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Abstract

In this paper, a sliding mode control strategy is discussed for a class of
nonlinear mechanical sub-systems with varying trajectory dynamics. The
proposed class of sub-systems are represented in this simulation example by
a two link robot actuator/manipulator. The fractional order is introduced
in the setpoint definition as to represent changes in the desired trajectory of
this sub-system. Furthermore, the same order is used to adapt the control
law to the new dynainics. Uncertainties are introduced in the model used
for the control law, hence robustness is intrinsic.
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1. Introduction

Typical two link robot manipulators are often found in heavy duty
industry, e.g. automotive assembly lines, agricultural harvesting machines
[9, 1]. Due to varying product specification the reference trajectory may
change dynamics and amplitude and calibration of the system along with
re-tuning controller parameters are necessary to maintain optimal operation
[23]. Often these systems are in fact part of complex processes, where sub-
system interaction is present and safe operation must be ensured at all
times by adapting the reference trajectory [28].
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Another class of applications where reference trajectory may change
dynamics and amplitude is that of spacccraft dynamics and spacecraft
rendez-vous. Orbital coordinates may be required to adapt to other values
due to unexpected space drifts and winds. or obstacle avoidance maneuvers
(13, 28, 10].

Medical applications such as radiotherapy for lung tumours also make
use of robot link manipulators for positioning laser beaun or near infra-red
spectroscopy [14]. While at rest, the patient breaths during the treatment,
hence the tumour changes position and shape along with the lung tissue
120]. This requires adaptation of the reference trajectory of the beam and
accurate position countrol is of utmost importance.

A nice view upon the pioneers of fractional calculus is given in [27]. A
comprehensive overview of tuning methods and applications of fractional
order control is given in [25, 19, 16]. Discussion on stability in relay con-
trolled systems is made in [3]. Gain adaptation in fractional order control
has beeu discussed in [26]. A practical approach to iniplementing a frac-
tional order control in a PLC for industrial use has been discussed in 11].
Design of sliding mode controllers for a class of fractional order chaotic
systems has been proposed in [29, 18]. The systems under analysis were
the fractional-order Chen system, the fractional order Lorenz system and
a fractional order financial system. Numerical simulations supported the
effectiveness of the proposed method. On the other hand, fractional order
sliding mode controller with terminal convergence bound was proposed for
a class of dynamical systems with uncertainty in [4]. Here the switching
law contains fractional order differential operators and ensures finite sta-
bility of the closed loop system. Multivariable fractional order dynamics
have been discussed in [17] and input and state delay problems have been
tackled in [21].

A variety of applications have been employed for this type of control.
Fractional order switching surfaces PI and PID control has been applied
to DC-DC power converters (2] and PD type sliding surfaces have been
applied in [5, 30]. Sliding mode control has been also applied to hexapod
robot [22], and to rigid manipulators [8], for robotic systems with time-
delays [12], and robot control [7]. An overview of other applications of
fractional order sliding mode control is given in [6].

This paper proposes a sliding mode control algorithm in which varying
reference trajectories are defined using fractional order dynamics. This in-
formation is used in the tuning of the control laws and simulation examples
illustrate the effectiveness of the proposed methodology for this class of
applications.
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2. Model Description

Consider an n-joint robot as follows:
H(q)§ + C(q,9)q + G(q) + F(q) + 7a = 7, (2.1)

where q € R" is the angle vector, H(q) € R™" is the inertia matrix, C(q.q)
€ R" denotes the centrifugal and coriolis forces, G(q) € R™ is the grav-
ity, F(q) € R" is the frictional force, 7 € R™ is the control moment, and
74 € R"™ is the disturbance moment.

The characteristics of the kinetic model are ([9]):

e the kinetic model contains a higher number of elements and this
depends on the number of robot joints;

o the model has a high degree of nonlinearity;

o tlicre exists a strong interaction between the various sub-systeins
(i.e. joints);

e there exists model uncertainty and varying dynamics; these depend
on the load and joint friction.

Properties of the model defined in (2.1) ([9, 24)):

e H(q) is a positive-definite symmetrical and bounded matrix; i.e.
m1I <H(q) < mol

e C(q,q) is bounded, i.e. | C(q,q) [< cp(q) || 4

e matrix H — 2C is a skew-symmetric matrix, i.e. xT (H—2C)x =0,
with x a vector

e the measurable (known) disturbance is bounded by a positive con-
stant || 7q 1< Tas.

The illustrative example used in this paper is given by a two joint
robot manipulator. This is well in agreement with the real-life cases where
position control is mainly achieved by accurate control of the last two joints,
as in Figure 1.

The kinetic equation is sitplified to:

H(q)g + C(q,9)q + G(q) = 7, (2.2)

where g = [q1 ¢o]. 7=[n1 2|7 and

[
H=| ot 2ecos(gz) — 2nsin(ge) B+ ecos(ge) + nsin(qe)
T | B+ ecos(ga) + nsin(g2) 3 d

C— [ (—2esin(ge) + 21 cos(ga))d2  (—esin(ga) + 77 cos(q2))de }
(esin(gz) — 7 cos(g2))d1 0 :

G- | e cos(q1 + q2) + nez sin(q1 + q2) + (@ — B + e1)ez cos(q1)
€eg cos(qy + ga) + ez sin(qr + q2) :



1444 C. Tonescu and C. Muresan

q;

FIGURE 1. Schematic representation of the robot’s last two links.

where a. 8, € and 7 are constants, with o = I; +m.1£§1 + I + mel2, + mel?,
B = I+ mel2, € = melileecos(de), 1 = melilee sin(d.). The numerical
values of the robot joint elements are taken as:

my = lkg Lh=1lm lq= 1/2m I, = 1/12ky  me = 3kg

lee =1m I, =2/5kg e =10 ep =—T/12 ey =9.81.

Let a = [ B € n]” and a be its estimated values. We assume & = a—a,
since a is a constant vector and thus a = a. This implies that we can
estimate the matrices H, C and G, respectively.

For our system, we do not know the values of a. Denote by qq the
desired reference trajectory. The tracking error is given by:

e=qq—q. (2.3)
Define
Gr = da + A(qd — q) (2.4)
with A a positive diagonal matrix.

Making use of the dynamic regression matrix formulation from [13, 23],
we have that:

H(q)d: + C(q,dr)q + G(q) = Y(q,q, qr, 4;)a (2.5)
and

H(q)q: + C(q, 4r)a + G(a) = Y(q, 4, dr. 63, (2.6)
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where

Y11 Y12 Y13 Y4

Yaddn ) =
(9,4 dr, 4r) Y21 Y22 Y23 Yo

with:
Y11 = gr1 + ez cos(q1)
Y12 = gr2 — €2 cos(q1)

113 = 2cos(gz)gr1 +cos(g2)gr2 — 2 sin(ga)gagr1 — sin(ga)g2gr2 + €2 cos(q1 + g2)
14 = 2sin(g)gy1 +sin(qa)gra + 2 cos(g2)gagr1 +cos(g)q2gr2 + €2 sin(g1 + g2)
y21 = 05922 = @r1 + G2
Y23 = cos(q2)qr1 + sin(qz)g1gr1 + e2 cos(q + g2)

Y24 = sin(gz)gr1 — cos(g2)q1gr1 + ez sin(g1 + g2).

3. Sliding Mode Controller Design

In this paper, we propose the use of classical sliding mode control strat-
egy as briefly introduced in the remainder of this section for the application
defined by (2.5), [13]. The originality of our approach is not in the control
algorithm itself, but in the definition of the reference trajectory, conse-
quently used in the controller law. This approach is comparable in method
with setpoint weighting proposed in [15, 28].

The sliding variable is given by

s=¢&+ Ae. (3.1)

Selecting the Lyapunov function

1
Vi) = ESTH(q)s, (3.2)
we have that
V() = s"[H(a)dr + C(q, §)dr + G(q) — 7] (3.3)
Hence, we can design the controller law as:

7= H(Q)g: + Clg, @)d: + G(a) + 7 (3:4)

with 7 the design parameter for robustness. Making use of (3.2) and (3.3)
it follows that:
V() = s"[H(a)d; + C(q, @)dr + G(q) — 7s] = s"[Y(q, &, dr, 4r)3 — 7).
(3.5)
We select
k1sgn(s1) + s1
: 3.6
kasgn(sz) +s2 |’ (3.6)
where k; = Z;l.:l Yi;d;, with i = 1,2. From (3.5) and (3.6) we obtain the
control law.
Considering the desired reference trajectories as defined by:

1s = ksgn(s) + s =
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qq1 = w7 sin(w?t),
942 = w7 sin(w?t). G0
This implies that if dynamics and amplitude are varying according to the
effect of v, the control law from (3.5) will adapt accordingly. However,
if standard identification tools are used, they require nonlinear algorithms
such as nonlinear least squares with gradient search, which depends strongly
on initial values. Instead, starting from the initial value of gamma, an
iterative procedure is employed within the sampling period:

e from the initial value, give two incremental values for v with step
increment of 0.1 and calculate the corresponding error on trajectory;

e from the initial value, give two decremental values for v with step
decrement of 0.1 and calculate the corresponding error on trajec-
tory;

e select the lowest error and update its corresponding <y value;

e use the new 7y value and apply control;

¢ at next sampling period, use the updated v value and re-iterate.

This algorithm requires very few operations and can be easily imple-
mented in execution elements, microcontrollers, PLCs, etc. It is also com-
putationally modest and can be execute without any problem within the
sampling period of the controller.

4. Results

In this analysis, we assume A =5 -I and an uncertainty in the model
parameter estimation of 50%. To avoid chattering in the control effort, the
saturated function is used instead of the switch function with A = 0.05.
These parameters do not change from these values in the next simulation
tests. In all reported results, position units are in cm, speed units are in
cm/s and control effort units in mV.

First, we test the system assuming we know perfectly the trajectory of
the reference, for v = 0.1. The results of the closed loop control are given
in Figure 2 for the two controlled positions and two control efforts.

Second, we illustrate the efficacy of the recursive identification iterative
algorithm for changing dynamics. In this scenario we assume that the initial
value of v = 0.5 and at time instant 2.5 seconds it changes to vy = 0.75. The
results are given in Figure 3 for the output of the fist link, the second link
and control effort. To make a realistic simulation, we introduce saturation
at 500 mV in the upper and lower values of the control effort.

It can be observed that under all conditions, the control law is able to
follow the reference trajectory without requiring re-tuning. This is in fact
done automatically through the changes in the « values.
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FIGURE 2. Simulation results for the ideal case when the
reference trajectory is perfectly known, with a fractional or-
der variable v = 0.1. First joint (top), second joint (middle)

and control effort (bottom).

As expected, the closed loop performance becomes optimal after the
correct value for -y has been identified. Once this is done, then the controller
has no difficulty to follow the dynamic reference trajectory.

Other reference trajectories are possible, such as multisine, step, ramp,
etc. In these cases, the form of (3.7) has to be adjusted accordingly. How-
ever, the application envisaged in this study is for medical purposes, i.e.
radiation of a lung tumour whereas the robot arm must follow the move-
ment of the tumour in the lung tissue during breathing. Hence, reference
trajectories of the sinusoidal form are within the scope of the paper.
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FIGURE 3. Output of the first joint (top), second joint (mid-
dle) and control effort (bottom) for changing value of gamma
at instant 2.5 seconds.

5. Conclusions

In this paper, a sliding mode control of a dynamic reference trajectory
is presented. The example used to illustrate the effectiveness of the control
can be widely encountered in industrial and medical applications.

Next steps are taken to test this methodology in a real life robot for ra-
diotherapy of lung tumour, whereas sinusoidal based reference trajectories
are employed.
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