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	is paper addresses the problem of control of an active suspension system accomplished using a computer. Delay in the states
due to the acquisition and transmission of data from sensors to the controller is taken into account. 	e proposed control strategy
uses state predictors along with sliding mode control technique. Two approaches are made: a continuous-time and a discrete-time
control. 	e proposed designs, continuous-time and discrete-time, are applied to the active suspension module simulator from
Quanser. Results from computer simulations and experimental tests are analyzed to show the e
ectiveness of the proposed control
strategy.

1. Introduction

	ere are di
erent approaches to control active suspension
systems: �∞ control [1, 2], proportional integral sliding
mode control [3, 4], linear quadratic regulator [5], fuzzy
controllers [6], articial neural networks [7], and so forth.
In this paper focus is given to problems that can arise when
computers do the control. In this context, the sampling time
involved in the process and possible delays sampled signals
may damage the control performance. 	ese signal delays
can arise in Networked Control Systems (NCS) where the
communication between the elements of the control loop is
done by a nonideal shared digital network [8, 9]. Wireless
Networked Control Systems (WNCS) usually show delays of
many sampling periods and cannot be ignored [10].

	e main advantage of Variable Structure Control with
Sliding Mode (VSC/SM) is its robustness with respect to
matched uncertainties, representing disturbances in control
input, and parametric uncertainties or even systemmodeling
uncertainties, provided that they belong to the image of

the control input matrix [11, 12]. When the control signal
is generated by microprocessors, besides sampling time, the
system performance is greatly compromised when delays
in both data acquisition and data transmission occur. In
VSC/SM, this issue is even more important. By using a
high speed switching control law in order to take the states
trajectory to a sliding surface dependent on the current
states, if the states used are delayed, the control law may
not direct the states to this surface, which can also generate
performance loss or even lead system to instability [13,
14]. 	e damage caused by delays to sliding mode control
motivates several studies [15–18].

	is paper proposes a strategy that uses state predictors
along with VSC/SM in order to perform control of an
active suspension system in presence of input control distur-
bance and data acquisition delay of many sampling periods.
With purpose of comparison, it proposes two designs: one
continuous-time control and one discrete-time control. In
both cases, the control signal is generated from a digital
computer.
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For the purpose of illustration, the results from proposed
controls, both continuous and discrete, are compared with
the results of a linear quadratic regulator [19, 20] proposed by
Quanser, the manufacturer of the active suspension system
used in the practice tests.

2. Control Strategies Proposed

	e objective of variable structure control with sliding mode,
by means of a high speed switching control law, is to lead the
state trajectory of the system to a surface in the state space and
ensure that it holds to this surface. 	e surface is designed so
that the system presents a desired dynamic when in sliding
mode. 	us, the VSC/SM design is made up of two steps: the
design of the switching surface and the design of the control
law [12].

	is section presents two controllers designs for state
delayed systems: one uses continuous-time equations and
the other uses discrete-time equations; that is, the sampling
period of the computer is taken into account. In both projects,
the proposed control strategy is to use a state predictor to
estimate the current states, which forms the VSC/SM law. In
this work the sampling period and the data acquisition delay
are considered as known. Also, all the states of the plant are
considered available.

2.1. Design of Sliding Surface. Consider a continuous-time
system in the regular form given by (1), where �1(�) ∈ R�−�,�2(�) ∈ R

�, � ∈ R
�×�, �11 ∈ R

(�−�)×(�−�), �12 ∈
R
(�−�)×�, �21 ∈ R

�×(�−1), and �22 ∈ R
�×� are constant

matrices:

[�̇1�̇2] = [�11 �12�21 �22] [�1�2] + [0�] � (�) . (1)

	e linear sliding surface proposed is given by (2), where�1 ∈ R�×(�−�), �2 ∈ R�×�, and (�) ∈ R�:
 (�) = �� (�) = [�1 �2] [�1 (�)�2 (�)] . (2)

Under these conditions, the dynamics of the states in
sliding mode is described by (3) [12]. Note that the dynamics
of the system, which previously had dimension �, is replaced
by dimension � − � when in sliding mode:

�̇1 (�) = [�11 − �12�−12 �1] �1 (�) . (3)

	e dynamics described by (3) has state feedback struc-
ture; thus one can use standard techniques to nd the gain, as
pole placement or quadratic optimal control [19].

Note that the sliding surface design in discrete-time is
made in an analogous manner to the continuous-time one,
and when the original system is not in the regular form, a
nonsingular coordinate transformation can be used to put it
in this form [21].

2.2. Continuous-Time Control Design. Consider the following
system:

�̇ (�) = �� (�) + �� (�) , (4)

Controller

Plant

Data
acquisition

x(t)

x(t − h)u(t − h)

Figure 1: Representation of data acquisition delay using emulation.

where �(�) ∈ R
� is the state vector; �(�) ∈ R

� is the
control vector; the matrices � and � are constants and with
appropriate dimensions.

In this paper, it is considered that the control signals
are generated by microprocessor and the states feedback is
done by a data acquisition system, including analog/digital
converters. Time delays may occur in data acquisition and
data transmission; these delays are considered known and
constant. Figure 1 is a schematic in which is illustrated
this condition through emulation, that is, using small sam-
pling periods so that the system can be approximated as a
continuous-time.

If the control signals are generated from the delayed-time
sampled states �(� − ℎ), then the controller will generate the
control signal �(� − ℎ); that is, controlled plant (4) that was
free of delay becomes a plant with delay described by (5):

�̇ (� − ℎ) = �� (� − ℎ) + �� (� − ℎ) . (5)

Generally delays adversely a
ect the performance of control
systems, whatever control method is used. In particular,
under the approach of the VSC/SM, eliminating the data
acquisition delay becomes important, because it is very
sensitive to any kind of delay.

	e estimator presented in (6) [22] will be used in order
to estimate the current state:

�� (�) = ��ℎ� (� − ℎ) + ∫0
−ℎ
�−���� (� + �) d�, (6)

where ��(�) is the estimate of the current state vector (�(� −ℎ + ℎ) = �(�)).
	e dynamics of the predictive state vector ��(�) is free

of delay as can be viewed by (8), from the time derivative of��(�), as follows:

�̇� (�) = ��ℎ�̇ (� − ℎ) + �� (�) − ��ℎ�� (� − ℎ)
+ �∫0
−ℎ
�−���� (� + �) d�. (7)
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Substituting (5) into (7), one has

�̇� (�) = ��ℎ�� (� − ℎ) + ��ℎ�� (� − ℎ) + �� (�)
− ��ℎ�� (� − ℎ) + �∫0

−ℎ
�−���� (� + �) d�

= �{{{{{{{
��ℎ� (� − ℎ) + ∫0

−ℎ
�−���� (� + �) d�⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
	�(
)

}}}}}}}
+ �� (�)

= ��� (�) + �� (�) ,
(8)

that shows that the state predictive dynamics is free of delay.
Now, consider an uncertain system undergoes delay

during data acquisition; in this case the dynamics of the
system is represented by

�̇ (� − ℎ) = �� (� − ℎ) + �� (� − ℎ) + Δ# (�) . (9)

Applying the continuous predictor proposed, one has the
following predictive state:

�� (�) = ��ℎ� (� − ℎ) + ∫0
−ℎ
�−���� (� + �) d�. (10)

Again, its dynamics are calculated as

�̇� (�) = ��ℎ�̇ (� − ℎ) + �∫0
−ℎ
�−���� (� + �) d�

+ �� (�) − ��ℎ�� (� − ℎ) .
(11)

But replacing (9) in (11)

�̇� (�) = ���ℎ� (� − ℎ) + ��ℎ�� (� − ℎ) + ��ℎΔ# (�)
+ �∫0
−ℎ
�−���� (� + �) d� + �� (�) − ��ℎ�� (� − ℎ)

= �{{{{{{{
��ℎ� (� − ℎ) + ∫0

−ℎ
�−���� (� + �) d�⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
	�(
)

}}}}}}}
+ �� (�) + ��ℎΔ# (�)

= ��� (�) + �� (�) + ��ℎΔ# (�) .
(12)

	erefore, in this case, the initial uncertainty of the

system Δ#(�) becomes ��ℎΔ#(�) and may in�uence the
system dynamics in sliding even though it was originally a
matched uncertainty. 	us, even when the system presents
uncertainties in the plant, the dynamics of predictive state
remain free of delays.

	erewith, one can develop the conventional VSC/SM
design from predictive state vector ��(�). 	e sliding surface
is given by

 (�) = ��� (�) , (13)

where � ∈ R�×� is one constant matrix, which establishes the
system dynamics in sliding mode.

	e purpose of the VSC/SM is to nd a control law which
ensures the existence of the sliding mode. A control law that
achieves this goal consists of one continuous part along with
one discontinuous part, as proposed in Decarlo et al. [12]:

� (�) = �eq (�) + �� (�) , (14)

where �eq(�) is the continuous part called equivalent control
and ��(�) is the discontinuous part.

	e equivalent control is that which determines the
dynamics of the system in sliding mode. It is found using the
condition described by

̇ (�) = ��̇� (�) = 0. (15)

Given that in sliding mode ��(�) = 0 and considering the
product �� nonsingular, we have

̇ (�) = � (��� (�) + ��eq (�)) = 0, (16)

�eq (�) = −(��)−1 (��) �� (�) . (17)

	e discontinuous control part (��(�)) is responsible for
bringing and maintaining the system state trajectory to the
sliding surface. It is found using a generalized Lyapunov
function which ensures the convergence of state trajectory
to the sliding surface. Consider the following Lyapunov
function candidate:

& (�) = 12(�)� (�) . (18)

	e time derivative of &(�) is negative denite if
&̇ (�) = (�)�̇ (�) < 0. (19)

In view of the control given in (14) and (17) it follows that

̇ (�) = (��) �� (�) . (20)

A control law that satises (19) considering (20) and
assuming �� = ' is given in

�� (�) = [��1 (�) ⋅ ⋅ ⋅ ��� (�)]�, (21)

where ��(�) is given by

�� (�) = -  (�)//// (�)//// , - < 0, 3 = 1, . . . , �. (22)

Control law (22) su
ers from the chattering problem. A
modication to reduce this e
ect is proposed in Spurgeon
and Davies [23] and presented in

�� (�) = -  (�)//// (�)//// + 4 , - < 0, 4 5→ 0+, 3 = 1, . . . , �.
(23)

	is paper will use only the expression continuous sliding
mode control (CSMC) to refer to the control described by
(14), (17), (21), and (23).
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2.3. Discrete-Time Control Design. In the control scheme
shown in Figure 1, it is assumed now that the signals are
sampled in the sampling period 78. 	us, the dynamic
representation of the controlled plant in discrete-time state
space is given by

� (9 + 1) = Φ� (9) + ΓV (9) , (24)

where �(9) is the state vector sampled at time 978 and V(9)
is the control vector created at the same time. 	e matricesΦ ∈ R

�×� and Γ ∈ R
�×� are constants and they depend on

the sampling period 78.
Now, the time delay in the system states caused by data

acquisition and/or data transmission is taken into account.
	is delay is given by ℎ = �78. Similar to the continuous
case, if the control signals are generated from the delayed
sampled states �(9 − �) then the control law will be V(9 −�); that is, controlled plant (24), that was free of delay,
becomes a plant with control delayed in � samples. So the
representation of the system dynamics sampled with delay is
given by

� (9 − � + 1) = Φ� (9 − �) + ΓV (9 − �) . (25)

In order to estimate the current states sampled, an
estimator in the form of (26), adapted from Xia et al. [24],
is used:

�� (9) = Φ�� (9 − �) + 0∑
=−�+1

Φ−ΓV (9 − 1 + 3) , (26)

where ��(9) is the current vector state estimate (�(9 − � +�) = �(9)).
	e dynamics of the predictive state is free of delay as can

be seen from (28) by calculating ��(9 + 1), as follows:

�� (9 + 1) = Φ�� (9 − � + 1) + 0∑
=−�+1

Φ−ΓV (9 + 3) . (27)

Substituting (25) into (27), it comes to

�� (9 + 1)
= Φ� [Φ� (9 − �) + ΓV (9 − �)]
+ 0∑
=−�+1

Φ−ΓV (9 + 3)
= Φ�Φ� (9 − �) + Φ�ΓV (9 − �)
+ 0∑
=−�+1

Φ−ΓV (9 + 3)

= Φ�Φ� (9 − �)
+ [ −1∑
=−�+1

Φ−ΓV (9 + 3) + Φ�ΓV (9 − �)] + ΓV (9)

= ΦΦ�� (9 − �) + −1∑
=−�

Φ−ΓV (9 + 3) + ΓV (9)

= ΦΦ�� (9 − �) + 0∑
=−�+1

Φ−+1ΓV (9 + 3 − 1) + ΓV (9)

= Φ
{{{{{{{{{
Φ�� (9 − �) + 0∑

=−�+1
Φ−ΓV (9 − 1 + 3)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

	�(�)

}}}}}}}}}
+ ΓV (9)

= Φ�� (9) + ΓV (9) .
(28)

If the digital system with data acquisition delay consid-
ered is uncertain, as described by (29)

� (9 − � + 1) = Φ� (9 − �) + ΓV (9 − �) + Δ# (9) , (29)

the predictive state is given by

�� (9) = Φ�� (9 − �) + 0∑
=−�+1

Φ−ΓV (9 − 1 + 3) . (30)

Calculating ��(9 + 1) it follows that

�� (9 + 1) = Φ�� (9 − � + 1) + 0∑
=−�+1

Φ−ΓV (9 + 3) . (31)

Using (29) one reaches

�� (9 + 1) = Φ� [Φ� (9 − �) + ΓV (9 − �) + Δ# (9)]
+ 0∑
=−�+1

Φ−ΓV (9 + 3)
= Φ�+1� (9 − �) + Φ�ΓV (9 − �)
+ Φ�Δ# (9) + 0∑

=−�+1
Φ−ΓV (9 + 3)

= Φ�+1� (9 − �) + −1∑
=−�

Φ−ΓV (9 + 3)
+ ΓV (9) + Φ�Δ# (9)
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= Φ�+1� (9 − �) + 0∑
=−�+1

Φ−+1ΓV (9 + 3 − 1)
+ ΓV (9) + Φ�Δ# (9)

= Φ[[[[
[
Φ�� (9 − �) + 0∑

=−�+1
Φ−ΓV (9 + 3 − 1)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

	�(�)

]]]]
]

+ ΓV (9) + Φ�Δ# (9)
= Φ�� (9) + ΓV (9) + Φ�Δ# (9) .

(32)

	us, the dynamics of predictive state is free from delays
even in the presence of uncertainties in the plant. Note thatΔ#(9) has been multiplied by Φ�; that is, assuming thatΔ#(9)was initially amatched uncertainty it lets this condition
bypass through the predictor.

	erefore, as the predictive state dynamics is free of delay
one can develop the VSC/SM design from the predictive state
vector ��(9). A discrete sliding surface is given by

 (9) = G�� (9) , (33)

where G ∈ R
�×� is a constant matrix, which establishes the

system’s dynamic in sliding mode.
	e discrete control law that establishes a sliding mode is

proposed by Garcia et al. [25]:

V (9) = Veq (9) + V� (9) , (34)

where Veq(9) is the equivalent control that determines the
dynamics of the system in sliding mode and V�(9) is respon-
sible for taking the system to the sliding mode.

	e equivalent control is found when it is guaranteed that
the state trajectory remains on the surface, that is,

 (9 + 1) = G�� (9 + 1) =  (9) = G�� (9) . (35)

Replacing the system (25) into (35), considering GΓ
nonsingular, and recalling that in sliding mode V�(9) = 0,
one nds

Veq (9) = −(GΓ)−1G (Φ − ') �� (9) , (36)

where ' denotes the identity matrix with appropriate dimen-
sions.

	e control V�(9) is chosen to ensure the convergence
of the state trajectory to the sliding surface. 	is problem is
similar to a stability problem, and one can use the discrete-
time Lyapunov’s second method to solve this.

Consider the following Lyapunov function candidate:

& (9) = (9)� (9) . (37)

To ensure convergence &(9 + 1) < &(9) must be true.
Substituting (37) in this condition, one has

(9 + 1)� (9 + 1) < (9)� (9) . (38)

Note that

Δ (9) =  (9 + 1) −  (9)
= G�� (9 + 1) − G�� (9)
= G [Φ�� (9) + ΓV (9)] − G�� (9) .

(39)

Considering (34) and (36), one comes to

Δ (9) = GΓV� (9) . (40)

From (38) one has

(9)�Δ (9) < −12Δ(9)�Δ (9) . (41)

Substituting (40) into (41)

(9)�GΓV� (9) < −12[GΓV� (9)]� [GΓV� (9)] . (42)

Assuming GΓ = ', condition (42) becomes

(9)�V� (9) < −12V�(9)�V� (9) . (43)

A control law that satises (43) is (44) along with (45):

V� (9) = [V�1 (9) ⋅ ⋅ ⋅ V�� (9)]�, (44)

V� (9) = −J (9) , 0 < J < 2. (45)

In this text only the expression discrete sliding mode
control (DSMC) will be used to refer to control law (34), (36),
and (44)-(45).

3. Application to Active Suspension System

3.1. Mathematical Model. 	ere are three di
erent active
vehicle suspensions models found in the literature. 	ese are
entire vehicle suspension models [1, 7], half car models [3, 4],
and quarter car models [2, 5, 6, 26].

	is paper utilizes a state space linear model of a quarter
of vehicle corresponding to Quanser’s bench active suspen-
sion system. Its diagram is shown in Figure 2 [20].

	e active suspension system can be modeled as a dou-
ble mass-spring-damper system [20]. 	us, the two system
inputs are control signal K�(�) and the derivative of road
surface L̇�(�).

	e coordinate L��(�) represents the displacement of the
tire, which has massM��, and the coordinate L�(�) represents
the displacement of the vehicle body, which hasmassM�.	e
movements are related to the movement imposed by the road
surface on which the vehicle is traveling L�(�).

	e motion equations of the system are obtained using
the free body diagram method and can be described in the
state space in the formof (46).	eQuanser Innovate Educate
[20] presents a detailed deduction of this model:

�̇ (�) = �� (�) + �1� (�) + �2� (�) . (46)
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Figure 2: Diagram of Quanser’s bench active suspension system
[20].

In (46), the �1 is the related matrix to the road surface
derivative (L̇�(�)) and �2 is the related matrix to the control
signal (K�(�)).

	e four states considered accessible are dened in

� (�) = [[[
[

L� (�) − L�� (�)L̇� (�)L�� (�) − L� (�)L̇�� (�)
]]]
]
. (47)

	e rst state is the suspension travel. 	e second state
is the vehicle body vertical velocity. 	e third state is the tire
de�ection. 	e fourth state is the wheel vertical velocity. 	e
rst input, �(�), is the road surface velocity (L̇�(�)).	e second
input, �(�), is the control action (K�(�)).

	e matrices �, �1, and �2 from (46) are shown in

� =
[[[[[[[
[

0 1 0 −1
− 9��� −

��M� 0 − ��M�0 0 0 19�M��
��M�� −

9��M�� −
�� + ���M��

]]]]]]]
]
,

�1 =
[[[[[
[

00−1���M��

]]]]]
]
, �2 =

[[[[[[
[

01M�0
− 1M��

]]]]]]
]
.

(48)

3.2. Application of the Proposed Control to Active Suspension
with Data Acquisition Delay. 	e numerical values of the
state space matrices �, �1, and �2, in (46) and (48), are
calculated from data provided by the manufacturer’s manual
[27], shown in Table 1.

	e calculations involved in the design of the controllers
were performed using Matlab language and based on the
nominal values given by the manufacturer. However, in
Section 4 uncertaintieswere included in order to demonstrate
robustness, shown in Section 2.

Table 1: Physical parameters of Quanser’s bench active suspension
system [27].

Description Symbol Value

Spring sti
ness between car body and tire 9� 900N/m

Damping coe�cient between car body
and tire

�� 7,5 (N/m) N
Car body mass M� 2,45 kg

Spring sti
ness between tire and road 9�� 2500N/m

Damping coe�cient between tire and
road

��� 5 (N/m) N
Tire mass M�� 1 kg

Disturbance

Data
acquisition

predictor

predictor

Continuous

Discrete

CSMC

DSMC

LQR

Plant

Control algorithm x(k − h)

+

+ x(t)

u(t)

Figure 3: Comparison scheme between control methods.

For the continuous-time control design, (14), (17), (21),
and (23), the �matrix from sliding surface (13) was calculated
as

� = [27.3055 2.2188 −28.2237 −0.0944] . (49)

Such poles on sliding mode are U1 = −23.0114, U2 =−24.0955 + 25.1044V, and U3 = −24.0955 − 25.1044V. 	e
other parameters used are - = −25 and 4 = 0.06, which
were chosen empirically respecting the physical constraints
imposed by the equipment. 	e sampling period for this
control was chosen to be 1ms so that the emulation presented
good results.

For the discrete-time control design, (34), (36), and (44)-
(45), it was considered 3ms sampling period, andG from (33)
was designed as (50) such that the system poles in sliding
mode in L plane were L1 = 0.9333, L2 = 0.9276+0.0700V, andL3 = 0.9276 − 0.0700V, corresponding to the poles chosen in
continuous-time using the sample period established. It also
used J = 0.3, observing the equipment’s restrictions:

G = [8397.4 682.9 −8704.2 −30.1] . (50)

In computer simulations, and also on the bench, it was
implemented a scheme to compare the performances of
CSMC and DSMC proposed in this paper and also a
conventional LQR control proposed by the manufacturer
[20]. Such scheme is shown in Figure 3 and has been
implemented in Matlab/Simulink. 	e considered LQR
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Figure 4: Experimental tests.
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control minimizes the quadratic performance index X =∫∞0 �(�)�Z�(�)+�(�)�\�(�)d� in continuous-time [19] or X =
∑∞0 �(9)�Z�(9)+V(9)�\V(9) in discrete-time [28] and has as
design matrices Z = diag([450 30 5 0.01]) and \ = 0.01.
Several other methods considered robust could be applied
[1, 2, 7, 26].

	e practical experiments were performed in Quanser’s
bench active suspension system [27] using Quanser’s
AMPAQ current amplier [29] and QPID data acquisition
board [30], according to the scheme shown in Figure 4(a).
In this scheme, the computer (PC Dell with Intel Core
Quad 2.40 GHz), provided with Matlab/Simulink Real-Time
and Quanser Quarq v 2.2, implements the controls used:
continuous-time and discrete-time LQR, continuous-time
predictor CSMC and discrete-time predictorDSMC.Analog-
to-digital converters are used in communication with the
bench system. 	e equipment used in the experiments
is presented in Figure 4(b), realizing that the equipment
remains xed on a bench, and the road surface is emulated
by the movement of the lower plate of the equipment [20].

	e format of the road surface was chosen based on
the work of Sam and Osman [3] and Sam et al. [4], which
represent a typical road surface by (51). It used 8 = 0.03m
for 0.5 ≤ � ≤ 0.75 and 5 ≤ � ≤ 5.25 and 8 = 0.01m for

3 ≤ � ≤ 3.25. In Figure 5 is presented the road surface prole
used:

L� (�) =
{{{{{{{{{{{

8 (1 − cos (8`�))2 if 0.5 ≤ � ≤ 0.75
or 3 ≤ � ≤ 3.25
or 5 ≤ � ≤ 5.25,0 otherwise.

(51)

However, other road surfaces possibilities exist in the
literature and could have been used like square wave [26] and
random road prole [6, 7], among others [1, 5].

To check the robustness of the CSMD and DSMD
controls, a disturbance in the control signal actuator was
introduced in most tests. 	e disturbance used was a sine
wave with frequency 0.2Hz and amplitude equal to 4N.
4. Obtained Results and Discussion

4.1. Predictor Necessity. In Figures 6 and 7 are presented
simulation results for the CSMC and DSMC controls with
sampling periods of 1ms and 3ms, respectively, and with
a delay of 12 sample periods (12ms and 36ms) without
predictors. As shown in these gures, data acquisition delays
let CSMC and DSMC controls be ine
ective.

In the Sections 4.2 and 4.3 is shown in simulation and
practical experiments that the use of state predictors is
e
ective means that enable use of variable structure control
when there is data acquisition delay.

4.2. Continuous-Time Control Results. In Figures 8 and 9
is shown the response of the control system using CSMC
with continuous predictor (CP-CSMC) compared with the
LQR controller results, proposed by the manufacturer. In
these graphs the system su
ers delay of 12 sampling periods
(12ms) and disturbances in the control input. 	ese graphs
contain simulation and experimental results (usingQuanser’s
bench active suspension system) on which one notes that the
CP-CSMC rejected the disturbance.

In Figures 10 and 11 the results obtained when the data
acquisition su
ers 60 sampling periods’ delay (60ms) are
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Figure 6: Simulation results for CSMC control with 12 sampling periods’ delay without predictor. (a) Car body displacement and (b) control
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Figure 8: Car body displacement with delay of 12 sampling periods in data acquisition and disturbance in the control input.
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Figure 9: Control signal with delay of 12 sampling periods in data acquisition and disturbance in the control input.
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Figure 10: Car body displacement with delay of 60 sampling periods in data acquisition and disturbance in the control input.
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Figure 11: Control signal with delay of 60 sampling periods in data acquisition and disturbance in the control input.



10 Mathematical Problems in Engineering

0

0.01

0.02

0.03

0.04
D

is
p

la
ce

m
en

t 
(m

)

0 1 2 3 4 5 6 7

Time (s)

−0.03

−0.02

−0.01

CP-CSMC 3ms

CP-CSMC 1ms

(a) Simulation result

0 1 2 3 4 5 6 7

Time (s)

0

0.01

0.02

0.03

0.04

D
is

p
la

ce
m

en
t 

(m
)

−0.03

−0.02

−0.01

CP-CSMC 3ms

CP-CSMC 1ms

(b) Bench result

Figure 12: Comparison between car body displacements with delay of 12 sampling periods in data acquisition without disturbance in the
control input using di
erent sampling periods.
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Figure 13: Comparison between control signals with delay of 12 sampling periods in data acquisition without disturbance in the control
input using di
erent sampling periods.
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Figure 14: Car body displacement with delay of 12 sampling periods in data acquisition and disturbance in the control input.
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Figure 15: Control signal with delay of 12 sampling periods in data acquisition and disturbance in the control input.
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Figure 16: Car body displacement with delay of 60 sampling periods in data acquisition and disturbance in the control input.
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Figure 17: Control signal with delay of 60 sampling periods in data acquisition and disturbance in the control input.
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shown. Even in this extreme condition, the control model
composed of the pair continuous predictor-CSMC remained
with good performance, while the LQR control showed very
bad performance.

	e graphs in Figures 8–11 demonstrate the e
ectiveness
of continuous predictor along with CSMC to control systems
with data acquisition delay when are used small sampling
periods.

When this sampling period increases, the continuous
control displays deterioration in their performance. It is
no di
erent from the proposed control, as can be seen in
Figures 12 and 13 where, even in the absence of disturbance
in the control input, the control performance of continuous
predictor-CSMC is unsatisfactory when the sampling period
is 3ms.

To deal with larger sampling periods, where the emu-
lation becomes ine�cient, one uses the discrete control
approach, whose results are presented in Section 4.3.

4.3. Discrete-Time Control Results. 	is test stage uses sam-
pling periods of 3ms, during which continuous control
showed poor results. In Figures 14, 15, 16, and 17 are presented
simulation and bench results to delays in data acquisition
from 12 and 60 sampling periods (36ms and 180ms) and
disturbance in the control input of the system with discrete
predictor-DSMC (DP-DSMC).	e results are comparedwith
the discrete LQR results (DLQR) designed withmatrices pro-
posed by Quanser, the manufacturer of the active suspension
system bench.

Note that the pair discrete predictor-DSMC remained
with good results even when the system su
ers large delays
in data acquisition and the LQR controller, despite its lower
sensitivity to such delays, cannot resist the delay of 60
sampling periods of delay, and bench results were not possible
in this case.

5. Conclusions

In this paper, the problem of data acquisition delays in
continuous-time and discrete-time sliding mode control
when performed by a computer was analyzed.

An approach containing a state predictor has been suc-
cessfully employed in order to overcome the problem of data
acquisition delay, even in the presence of large delays, along
with either continuous or discrete sliding mode control.

In the absence of state predictor, it was shown that
controls CSMC and DSMC have poor results when there is
data acquisition delay in the system. Moreover, it was shown
that the use of predictors is able to overcome this di�culty, in
simulations and practical applications. So the CP-CSMC and
DP-DSMC controllers reject the matched uncertainty, even
with delay time presence.
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