Embry-Riddle Aeronautical University

From the SelectedWorks of Sergey V Drakunov

1993

Sliding mode control of the systems with
uncertain direction of control vector

Sergey V Drakunov

Available at: https://works.bepress.com/sergey v_drakunov/4/

B bepress®


http://www.erau.edu
https://works.bepress.com/sergey_v_drakunov/
https://works.bepress.com/sergey_v_drakunov/4/

Proceedings of the 32nd Conference
on Decislon and Control
San Antonlo, Texas « December 1983

TP13 - 4:40

Sliding Mode Control of the Systems with Uncertain Direction of Control Vector

Sergey Drakunov
Department of Electrical Engineering
The Ohio State University
2015 Neil Avenue
Columbus, OH 43210

Abstract

The Sliding Mode Control approach is used for a class
of nonlinear systems

z= f(t,z)+ B(t,z)u

with uncertain matrix B. The control design is based
on the partition of the extended system state space
onto the cells with fixed control vector inside each cell.
That results in multiple stabile equilibriums for the ex-
tended system. In general, these points are different for
different values of B. Each equilibrium corresponds to
the stability of the origin for the given system. If areas
of attraction for the multiple stability points covers the
entire state space the proposed control allows to stabi-
lize the system even if the direction of the actuation is
unknown.

I. Introduction
Traditionally the robustness properties of the control
systems with sliding modes are exploited with respect
to the additive perturbations. For a nonlinear system

(1)

the sliding mode control provides the closed loop sys-
tem invariant to the unknown function g, where ¢ rep-
resents external disturbances or the model uncertaini-
ties. There are many practical control problems, where
the disturbance influences the direction of the control
actuation, i.e. the matrix B(t, z). It is known [1] that
the sliding mode control algorithms are robust with
respect to variations AB if they are small enough so
that the sliding mode existence condition is not vio-
lated. But it is not the case for large deviations of B,
if, for example, it changes its direction for the opposite.

&= f(t,2) + B(t,2)[u + g(t, 2)]

The paper presents a globally convergent sliding-mode
control design for systems with uncertain direction of
the control vector. The approach is based on the use
of the periodic switching function. As a result the ex-
tended state space is partitioned onto cells with slid-
ing manifolds as their boundaries. This construction
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allows to keep the system on the desired manifold even
if the actuation direction is unknown and changes dur-
ing the control process.

II. Problem Formulation
The general formulation of the problem is the follow-
ing: for a nonlinear system

z'::f(t,::)+B(t,z)u, (2)
where z € R, u € R™, to design robust stabilizing
control algorithm, which does not require the knowl-
edge of the matrix B(t,z). As it is always done in
sliding mode control design, it is assumed that the ob-
jettive is to steer the state of (2) to the manifold

M = {z € R*|S(z) = 0}, (3)
where S(z) = col(sy(z),...,8m(z)) is a smooth func-
tion such that the system (2) constrained on the man-
ifold M is stable.

As an example of the systems with variable direction of
the control variable we can mention the torque control
problem in the electric drives. The equations of many
types of electric drives can be written as

I =F(I,n) + B(8)u (4)
Ja=T() (5)
b=n (6)

where I is a vector of current, T is a torque, n is an-
gular velocity and @ a position of the rotor, u is phase
voltage vector, which is a control. For successfull im-
plementation of the existing sliding-mode control laws
{1, 3] the on-line values of B(f), and therefore, & are
needed. But since the regulated torque variable T' de-
pends only on the current I, it seems possible to have
the control algorithm not requiring 6 for implementa-
tion, which will allow to design systems without ex-
pensive position sensors.

The other examles are mechanical systems in robotics,
where the control variable is the magnitude of the ap-
plied force, while its direction depends on the posi-
tions, velocities and different external factors. In such



systems, sometimes, it is undesirable or even impos-
sible to use the information on the direction of this
vector for control design, and it is preferred to have
the control scheme, where these measurements are not
needed.

III. The Control Design

The main idea of the control design is in partitioning
the S-subspace (S = col(5,...,5;) € R") of the ex-
tended system onto the cells with smooth boundaries.
In a particular case, they may form an e-grid

g= U U {5; = ek}. 7

t=1k=0,£1,...

Inside each cell the control is constant. Alternating
control values along the grid, allows to obtain a set
of stability points P, for any B, under a nonsingular-
ity condition. In contrast with traditional case, where
the goal is S(z) = 0, the sliding mode will occur on
S(z) = const. The steady state error, appearing,
can be easily removed by using the dynamic compen-
sator. The compensators based on sliding modes pro-
vide finite-time convergence of S(z) to the origin.

In case of scalar control the uniform grid corresponds
to the periodic switching function.

Consider the system:
& = f(t,z) + b7 (¢, 2)u, (8)
where u € R, M = {z|s(z) = 0} is a desired mani-

fold s(z) € R! and b(t, z) = col(by(t,z),...,bm(t,z) is
unknown. Let

Gz) = % ©)

then

5= G(2)f(t,z) + G(z)b (t, 2)u. (10)
To obtain the sliding on the manifold M the control
with periodic switcing function (2] is used

u = Mysgnsin [;(s(t) + :\/Ot syn(s(r))dr)] , (11)

where A > 0.
Let
o=st)+ [ son(s(r)ar (12)

then

o = Gf + Gb" Mysgn [sin (Ea)] + Asgn(s). (13)

The second term in the right hand side of (13) is piece-
wise constant. In the neighbourhoods of the points

o=ke (14)

for even k = 0,42, 34, ... it has the form:
sgn [sin (%a)] = sgn(o — ke), (15)
for odd k = +1,43,...
sgn [sin (%a)] = —sgn(o — ke). (16)
Therefore, if the condition
|G (t, 2)Mo| > |G(z)f(t, 2)l + 2 (17)
is fulfilled, the sliding occurs on one of the manifolds
o =ke (18)

for any sign of G(z)bT (¢, z)Mo.
The equation of the system in sliding mode can be
obtaned by differentiating (18) using (12):

§ = —Asgn(s). (19)

Therefore, the manifold M = {z|s(z) = 0} is reached
in finite time interval. During the sliding motion the
disturbance rejection property is preserved.

The control law (11) doesnot require the knowledge of
sign[G(z)bT (t,z)]. This sign can be different in dif-
ferent parts of the state space, which means that the
system goes from one sliding manifold to another. But
since the distance between the manifolds - € can be
chosen arbitrary small, and under the condition that
G(z)bT(t,z) = 0 does not coincide with the desired
manifold, the equality (19) is violated only for a short
period of time (it tends to zero when € — 0).
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