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Abstract— A dynamical sliding-mode control is used to avoid
different bit sticking problems present in a conventional vertical
oilwell drillstring. The control goal of driving the rotary
velocities of drillstring components to a constant positive value
is achieved by means of this control. A discontinuous lumped-
parameter torsional model of four degrees of freedom is
considered. This model allows to describe drill pipes and drill
collars behavior. The closed-loop system has two discontinuity
surfaces. One of them gives rise to self-excited bit stick-slip
oscillations and bit sticking phenomena. The other surface is
introduced to accomplish the control goal despite variations in
the weight on the bit (key to the dynamics) and other system
parameters.

Index Terms— Sliding motions, nonlinear control, oilwell
drillstrings, dry friction, discontinuous systems.

I. INTRODUCTION

Oilwell drillstrings are mechanisms that play a key role

in the petroleum extraction industry. Failures in drillstrings

can be significant in the total cost of the perforation pro-

cess. These devices are complex dynamical systems with

many unknown and varying parameters due to the fact that

drillstring characteristics change as the drilling operation

makes progress. The drillstring interaction with the borehole

gives rise to a wide variety of non-desired oscillations.

These oscillations are a major cause of drillstring component

failures [1]–[3]. Permanent stuck bit and stick-slip at the bit

are two phenomena particularly harmful. The first happens

when the bit is unable to rotate, and the second causes

the top-rotary system to move with a constant rotary speed,

whereas the bit rotary speed varies between zero and up to

six times the rotary speed at the surface.

Drillstrings complexity poses a modelling and a control

problem. The model has to reproduce the most relevant

phenomena arising in practice and has to be simple enough

for analysis and control purposes. The control must deal with

complex dynamics and be robust to operating conditions.

The great practical significance of oilwell drillstrings has

interested some researchers. Several approaches have been

used to treat the modelling and control problems. Most of

them deal with the torsional behavior and the suppression

of stick-slip oscillations. To keep a more simple analysis,

This work has been partially supported by the Ministerio de Educación

y Ciencia of Spain (MEC) under Ramón y Cajal research contract

lumped-parameter models have been proposed. Most of them

are of one degree of freedom (DOF) [4], [5] and two DOF

[1]–[3], [6]–[9]. For the control problem, there are also

several solutions. For example, [4], [7], [10] proposed a

vibration absorber at the top of the drillstring (referred to as

soft torque rotary system). A classical PID control structure

at the surface is used in [6], [11], [12]. More sophisticated

techniques are used in [3] and [9] where a linear quadratic

regulator and a linear H∞ control are used, respectively.

Recently in [13], an analysis of bifurcations and transitions

between several bit dynamics has been reported. In this work,

the existence of a sliding motion on the discontinuity surface

when the bit velocity is zero is shown to depend on the

weight on the bit (WOB) and the torque given by the surface

motor. By using the idea of introducing another discontinuity

surface and forcing the system to evolve along this surface,

in the present paper, a dynamical sliding-mode control is

proposed to maintain the rotary velocities to a desired value

without bit sticking phenomena. If the system trajectories

reach this surface, they will enter in a sliding regime. On this

surface, the rotary velocities will tend to the reference value

and the bit rotary speed will follow the top-rotary system

speed after a reasonable time, which can be adjusted by a

proper selection of the two controller gains. Sliding-mode

control has been effectively used in many practical control

problems, see for example [14]–[16].

A lumped-parameter discontinuous torsional model with

four DOF is considered. This model is a particular case

of the generic n-dimensional model proposed in [13]. The

model used here considers the drill pipe and drill collars

dynamics. It is more general than the torsional lumped-

parameter models of one and two DOF [1]–[9], [12] previ-

ously proposed. The bit-rock contact is modelled by means

of a dry friction combined with an exponential decaying law,

which introduces the discontinuity in the open-loop system.

In Section 2, a discontinuous torsional model for the

drillstring including the bit-rock interaction is presented.

Section 3 is based on previous results [13], which are very

useful for the closed-loop system analysis. It relates bit

sticking problems with the existence of a sliding motion

when the bit velocity is zero. Section 4 proposes a dynamical

sliding-mode control which overcomes the existing sliding
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motion when the bit angular velocity is zero and drives the

rotary velocities to a desired value. The chattering problem

when system trajectories move on the discontinuity surface

is prevented. Simulations results are given in Section 5.

Some implementation issues and controller advantages are

also discussed. Conclusions are given in the last section.

II. TORSIONAL MODEL OF A DRILLSTRING

Three main parts can be highlighted in a conventional

vertical oilwell drillstring: 1) the surface rotating mechanism,

2) a set of drill pipes screwed one to each other, 3) the

bottom-hole assembly (BHA), which consists of the drill

collars, the stabilizers, a heavy-weight drill pipe and the bit

(the cutting device). In this paper, the BHA, excepting the bit,

will be considered as one block referred to as drill collars.

The drill collars are stiffer than the drill pipes and the bit in

order to prevent the drillstring from underbalancing.

Figure 1 depicts a simplified torsional model of the drill-

string. It consists of four kinds of elements: 1) the top-rotary

system (Jr), 2) the drill pipes (Jp), 3) the drill collars (Jl),

4) the bit (Jb). The inertias are connected one to each other

by linear springs with torsional stiffness (kt , ktl , ktb) and

torsional damping (ct , ctl , ctb). A viscous damping torque

is considered at the top-drive system (Tar ) and at the bit

(Tab
). A dry friction torque (Tfb) is considered at the bit.

The equations of motion are the following ones:

ϕ̈r = −
ct

Jr

(ϕ̇r − ϕ̇p)−
kt

Jr

(ϕr −ϕp)+
Tm −Tar(ϕ̇r)

Jr

, (1a)

ϕ̈p =
ct

Jp

(ϕ̇r − ϕ̇p)+
kt

Jp

(ϕr −ϕp)−
ctl

Jp

(ϕ̇p − ϕ̇l)−

−
ktl

Jp

(ϕp −ϕl), (1b)

ϕ̈l =
ctl

Jl

(ϕ̇p − ϕ̇l)+
ktl

Jl

(ϕp −ϕl)−
ctb

Jl

(ϕ̇l − ϕ̇b)−

−
ktb

Jl

(ϕl −ϕb), (1c)

ϕ̈b =
ctb

Jb

(ϕ̇l − ϕ̇b)+
ktb

Jb

(ϕl −ϕb)−
Tb(x)

Jb

, (1d)

with ϕi, ϕ̇i (i ∈ {r, p, l,b}) the angular displacements and

angular velocities of drillstring elements, respectively. Tm is

the torque coming from the electrical motor at the surface.

The actuator dynamics is not considered, and Tm = u, with

u the control input. Tar = crϕ̇r, with cr the viscous damping

coefficient; x is the system state vector defined as:

x = (ϕ̇r, ϕr −ϕp, ϕ̇p, ϕp −ϕl, ϕ̇l , ϕl −ϕb, ϕ̇b)
T =

= (x1, x2, x3, x4, x5, x6, x7)
T .

(2)

Finally, Tb is the torque on the bit:

Tb(x) = Tab
(x7)+ Tfb(x). (3)

Tab
= cbx7 approximates the influence of the mud drilling

on the bit behaviour. Tfb(x) is the friction modelling the

bit-rock contact, and is considered as a combination of the

ctkt

'r

Tm

'b

ctlktl

ctbktb

Tar

Ta b+ Tfb

'ç r

'ç b

Jb

Top-rotary system

Drill pipes

Drill collars

Bit

Jl

Jr

Jp

Fig. 1. Mechanical model describing the torsional behaviour of a conven-
tional drillstring.

switch model [18] and the dry friction model in which a zero

velocity band is introduced (Karnopp’s model) [19]. Thus,

Tfb(x) =











Teb
(x) if |x7| < Dv, |Teb

| ≤ Tsb

Tsb
sgn(Teb

(x)) if |x7| < Dv, |Teb
| > Tsb

WobRbµb(x7)sgn(x7) if |x7| ≥ Dv

(4)

with Dv > 0, Teb
the reaction torque, that is, the torque that

the static friction torque Tsb
= WobRbµsb

must overcome so

that the bit moves, Rb > 0 is the bit radius and Wob > 0 the

WOB. µb(x7) is the bit dry friction coefficient considered as,

µb(x7) = µcb
+(µsb

− µcb
)e

−
γb
v f

|x7|
, (5)

with µsb
, µcb

∈ (0,1) the static and Coulomb friction coeffi-

cients associated with Jb; 0 < γb < 1 and v f > 0. Teb
is,

Teb
= ctb(x5 − x7)+ ktb x6 −Tab

(x7). (6)

Friction model (4) will be used for simulations. However,

for simplicity’s sake, the function

Tfb(x7) = WobRbµb(x7)sgn(x7), (7)

will be used for analysis purposes. The exponential decaying

behaviour of Tb coincides with experimental bit torque values

and is inspired in the models given in [1], [6], [11].

Using (2), system (1) can be written as:

ẋ1 =
1

Jr

[−(ct + cr)x1 − ktx2 + ctx3 + u],

ẋ2 = x1 − x3,

ẋ3 =
1

Jp

[ctx1 + ktx2 − (ct + ctl)x3 − ktl x4 + ctl x5] ,

ẋ4 = x3 − x5,

ẋ5 =
1

Jl

[ctl x3 + ktl x4 − (ctl + ctb)x5 − ktb x6 + ctb x7] ,

ẋ6 = x5 − x7,

ẋ7 =
1

Jb

[

ctb x5 + ktb x6 − (ctb + cb)x7 −Tfb(x)
]

,

(8)
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or in a compact form,

ẋ(t) = Ax(t)+ Bu + Tf(x(t)), (9)

where A, B are constant matrices depending on system

parameters and Tf represents the torque on the bit.

Notice that model (8) is a 7-dimensional discontinuous

nonlinear system. The discontinuity is introduced by the

bit-rock friction, which causes different complex dynamical

phenomena, some of them are presented in Section 3.

III. BIT STICKING PHENOMENA AND SLIDING MOTION

EXISTENCE IN THE OPEN-LOOP SYSTEM

Figure 2 shows a simulation of system (8). Parameters

used for the simulation correspond to a real drillstring design

[20] with a drill pipeline consisting of 130 drill pipes of

5 inches of outer diameter (OD), 4.408 inches of inner

diameter (ID) and 9 meters of length, and a roller-cone bit

of 6
1
2 (ID), 12

1
4 (OD) and 1.5 meters of length. Then,

Jr = 930kgm2, Jb = 471.9698kgm2, Rb = 0.155575m,

Jp = 2782.25kgm2, Jl = 750kgm2, cr = 425N ms/rad,

kt = 698.063N m/rad, ktl = 1080N m/rad, µcb
= 0.5,

ktb = 907.48N m/rad, ct = 139,6126N ms/rad, µsb
= 0.8,

ctl = 190N ms/rad, ctb = 181.49, N ms/rad,

cb = 50N ms/rad, Dv = 10−6, γb = 0.9, v f = 1.
(10)

Together with these parameters, Wob = 97347N, u = 10kNm

were used. The oscillations obtained for the drill pipe and

drill collars associated with the stick-slip bit motion are in

accordance with real drilltrings operation. Hence, model (8)

appropriately describes stick-slip oscillations and other bit

non-desired bit sticking situations.

By using an n-DOF model, in [13], it is shown that the

existence of a sliding motion on a subset of the switching

manifold is the cause of the presence of bit sticking phenom-

ena. In [13], a range of (Wob,u) is identified for non-desired

bit situations to appear. These results are adapted for the

model used in this paper and will be very useful for the

discussion presented in Section 5.

Fig. 2. Stick-slip in system (8): (1) angular velocities, (2) trajectory of the
system in the space (ϕl −ϕb, ϕ̇l , ϕ̇b). xin (•) and xout (�) are the points at
which the system trajectory enters and goes out of the sticking region. F

quasi-equilibrium point (x̃b), Σ̃b sliding region when ϕ̇b = 0.

Let Σb be the switching manifold and Σ̃b ⊂ Σb be the

sliding region. For system (8), Σb := {x ∈ R
7 : x7 = 0}, and

the sliding region has the form,

Σ̃b = {x ∈ Σb : |ktb x6 + ctb x5| < WobRbµsb
}.

Three main kinds of bit dynamical behaviors can be

identified: 1) stick-slip at x7, that is, the trajectory enters and

leaves repeatedly the sliding mode; 2) permanent stuck bit,

i.e., x(t) ∈ Σ̃b, ∀t; 3) the bit moves with a positive constant

velocity.

Let x̃b be the quasi-equilibrium point existing on Σb.

In [13], it is also shown that the relative position of x̃b

with respect to the boundary of Σ̃b plays a key role in the

elimination of bit sticking problems. The bit will move with

a constant positive velocity when x̃b is far away enough

from the boundary of Σ̃b, and this is accomplished when

u is greater enough than WobRbµsb
.

IV. SLIDING-MODE-BASED CONTROLLER

The control goal is to eliminate bit sticking phenomena

and make the bit move with a desired constant velocity (Ω >
0) established at the top-rotary system despite Wob and bit-

rock contact variations. This will be achieved by introducing

a surface along which the system trajectories enter a sliding

regime and the control goal is met (x7 −→ x1, x1 −→ Ω).

Let define the scalar function:

σr(x,t) = (x1 −Ω)+ λ

∫ t

0
[x1(τ)−Ω]dτ+

+ λ

∫ t

0
[x1(τ)− x7(τ)]dτ =

= (x1 −Ω)+ λ (x8 + x9),

ẋ8 = x1 −Ω, ẋ9 = x1 − x7,

(11)

with Ω > 0 the desired velocity value and λ > 0. If σr is

zero, x7 will approach x1 and x1 will approach Ω, which is

the control goal. For σr to approach zero, it is imposed that:

σ̇r = −ηsgn(σr), (12)

with η a constant to be chosen in order to have a sliding

motion on σr = 0.

From (11) and (12), the following control is obtained,

u = ct(x1 − x3)+ ktx2 + crx1−

− Jr [λ (x1 −Ω)+ λ (x1− x7)+ ηsign(σr)] .
(13)

Control u is discontinuous, and σr divides the state space

into two domains, thus:

u =

{

u+ if σr(x,t) > 0

u− if σr(x,t) < 0
(14)

with

u+ = ct(x1 − x3)+ ktx2 + crx1−

− Jr [λ (x1 −Ω)+ λ (x1− x7)+ η ] ,

u− = ct(x1 − x3)+ ktx2 + crx1−

− Jr [λ (x1 −Ω)+ λ (x1− x7)−η ] .

(15)
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Now, the stability of the controlled system will be proven.

Useful relationships will be obtained in the process.

Proposition 1: Consider system (8) with control (13)-

(11). If η > 0 then any trajectory of the system goes into

a sliding motion on σr(x,t) = 0.

Proof: Since u was proposed in such a way that (12) is

accomplished, it follows that σrσ̇r < 0, then, a sliding motion

takes place when the system trajectory hits the surface σr = 0

[17].

Let us examine that σr becomes zero in a finite time

interval ts. Consider relation (12). Assume that σr(x,t) > 0

with t0 = 0. Let ts be the time needed for σr to become zero.

Integrating (12) between t = t0 and t = ts, one yields to:

ts =
σr(x,t0)

η
.

Similarly, with σr(x,t0) < 0:

ts = −
σr(x,t0)

η
.

Combining both cases, ts leads to,

ts =
|σr(x,t0)|

η
.

Consequently, the bigger η is, the faster σr becomes zero;

however, the higher the control effort is.

When the system trajectories move along σr = 0, they are

governed by:

ẋ = fs(x), (16)

where fs is a vector field tangent to the sliding surface,

Σr := {x ∈ R
7, t ≥ ts : σr(x,t) = 0}. (17)

fs can be calculated by means of the equivalent control

method [14], [17] and has the form:

fs(x) = Ax + Bueq(x)+ Tf(x)
∣

∣

Tfb
=T+

fb
(Ω)

, (18)

with,

T +
fb

(Ω) = WobRb

[

µcb
+(µsb

− µcb
)e

−
γb
v f

Ω
]

.

The equivalent control ueq is the solution for u of equation

σ̇r = 0, that is:

ueq(x)= ct(x1−x3)+ktx2 +crx1−Jrλ [(x1 −Ω)+ (x1− x7)] .
(19)

The motion on Σr is determined by the stability properties

of the quasi-equilibrium point of (16). Let x̃r be the quasi-

equilibrium point of (16), which is on Σr. By making fs(x̃r)=
0, x̃r is obtained as,

x̃r,1 = x̃r,3 = x̃r,5 = x̃r,7 = Ω,

x̃r,2 =
1

kt

h(Ω), x̃r,4 =
1

ktl

h(Ω), x̃r,6 =
1

ktb

h(Ω),

h(Ω) = cbΩ + T+
fb

(Ω).

(20)

Proposition 2: The quasi-equilibrium point on Σr, x̃r,

given by (20) is asymptotically stable.

Proof: The following Lyapunov function is considered,

which corresponds to the sum of the kinetic and potential

energy of the system on Σr:

V (x, x̃r) =
1

2

[

kt(x2 − x̃r,2)
2 + ktl(x4 − x̃r,4)

2+

+ ktb(x6 − x̃r,6)
2 + Jr(x1 − x̃r,1)

2 + Jp(x3 − x̃r,3)
2+

+Jl(x5 − x̃r,5)
2 + Jb(x7 − x̃r,7)

2

]

.

The derivative of V along the trajectories of (16) is:

V̇ (x) = −ct(Ω− x3)
2 − ctl(x3 − x5)

2 − ctb(x5 − x7)
2.

Consequently, V̇ (x) ≤ 0. Due to the fact that V̇ (x) = 0 only

for x = x̃r, by LaSalle’s invariance principle [21], x̃r is

asymptotically stable.

It is interesting to notice that the quasi-equilibrium point

when the system trajectories evolve on Σr depends on: 1)

downhole characteristics, such as: bit geometric character-

istics (Rb), bit-rock contact (friction characteristics), mud

drilling viscosity characteristics (cb); 2) desired velocity (Ω);

3) flexibility of drillstring components (kt , ktl , ktb).

It is also interesting that according to relation σr = 0

when t ≥ ts, the trajectories will tend exponentially to x̃r

with a time depending on 1/λ , in addition to Ω and the bit

dynamics, mainly, the bit-rock contact depending on Wob,

Rb and friction coefficients. Moreover, |σr(x,t0)| depends

on λ and Ω. The higher λ or Ω is, the higher |σr(x,t0)|
is and, consequently, the higher ts is. Thus, λ and Ω also

influence the convergence to the sliding motion. The more

the sliding regime on Σr is delayed, the more oscillating the

system is. Extensive simulations have been carried out, and

the controlled system has a good performance for typical

operation values of Ω and 0 < λ ≤ 1.

V. SIMULATION RESULTS AND IMPLEMENTATION ISSUES

A. Results for the controlled system

To illustrate the performance of controller (13)-(11), it will

be applied to system (8) with parameters (10). The velocity

reference value is considered as Ω = 12rad/s, a typical value

in drilling operations. Similar results are obtained with other

values of Ω.

Due to changes in the function sgn(σr) when σr is next

to zero (because of imperfections in the implementation),

the chattering problem (very fast switching) can appear.

For this undesirable effect to dissappear, the sign function

is substituted by a saturation function [14], [15] with the

following form:

sat(σr/δ ) =











−1 if σr(x,t) < δ
σr

δ
if |σr(x,t)| ≤ δ

1 if σr(x,t) > δ

(21)

with δ > 0 small enough.

Using (21), relation (12) takes the following form,

σ̇r = −ηsat(σr/δ ), (22)
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Fig. 3. Angular velocities for the closed-loop system with and without
disturbance of controller terms: (1) controller (23)-(11) is applied to system
(8), (2) controller (24)-(11) is applied to the system.

and controller (13) is rewritten as,

u = ct(x1 − x3)+ ktx2 + crx1−

− Jr [λ (x1 −Ω)+ λ (x1− x7)+ ηsat(σr/δ )] .
(23)

It can be obtained that the time required for σr to be δ is

tδ = |σr(x,t0)−δ |/η and σr will exponentially tend to zero

for t ≥ tδ . The dynamics on the sliding surface Σr does not

change.

Figure 3.(1) shows the elimination of stick-slip oscillations

depicted in Fig. 2 when control (23)-(11) is applied to system

(8). Parameters (10) are used with Wob = 97347N and η = 3,

λ = 0.3, δ = 0.001. Notice that the control goal is met in a

reasonable time interval.

To show the robustness properties of the controlled system

under some parameters variation, instead of control (23), the

following control is used,

u = ∆1 ct(x1 − x3)+ ∆2 ktx2 + ∆3 crx1−

− Jr [λ (x1 −Ω)+ λ (x1− x7)+ ηsat(σr/δ )] ,
(24)

with ∆i positive constants. Results for ∆1 = 0.7, ∆2 = ∆3 =
0.8 are shown in Fig. 3.(2). According to typical system

parameters values, 0 ≤ ∆i ≤ 1 covers a reasonable variation

range of the parameters appearing in the control.

When (24) is applied to the system, it can be shown that

there will still exist a sliding motion on σr = 0 and the control

goal will be achieved, if the following relation is met,

|φ(x)| < η , (25)

with

φ(x) = (∆1 −1)
ct

Jr
(x1 − x3)+ (∆2 −1)

kt

Jr
x2 +(∆3 −1)

cr

Jr
x1.

Condition (25) can be almost always met for not so high

values of η and maintaining the torque u low enough.

The control goal is achieved despite Wob variations. In

other words, the bit and the top-rotary system will reach

the velocity reference value without depending on the bit

situation (permanent stuck, stick-slip, or moving in a constant

velocity different than Ω). This fact and the robustness under

system parameters variations are remarkable properties of

the controller proposed. In Figs. 3, a Wob for which the bit

presented stick-slip motion has been chosen. Nevertheless,

similar results are obtained with other values of Wob.

Figure 4 shows how σr behaves and control u changes

with different values of η and when the controller param-

eters are subject to some disturbances. Parameters (10) are

used with Wob = 97347N, λ = 0.3, δ = 0.001. The solid

line corresponds to the behavior obtained with η = 3 and

without introducing parameters disturbance. The dashed line

represents the behavior with parameters disturbance using

η = 3. If η is increased to 10 then the behavior is like the

one represented by the solid line. This shows that despite

controller parameters disturbance, the system performance is

almost the same if η is high enough. It should be pointed out

that under the presence of controller parameters disturbances,

ts is increased, however, the system response and control u

are very similar to the nominal case (see Figs. 3.(2) and

4.(2)).

From Figs. 3 and 4, it can be also observed that the

proposed sliding-mode control has the advantage that with

relatively low gains (λ , η), the control goal is achieved with a

good system performance. The settling time is approximately

50 seconds, which is acceptable taking into account the

drillstring dynamics and that it is better avoiding failures than

having smaller settling-time values. Furthermore, during the

settling-time interval, the system does not enter the sticking

region for a long time; this is not easily obtained with

other classical controllers. For instance, consider a PID or PI

controller with similar terms to the ones involved in control

(13)-(11):

u = K1

∫ t

0
[Ω− x1(τ)]dτ + K2(Ω− x1)+ K3P(x), (26)

with P(x) =
∫ t

0 [x7(τ)− x1(τ)]dτ or P(x) = x7 − x1. Fig.

5.(1) shows the velocities of the system controlled by (26)

with K1 = 30, K2 = 10, K3 = 20, Wob = 97347N. Fig. 5.(2)

compares control (26) with control (23). Two disadvantages

of the PID control can be observed from this figure. First,

the controller gains (Ki) must be high enough for the bit not

to enter in a permanent sticking situation. Second, during the

settling time, the bit enters in the sticking region for a long

time and the rest of velocities can reach negative velocities,

which can generate important fatigue and problems along

the drillstring components. The stuck-bit region is due to the

fact that the control linearly increases until it reaches a value

u = u∗ (u∗ depends on Wob), i.e., until the quasi-equilibrium

Time (s) Time (s)

(1) (2)
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u
(N

m
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Fig. 4. σr and u under controller gains variations and disturbances in
controller terms. – without parameters disturbance and η = 3; - - with
parameters disturbance and η = 3.

ThC10.6

3841



x̃b is located far away from the sliding region Σ̃b.
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Fig. 5. System (8) response with a PID-type controller (26): (1) angular
velocities, (2) PID control compared to the sliding-mode control (23) with
λ = 0.3, η = 3.

B. In the oilwell: some remarks

Notice that excepting the bit speed, all other quantities

needed in the controller can be easily measured or estimated.

A key problem in any drilling operation is the measurement

of downhole variables and the detection of bit sticking in

the surface. There are several methods in order to estimate

BHA and bit parameters, see for example the methods used

together with TRAFOR system [22] or BHA measurement

systems and intrumented bits (Measure While Drilling sys-

tems) [23].

If such tools were not available, a state estimator could be

designed to estimate x2, x3 and the bit speed (x7) based on

model (8).

Finally, it must be pointed out that the introduction of a

automatic controlled drilling system can be unfeasible due to

the complexity of oilwell drillstrings and drilling practices.

The proposed controller can be used off-line in order to

develop operation recommendations and parameter selection

methods to guide the driller to avoid bit sticking problems

and to reach the control goal. The model and controller

proposed can help the driller to design the well drilling

profile with reference values for u, Wob and Ω before starting

the operation. For a combination of (Wob,Ω), the torque u

would be calculated to prevent non-desired bit phenomena

from appearing.

VI. CONCLUSIONS

A dynamical sliding-mode control has been used to

eliminate bit sticking phenomena in a multi-DOF system

modelling a conventional vertical oilwell drillstring. In the

closed-loop system, the angular velocities are driven to a

desired reference value in spite of the presence of a dry

friction modelling the bit-rock contact. The key idea of the

controller is to introduce in the system a sliding surface in

which the desired dynamics is accomplished. The control

goal is achieved despite WOB variations (a key parameter

to any drilling operation) and in the presence of stick-slip

oscillations. Robustness under parameters variations has been

also shown.

The control methodology proposed could be successfully

applied to mechanical systems exhibiting stick-slip oscilla-

tions and dry friction described by similar models to the one

studied in this work.

REFERENCES

[1] J.F. Brett, “The Genesis of Torsional Drillstring Vibrations”, SPE

Drilling Engineering, vol. September, 1992, pp. 168-174.
[2] E.M. Navarro-López and R. Suárez-Cortez, “Vibraciones Mecánicas
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