operator. Since

{cos nπx}∞n=0 forms an orthonormal basis for H, it follows from theorem 6.3 of [12] and (3.16)

that there is a sequence of the eigenfunctions of A which form a Riesz basis for H. The proof is

complete.

Lemma 3.2 Let A and B be defined in (3.9). Then B is admissible to the semigroup eAt.

Proof. By (3.8), we have

B∗A∗−1f = −jC

which is bounded from H to C. Consider the dual system of (3.9):




d

dt
w∗(·, t) = A∗w∗(·, t),

y(t) = B∗w∗(·, t),
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that is, 



w∗t (x, t) = jw∗xx(x, t), x ∈ (0, 1), t > 0,

w∗x(0, t) = −jc0w
∗(0, t), t > 0,

w∗x(1, t) = 0, t > 0,

y(t) = −jw∗(1, t).

(3.17)

By (3.15) and (3.16), the eigen-pairs {µn, gn} of A∗ are

µn = jλ
2 = −2c0 − j(nπ)2 +O(n−1), gn(x) = cos nπx +O(n−1), n →∞.

By Lemma 3.1, {gn} forms a Riesz basis for H, so the solution w of (3.17) can be written as

w∗(x, t) =
∞∑

n=0

bneµntgn(x).

Hence

y(t) = −j
∞∑

n=0

bneµntgn(1).

Same to (2.34), there exists a T > 0 such that

∫ T

0
|y(t)|2dt 6 C0T

∞∑

n=0

|bngn(1)|2 6 C1T

∞∑

n=0

|bn|2 6 C2T ‖w∗(·, 0)‖2

for some constants CiT , i = 0, 1, 2 that depend on T only. This together with boundedness of

B∗A∗−1 shows that B is admissible to the semigroup generated by A ([29, 30]).

Let

y1(t) =
∫ 1

0
(2x3 − 3x2)w(x, t)dx, y2(t) =

∫ 1

0
(12x− 6)w(x, t)dx. (3.18)

Since B is admissible to the C0-semigroup eAt, the solution of (3.5) is understood in the sense of

d

dt
〈w(·, t), f〉 = 〈w(·, t),A∗f〉 − jf(1)(U0(t) + d(t)), ∀ f ∈ D(A∗). (3.19)

Let f(x) = 2x3 − 3x2 ∈ D(A∗) in (3.19) to get

ẏ1(t) = jU0(t) + jd(t)− jy2(t). (3.20)

That is to say, for any initial value w(·, 0) ∈ H, the (weak) solution of (3.5) must satisfy (3.20).

Remark 3.1 From (3.19), y1, y2 can be chosen as y1(t) =
∫ 1
0 f(x)w(x, t)dx, y2(t) =

∫ 1
0 (A∗f)(x)w(x, t)dx

where f ∈ D(A∗), f(1) 6= 0. Our choice is only a special case by this general principle.

Design the high gain estimators for y1 and d as follows:




˙̂y(t) = j(U0(t) + d̂(t))− jy2(t)− 1
ε
(ŷ(t)− y1(t)),

˙̂
d(t) =

j

ε2
(ŷ(t)− y1(t)),

(3.21)
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where ε > 0 is the design small parameter and d̂ is regarded as an approximation of d. Let

ỹ(t) = ŷ(t)− y1(t), d̃(t) = j(d̂(t)− d(t)) (3.22)

be the errors. Then ỹ, d̃ satisfy

d

dt

(
ỹ(t)

d̃(t)

)
=

(
−1

ε 1

− 1
ε2 0

)(
ỹ(t)

d̃(t)

)
+

(
0

−j

)
ḋ(t) = A

(
ỹ(t)

d̃(t)

)
+ Bḋ(t). (3.23)

The eigenvalues of A are found to be

λ = − 1
2ε
±
√

3
2ε

j. (3.24)

The state feedback controller to (3.5) is designed as follows:

U0(t) = −d̂(t). (3.25)

It is clearly seen from (3.25) that this controller is just used to cancel the disturbance d since

A generates an exponential stable C0-semigroup. This estimation/cancelation strategy (3.25) is

obviously an economic strategy. Under the feedback (3.25), the closed-loop system of (3.5) becomes




wt(x, t) = −jwxx(x, t), x ∈ (0, 1), t > 0,

wx(0, t) = jc0w(0, t), t > 0,

wx(1, t) = −d̂(t) + d(t), t > 0.

˙̂y(t) = −jy2(t)− 1
ε
(ŷ(t)− y1(t)),

˙̂
d(t) =

j

ε2
(ŷ(t)− y1(t)).

(3.26)

Proposition 3.1 Suppose that |d| 6 M0 and ḋ is also uniformly bounded measurable. Then for

any initial value w(·, 0) ∈ H, the closed-loop system (3.26) of (3.5) admits a unique solution

(w, wt)> ∈ C(0,∞;H). Moreover, the solution of system (3.26) tends to any arbitrary given vicinity

of zero as t →∞, ε → 0.

Proof. Using the error variables (ỹ, d̃) defined in (3.22), we can write the equivalent system of

(3.26) as follows: 



wt(x, t) = −jwxx(x, t), x ∈ (0, 1), t > 0,

wx(0, t) = jc0w(0, t), t > 0,

wx(1, t) = jd̃(t), t > 0.

˙̃y(t) = −1
ε
ỹ(t) + d̃(t), t > 0,

˙̃
d(t) = − 1

ε2
ỹ(t)− jḋ(t), t > 0.

(3.27)
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It is seen from (3.27) that (ỹ, d̃) is an external model for the “w part” of the system ([22]). So we

can solve this ODE separately to be
(

ỹ(t)

d̃(t)

)
= eAt

(
ỹ(0)

d̃(0)

)
+

∫ t

0
eA(t−s)Bḋ(s)ds, (3.28)

where A,B are defined in (3.23). By (3.24), a simple computation shows that the solution (ỹ, d̃) of

(3.28) satisfies

(ỹ(t), d̃(t)) → 0 as t →∞, ε → 0. (3.29)

Now we consider the “w part” of the system (3.27) which is re-written as




wt(x, t) = −jwxx(x, t), x ∈ (0, 1), t > 0,

wx(0, t) = jc0w(0, t), t > 0,

wx(1, t) = jd̃(t), t > 0.

(3.30)

System (3.30) can be rewritten as an evolution equation in H as

d

dt
w(·, t) = Aw(·, t) + jBd̃(t), (3.31)

where A,B are the same as that in (3.9).

Since A generates an exponential stable C0-semigroup on H (Lemma 3.1), and B is admissible

to eAt (Lemma 3.2), for any initial value w(·, 0) ∈ H, there exists a unique solution w ∈ C(0,∞;H)

which can be written as

w(·, t) = eAtw(·, 0) + j

∫ t

0
eA(t−s)Bd̃(s)ds. (3.32)

By (3.29), for any given ε0 > 0, there exist t0 > 0 and ε1 > 0 such that |d̃(t)| < ε0 for all t > t0

and 0 < ε < ε1. We rewrite solution of (3.32) as

w(·, t) = eAtw(·, 0) + jeA(t−t0)

∫ t0

0
eA(t0−s)Bd̃(s)ds + j

∫ t

t0

eA(t−s)Bd̃(s)ds. (3.33)

The admissibility of B implies that
∥∥∥∥
∫ t

0
eA(t−s)Bd̃(s)ds

∥∥∥∥
2

H
6 Ct‖d̃‖2

L2
loc(0,t) 6 t2Ct‖d̃‖2

L∞(0,t),∀ d̃ ∈ L∞(0,∞) (3.34)

for some constant Ct that is independent of d̃. Since eAt is exponentially stable, it follows from

proposition 2.5 of [30] that
∥∥∥∥
∫ t

t0

eA(t−s)Bd̃(s)ds

∥∥∥∥ =
∥∥∥∥
∫ t

0
eA(t−s)B(0 ♦

t0
d̃)(s)ds

∥∥∥∥ 6 L‖d̃‖L∞(0,∞) 6 Lε0, (3.35)

where L is a constant that is independent of d̃, and

(d1 ♦
τ

d2)(t) =





d1(t), 0 6 t 6 τ,

d2(t− τ), t > τ,
(3.36)
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where the left-hand side of (3.36) denotes the τ -concatenation of d1 and d2 ([29]). Suppose that

‖eAt‖ 6 L0e
−ωt for some L0, ω > 0. By (3.33), (3.34), and (3.35), we have

‖w(·, t)‖ 6 L0e
−ωt ‖w(·, 0)‖+ L0Ct0e

−ω(t−t0)‖d̃‖L∞(0,t0) + Lε0. (3.37)

As t →∞, the first two terms of (3.37) tend to zero. The result is then proved by the arbitrariness

of ε0.

Returning back to system (1.1) by the inverse transformation (3.2), feedback control (3.4) and

(3.25), and new variable (3.18), we have proved, from Proposition 3.1, the main result of this

section.

Theorem 3.1 Suppose that |d| 6 M0 and ḋ is also uniformly bounded measurable. Then for any

initial value u(·, 0) ∈ H, the closed-loop system of (1.1) following:




ut(x, t) = −juxx(x, t), x ∈ (0, 1), t > 0,

ux(0, t) = −jqu(0, t), t > 0,

ux(1, t) = −d̂(t)− j(c0 + q)u(1, t) + q(c0 + q)
∫ 1

0
ejq(1−x)u(x, t)dx + d(t), t > 0,

(3.38)

admits a unique solution (u, ut)> ∈ C(0,∞;H), and the solution of system (3.38) tends to any

arbitrary given vicinity of zero as t →∞, ε → 0, where the feedback control is:

U(t) = −d̂(t)− j(c0 + q)u(1, t) + q(c0 + q)
∫ 1

0
ejq(1−x)u(x, t)dx, t > 0 (3.39)

and d̂ satisfies 



˙̂y(t) = −jy2(t)− 1
ε
(ŷ(t)− y1(t)),

˙̂
d(t) =

j

ε2
(ŷ(t)− y1(t)),

(3.40)





y1(t) =
∫ 1

0
(2x3 − 3x2)

[
u(x, t) + j(c0 + q)

∫ x

0
ejq(x−y)u(y, t)dy

]
dx,

y2(t) =
∫ 1

0
(12x− 6)

[
u(x, t) + j(c0 + q)

∫ x

0
ejq(x−y)u(y, t)dy

]
dx.

(3.41)

4 Numerical simulations

In this section, the finite difference method is applied to compute the real and imaginary parts of

the displacements numerically for both SMC and ADRC to illustrate the effect of the controllers.

Figures 1(a) and 1(b) show the real and imaginary parts of displacement of system (2.40). Here the

steps of space and time are taken as 0.1 and 0.0001, respectively. We choose q = 1, c = 10, M0 = 4,

η = 1, u(x, 0) = 10x3 − 2jx2, and d = 2 sin t. The kernel function is approximated by (2.17) with

N = 20. Figures 2(a) and 2(b) show the real and imaginary parts of controller by SMC. Due to

discontinuity, the the control vibrates rapidly after some time.
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Figures 3(a) and 3(b) plot the real and imaginary parts of system (3.38) with the same space

and time sizes used in SMC. Other parameters are q = c0 = 1, ε = 0.01, u(x, 0) = x + jx2,

d(t) = cos t + j sin t. It is seen that in both cases, the displacements are obviously convergent.

Moreover, Figures 4(a) and 4(b) show that convergence of d̂ to the disturbance d. Figures 5(a) and

5(b) show the controller by ADRC. It is much better than that by SMC.

(a) Real part (b) Imaginary part

Figure 1: Real and imaginary parts of displacement with d(t) = 2 sin t by SMC
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Figure 2: Real and imaginary parts of controller by SMC

(a) Real part (b) Imaginary part

Figure 3: Real and imaginary parts of displacement with d(t) = 2 sin t by ADRC
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Figure 4: Real and imaginary parts of d̂(t) and disturbance d(t) = cos t + j sin t by ADRC
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Figure 5: Real and imaginary parts of the controller by ADRC

5 Concluding remarks

In this paper, we apply two different approaches to stabilize a one-dimensional anti-stable Schrödinger

equation subject to boundary control matched disturbance. We first apply the sliding mode control

(SMC) approach to reject the disturbance. Since in SMC approach, we do not need to estimate

the disturbance, the disturbance is assumed to be bounded only. The sliding mode surface is found

to be a closed subspace of the state space. The closed-loop system is shown to have a unique

(weak) solution and can reach the sliding mode surface in finite time. On the sliding mode surface,

the system is shown to be exponentially stable with arbitrary prescribed decay rate. Owing to its

complex valued nature, the “reaching condition” for Schrödinger equation is much more difficult

than that for wave and beam equations.

The active disturbance rejection control (ADRC) is introduced to attenuate the disturbance.

The disturbance is supposed additionally to have bounded derivative. The ADRC is an online

estimation/cacellation control strategy, and we design a high gain estimator to estimate the distur-

bance. The smooth feedback control is designed (observed-based feedback control in some sense)

which contains two parts. The first part is used to cancel the disturbance and the second part is to

counter the anti-stability. The well-posedness of the closed-loop system is presented. It is shown

that the closed-loop system can reach any arbitrary given vicinity of zero as time goes to infinity

and high gain tuning parameter goes to zero.
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