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Abstract— This paper has developed a sliding mode controller 
(SMC) based on a radial basis function model for control of 
Magnetic levitation system. Adaptive neural networks controllers 
need plant’s Jacobain, but here this problem solved by sliding 
surface and generalized learning rule in case to eliminate 
Jacobain problem.  The simulation results show that this method 
is feasible and more effective for Magnetic levitation system 
control. 
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I.  INTRODUCTION 

Magnetic levitation systems have practical uses in many 

industrial systems such as in high-speed maglev passenger 
trains, levitation of wind tunnel models, vibration isolation of 
sensitive machinery, levitation of molten metal in induction 
furnaces, and levitation of metal slabs during manufacturing. 
The maglev systems can be classified as attractive systems or 
repulsive systems based on the source of levitation forces. 
These kinds of systems are usually open-loop unstable and are 
described by highly nonlinear differential equations which 
present additional difficulties in controlling these systems. 
Therefore, it is an important task to construct high-
performance feedback controllers for regulating the position of 
the levitated object. 

In recent years, a lot of works have been reported in the 
literature for controlling magnetic levitation systems. The 
feedback linearization technique has been used to design 
control laws for magnetic levitation systems [1-3]. Other types 
of nonlinear controllers based on nonlinear methods have been 
reported in the literature [4-6]. Control laws based on phase 
space [7], linear controller design [8], and neural network 
techniques [9] have also been used to control magnetic 
levitation systems. One of the first applications of SMC to 
magnetic levitation systems was carried out by Cho et al. [10]. 

Chen et al. [11] designed an adaptive sliding mode controller 
for a rather different type of magnetic levitation systems called 
dual-axis maglev positioning system. N. AL-Muthairi [12] 
designed static and dynamic sliding mode controller for the 
magnetic levitation system. 

In this paper, we consider a magnetic levitation system and 
propose a radial basis function (RBF) sliding mode controller 
for magnetic levitation system. The proposed approach 
combines the advantages of the adaptive, neural network and 
sliding mode control strategies. 

The rest of the paper is organized as follows. Section II 
contains the mathematical model of the magnetic levitation 
system. Section III deals with the RBF-Sliding mode 
controller in detail. Sections IV discusses the simulation 
results of the proposed control schemes. Finally, the 
conclusion is given in Section V. 

 

II. MATHEMATICAL MODEL OF THE SYSTEM 
 

Fig. 1 is a diagram of the magnetic levitation system. Note 
that only the vertical motion is considered. The dynamic 
model of the system can be written as [13]: 
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Where p  denotes the ball’s position, v  is the ball’s 
velocity, i  is the current in the coil of the electromagnet, e  is 
the applied voltage, R  is the coil’s resistance, L  is the coil’s 
inductance, cg  is the gravitational constant, C  is the 



         

magnetic force constant and m  is the mass of the levitated 
ball. 

The inductance L is a nonlinear function of ball’s position 
p .The approximation of L is: 
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Where 1L  is a parameter of the system. 

 
 

Fig. 1 Diagram of the Magnetic levitation system 
 

Let the states and control input be chosen such 
euixvxpx ==== ,,, 321 .Thus, the state-space model of the 

magnetic levitation system can be written as: 
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The parameters of the magnetic levitation system are as 

follows [13]. The coil’s resistance Ω= 7.28R , the 
inductance HL 65.01 = , the gravitational 
constant 2sec81.9 −= ondsmiligc

, the magnetic force 
constant 41024.1 −×=C , and the mass of the ball gm 87.11=  

and dx1 = 0.01 the desired value of 1x . 

III. RBF SLIDING MODE CONTROLLER  
 

A.  Radial basis function neural networks 
 

In this study, we use a type of neural networks which is 
called the radial basis function (RBF) networks [14]. These 
networks have the advantage of being much simpler than the 
perceptrons while keeping the major property of universal 
approximation of functions [15]. RBF networks are embedded 
in a two layer neural networks, where each hidden unit 
implements a radial activated function. The output units 
implemented a weighted sum of hidden unit outputs. The input 
into an RBF network is nonlinear while the output is linear. 
Their excellent approximation capabilities have been studied 
in [16]. The output of the first layer for a RBF network is: 
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The output of the linear layer is 
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Where nRx ∈ and mRy ∈  are input vector and output 

vector of the network, respectively, and [ ]Tnφφφ ,,1=  is the 
hidden output vector. n  is the number of hidden 
neurons, [ ]Tjnjj wwW ,,1=  is the weights vector of the 

network, parameters ic and iσ  are centers and radii of the 
basis functions, respectively. The adjustable parameters of 
RBF networks are icW ,  and iσ . Since the network’s output is 
linear in the weights, these weights can be established by least-
square methods. The adaptation of the RBF parameters ic and 

iσ  is a non-linear optimization problem that can be solved by 
gradient-descent method. 
 

B.  RBF sliding mode controller 
 

Sliding mode control (SMC) is a variable structure control 
utilizing a high-speed switching control law to drive a system 
state trajectory onto a specified and user chosen surface, so 
called sliding surface, and to maintain the system state 
trajectory on the sliding surface at subsequent times [17]. In 
this paper, the sliding surface on the phase plane can be 
defined as: 
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In case n=2: 
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The sliding variable, S  will be used as the single-input 
signal for establishing a RBF neural network model to 
calculate the control law, u. Then for the single-input and 
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single-output case in this paper, the output of the controller 
based on RBF networks is: 
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Where n is the number of hidden layer neurons and u is the 

final closed-loop control input signal. In order to combine the 
advantages of sliding mode and adaptive control schemes into 
the RBFNN, an adaptive rule is introduced to adjust the 
weightings between hidden and output layers. 
Based on the Lyapunov theorem, the sliding surface reaching 
condition is: 
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If a control input u can be chosen to satisfy this reaching 

condition, the control system will converge to the origin of the 
phase plane. Adaptive law is used to adjust the weightings for 
searching the optimal weighting values and obtaining the 
stable convergence property. The adaptive law is derived from 
the steep descent rule to minimize the value of 0〈SS  with 
respect to W. Then the updated equation of the weighting 
parameters is: 
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And from equation (7) we have: 
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form equations (3) we can find that: 
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Finally we can find updating rule as follow: 
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from equation (8) we have: 
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It is clear that we do not need any identifier for magnetic 

levitation system. 
For improve control signal, a modified RBF-sliding mode 

controller is now designed for the magnetic levitation system. 
Fig. 2 is a block diagram of the modified RBF-sliding mode 
controller. 
 

 
Fig. 2: Block diagram of the modified RBF-sliding mode 

 

IV. SIMULATION RESULTS  
In this section, simulation results are presented. Parameter 

1λ  and 2λ  are set 61 and 930, respectively. The simulation 
results are shown in Figures 3 and 4. The figures show the 
position versus time (millisecond) and the control (the applied 
voltage) versus time for the system. Fig. 3 shows the RBF-
Sliding mode controller of system and Fig. 4 shows the 
modified RBF-Sliding mode controller of magnetic levitation 
system. In Fig. 5, we compare these results with static 
(classical) sliding mode controller [12]. Our proposed method 
shows better performance respect to classical. 
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Fig. 3: RBF-Sliding mode controller 
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Fig. 4: Modified RBF-Sliding mode controller 
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Fig. 5: Comparison results with static sliding mode controller 

 
 

V. CONCLUSION 
 

This paper introduced RBF-sliding mode method for 
control of magnetic levitation system which has practical uses 
in many industrial systems. 

In this paper, a new RBF-sliding mode control method for 
magnetic levitation is proposed, which combines the merits of 
adaptive neural network and sliding mode control. Based on 
the Lyapunov stability theory, a RBF-sliding mode controller 
is designed for stabilization of magnetic levitation system to 
the desired point in the state space. Simulation results show 
that the proposed controller is able to control magnetic 
levitation and the chattering phenomenon of conventional 
switching type sliding control does not occur in this study. 
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