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The first sliding mode control application may be found in the papers back in the 1930s in Russia. With its
versatile yet simple design procedure the methodology is proven to be one of the most powerful solutions
for many practical control designs. For the sake of demonstration this paper is oriented towards application
aspects of sliding mode control methodology. First the design approach based on the regularization is
generalized for mechanical systems. It is shown that stability of zero dynamics should be taken into account
when the regular form consists of blocks of second-order equations. Majority of applications in the paper
are related to control and estimation methods of automotive industry. New theoretical methods are
developed in the context of these studies: sliding made nonlinear observers, observers with binary
measurements, parameter estimation in systems with sliding mode control.

Key words: Sliding mode control; Inverted pendulum; Induction motor; Binary sensor; VGT; EGR; Diesel
engines; Alternator; Air conditioner; Climate control; ABS; Optimization

1 INSTEAD OF INTRODUCTION

One of the authors was appointed as a Professor at the Ohio State University in 1994 — the
position established by Ford Motor Company and has been working on applications of the
sliding mode control methodology for automotive industry.

The paper is some kind of report about the results of these studies. The basic concepts of
control and estimation methods in the framework of Sliding Mode Contro! Theory behind the
research were originated at the Institute of Control Sciences, where the author was privileged
to work and had the unique opportunity to contact outstanding scientists. Creative atmo-
sphere for the research along with democratic spirit of scientific discussions were decisive
factors for the further professional career of the author.

The paper embraces wide range of automotive applications (automotive alternator, diesel
and combustion engines, ABS system, climate control), which needed further development
of the well-known methods. These studies have been performed in long-term cooperation
with the second author (Ph.D. student of the Ohio State University).

2 SLIDING MODE FOR MECHANICAL SYSTEMS

Although the design of the sliding mode control for nonlinear multivariable systems has been
extensively studied in many books and papers, the design procedures for such high order
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nonlinear control systems may be complicated and vary from case to case. The objective of
this section is to develop design methods for the nonlinear mechanical systems governed by a
set of nonlinear interconnected second-order equations which are common for mechanical
systems. The proposed approach assumes that control systems can be transformed into a
regular form [3], which facilitates the controller design. Consider a general mechanical
system, J(q)g = f(q,q) + Bu, where g € " and u € W™, is a vector of control forces,
rank B == m. The inertia matrix J(g) in mechanical systems is nonsingular and positive
definite, B is a full rank matrix. Hence J~!(¢)B is a full rank matrix as well. The components
of vector ¢ may be reordered such that in the motion equation

& =fi(q,9) + Bi(g)u
4 = f4,9) + Bag)u,

q= l:ql], q eRT, gy e R, []:1:] :J_lf, 2.1)
92

fa

[~ ] =J"'B, det(By) #0,

According to the regular form technique [3] the coordinate transformation z =
d(g) € R"™™,y = g» with continuously differentiable function ¢(g) should be found such
that the mechanical system equation is reduced to the regular form consisting of a set of
second order equations

£=fiz..2.5)

2.2
5 = f(z.7.2.3) + Bz, @2)

where det(B,) # 0. In our case the top block equation in (2.2) depends on both vectors y
and p. This fact introduces some peculiarities which should be taken into account when
designing sliding mode control. Further a stabilization task for different types of mechanical
systems will be studied. It is assumed that the origin in a system state space is an equilibrium
point of an open loop system, i.e., fi(0, 0, 0, 0) = 0 and £2(0, 0, 0, 0) = 0. Based on this form
two design approaches are demonstrated below:

First, the stability of the system zero dynamics with vector y as an output is checked. They
are governed by the first equation (2.2) Z = fi(z, 0, 2, 0) with y = 0 and y = 0. If they are
stable then sliding mode may be enforced in the manifold s = y + ¢y = 0, s € R™ with scalar
parameter ¢ > 0, since rank(B,) = m. After sliding mode starts in s = 0 the state y tends to
zero as a solution to y + ¢y = 0, and then z decays as well because Z = f(z, 0, z, 0) is stable.

Second, stability of the system zero dynamics with vector z as an output is checked. If
z(#) = 0 then the zero dynamics equation are obtained from £1(0, y, 0, y) = 0. Note that the
zero dynamics system is a set of first order equations while it was is a set of second order
equations in the first approach. If the zero dynamics are stable then sliding mode is enforced
in the manifold s = fj + ¢1z + ¢z = 0, the top equation of (2.2) becomes Z = —c;z — ¢z
whose rate of decay may be selected by ¢; and c;.

Third, assume that the function fi(z,y,z) does not depend on y. Basically if s =
Si+ciz+ ¢z =0, then 2 = —cyz — 32 holds and, as a result, £1(0, y, 0) = 0 after z(r) = 0.
Based on the assumption, £1(0,0,0,0)=0 and £(0,0,0,0) =0, we may conclude
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/1(0, 0, 0) = 0, which means that y tends to zero as well. To provide the desired relationship
s = fi + 1z + ¢22 = 0 the following switching manifold is selected as

S=5§+as 2.3)

where s = f] + c1z+ 22z and o > 0. As a result, the derivative of (2.3) depends on dis-
continuous control u# which is necessary to enforce sliding mode. If Zero Dynamics are
unstable then, following the methodology of the Regular Form approach, the state of the
second block is handled as the control of the first one to stabilize the Zero Dynamics. Next
sliding mode is enforced to provide the desired dependences between state variables (see [4]
for more details about the design strategy for this design scenario).

For the sake of briefness, the following two applications demonstrate only the model and
simulation/experiment results. Readers may refer to [4] for further details. First of all, the
double inverted pendulum (Fig. 2.1(a)) is considered.

6 0 Fy
H| Pl = , 2.4
(o) eel ]+ =[] e
where
o= —Jo + 1) +mllf +m2L% mylLyl cos(6, — 6,)
| mylilp COS(H] — 92) mzl% + 5 ’
W= [ —g(ml +m2L1)sin01]
h i —npgly sin 0 ’
[ 0 v, .
P= . and V = myLl sin(6, — 6,).
_——V91 0 :| 2L1 1 sin(6, 2)

Each link of the pendulum is composed of mass m and inertia /. Total length of each link is L;
and the distance to center of gravity of each link from its pivot is /; (i = 1, 2). 8 refers to the
rotational angle from the vertical axis. It is assumed that only one control force, the motor
torque F; = u, is available and F; is regarded as the disturbance torque to the pendulum.

FIGURE 2.1 (a) Double inverted pendulum (b) Rotational inverted pendulum.
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The control objective is to drive the mechanical system from a perturbed state to the desired
equilibrium point §; = 6, = 0.

Numerical simulatioh is performed to verify proposed control algorithm. Evidently
observed from the following Figure 2.2, sliding mode control algorithm is able to keep the
double pendulum upright.

The second interesting application is rotational inverted pendulum (Fig. 2.1(b)). Its gov-
erning equations are summarized below:

éo = -—-apéo +Kpu

- C, mgl K. (2.5)
0 = —— —0,

1 7, 0, + 7, sin 0 -!-J1 o

where m; and J; are mass and inertia of the pendulum, /; is the distance from the center
of gravity of the link to its pivot point, g is the gravity acceleration, and C; is the
frictional constant between the pendulum and the rotating base. The coordinate 6
represents the rotational angle of the base with respect to some horizontal axis (usually
defined as the starting position) and 6, is the rotational angle of the pendulum with
respect to the vertical axis. fy = 0 refers to the unstable equilibrium point. SMC control
is designed such that both Inverted Pendulum and the Base angles are stabilized
simultaneously. Even more additional sloshing water and metal bolts are attached at the
end of pendulum for the purpose of demonstrating algorithm robustness. Satisfactory
results may be found in the following Figure 2.3 which demonstrates the effectiveness
and robustness of the controller.
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FIGURE 2.2 Double inverted pendulum simulation results using SMC with maximum initial deviation
6,(0) = 0.49rad.
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FIGURE 2.3 Rotational inverted pendulum experimental results where (a) water (b) bolts was/were attached to the

end of pendulum.

3 ESTIMATION AND CONTROL OF SENSORLESS INDUCTION MOTORS

USING SLIDING MODE

For the sake of cost reduction and maintainability, control of an induction motor (IM) without
mechanical sensors receives wide attention in both fields-electric drive and dynamic control.
This section addresses a new closed loop approach to estimate IM speed as well as rotor time
constant for speed/torque sensorless control. Under commonly used assumptions the motion
equations of an IM may be partitioned into three categories. First of all, the rotor mechanical

system

dn P 3PL,
—==(T-T), T~ i Ap)s
m J( ) (l;rf/1 — iyAg)

second, the rotor flux equations,

di,
de

di
= —HAy — WAg + HLpis, —a—tﬁ- = —ndg — wly +nluip

and, finally, the stator current dynamics,

dla Rs . 1

dt ﬂ"’)’ + ﬁw/lﬁ - (““ZE + ﬂr’Lm)la + O'Tsuu
dig Rg i
E = —fnip + fwi, — (—— + Ban)z,g + — L

G.1)

(3.2)

(3.3)
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where stator voltage or current vector (f;, f3), defined by their phase vectors (f, f5, f2) as
S|l _2(1 =172 —1/2 in’ (3.4)
1730 3122 312 f” :

A summary of the parameters, variables may be found in the following Table 1. More
details may be found in the paper [8].

The objective is to design an observer to estimate motor speed and rotor time constant
simultaneously under the assumption that they are constant. First, the sliding mode observer
for current is designed

di Rg» 1

— = “'_iiac + oty + V,

dr oLg oLg (3.5)
d§/x __Rs. .

ig+ ! ug+V,
dt O’Lsﬁ O'Lsﬁ g

where i, are estimated stator current components, ¥, are discontinuous functions of the
stator current mismatches

Vy = ‘—V()Sgn(l:zx — 1)

. (3.6)
Vg = —Vosgn(ig — ip).
The equivalent values of discontinuous functions ¥, are
Waleg = Bnia + Porp — Bnlmiy 3.7)

Wpleg = Bnip — Brla — Prlmip

after sliding mode occurs on the surfaces s,/p = ?a/,g — iy/p = 0. These equivalent values
may be obtained equating derivatives of current observation mismatches to zero. By our
assumption @ = 0 and # = 0 which imply that mechanical process and rotor resistance
heating are much slower than currents and flux variations.

Denote the equivalent values of ¥V, by L,/s. As follows from (3.7),

Ly = Bia + Pwods — Brlmin, Ly = Brip — Bede — Blmis (3.8)

TABLE I Nomenclature of a Induction Motor Model (3.1)-(3.3).

Parameters Explanation Parameters Explanation

k—ap Phase currents in («, f§) coordinate Up=a,b Phase voltages in («, ff) coordinate
ik=abc Phase currents Up=a,bc Phase voltages

o Rotor speed/Flux n Rotor time constant

T; Load torque T Torque developed by IM

J Inertia o, f Leakage parameters

R., Rg Rotor/Stator resistances P Number of pole pairs

L, Ls Rotor/Stator inductances L., Mutual inductance
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which leads to

=Lt (3.9)

dy=— ;

?9

along with the Egs. (3.2) and (3.7). From (3.8) we may elaborate an intermediate asymptotic

observer for Ly g
L, Ao L] _ oy [ L,
Al= s — Ly, | — K| 5", 3.10
[L,;] [—w ”][Lﬁ] p [’u] [Lﬂ] 10

where K is a positive constant to be selected, I_,a/,; are mismatches between estimation I:,x/ﬁ
and L, from (3.7), #j and & are estimation of # and w. From (3.8), (3.9) and (3.10) the error
dynamics of the proposed observer may be represented in the form

L|_ [7 ®][L]_pp [in i
[iﬂ]_g[“@ ﬁ][Lﬂ]_ﬂan[ia]_K[]:ﬂ]’ (3.11)

To ensure the convergence of fj = # — n and @ = @ — w to zero we choose the adaptation law

1| = [ Lot Pluia Ly+BLuip|[ Ly 3.12
[a)] [ Ly —Lq Ly J G12
based on the Lyapunov function
1o, 1o, 1_, 1_
V=5L§+5L§+5n§+5w§. (3.13)
It can be shown that L, /p of (3.11) tends to zero and
Ly 4+ BLuin Lg n|_ {0
[Lp +BLuip —Ly ||| | O] (3.14)
12 70
10|
17
S 4 H
3 ‘
i :
5’ ;
*o 1 2 3 [ 5 ) 7 g t 2 s 4 s s 7
Tims (sec.) Time {s0c.)

FIGURE 3.1 (Left) Rotor constant estimation. (Right) Estimated (dashed-line) and measured (solid-line) IM speed.
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If i, and ip are linearly independent (which is common for IM) then # = 0 and @ = 0 or the
estimated rotor constant and speed tend to real ones, fj — n and @ — . Details of the above
proof may be found again in [8]. The proposed observation algorithm was implemented on
the test bed of OSU PEEM (Power Electronic and Electric Machines) Lab and results may be
found in the following Figure 3.1, which demonstrates the proposed estimation algorithm’s
capability to estimate the rotor constant and IM rotor speed simultaneously.

4 BACK ELECTROMOTIVE FORCE (EMF) ESTIMATOR FOR
AUTOMOTIVE ALTERNATOR

One of the modern approaches used in automobile industry to optimizing the efficiency of
today’s three-phase alternator is to employ a controllable rectifier through the six-step
switching algorithm [1]. The vital information needed for the rectifier to switch from one to
another is acquired by detecting the alternator’s back electromotive forces (EMFs). Usually
the back EMFs may be found if the rotor position is measured which is widely employed
now. For the sake of cost reduction and maintainability a sliding mode observer is designed
to estimate the necessary information, back EMF, for the rectifier’s switching algorithm
utilizing both the battery current and voltage measurement, which is readily available.
Basically, the dynamics of a three-phase generator may be described in the following four
equations:

diy R, . Vo 1
S 2 20w —uy — -
5 7 6L( Uy — U u3)+Lex(t)

diz Ry, 1o 1

2 e 2 0w —uy — ) et

5 7 b 6L( Uy — 1 u3)+Lez() “n
di3 Rw . Do 1 .
& e Py — 2

m 7 B3 6L( U3 — uy M2)+L€3(1)

R+ Rp\du. 1 R
( R )dz‘ RLC“”+2c;”"”‘

Please refer to Table 11 for the nomenclature of the model parameters.

More details of this model may be found in [2]. Suppose that e; (back EMF) of phase 1
may be found based on the measurement of battery current ipaery (se€ Fig. 4.1). It can be
done if link current coincide with phase current i;. It happens in so-called “observation
window” when S, Ss and S (or S, S3 and Sy) are closed or u; # up = uj.

We assume that the following ramp function an acceptable model of the time-varying
engine speed:

w=oat+f 4.2)

Then back EMF may be found as
e1 = —Aamp(t + B) sin(% £+ Bt + y) (4.3)

where « is acceleration and f, y are constants.



SLIDING MODE CONTROL ON ELECTRO-MECHANICAL SYSTEMS 459

TABLE T Nomenclature of a Three-phase Generator Model (4.1).

Parameters Explanation Parameters Explanation

fg=123 Phase currents Um=123 Switching signals (+1 or —1)
R, Winding resistance i, Voltage of capacitor

R Load resistance Vo DC output voltage

Ry Battery resistance C Battery resistor

L Winding inductance en—12,3 Back EMFs

To estimate the load current, the following observer is proposed based on the readily
available battery current

v 1 1 . A
—— T e = E%(Zul — Uy — Ll3) +Zel(t) +ZMISgn(ullbanefy —- l]). (4.4)
Denote the sliding surface as

1 = ulibat(ery — 1. (45)

Since u1ipatery = i1 Within the observation window when u # uz =u3 and ipattery =
Iink — F1oad, the derivative of s is of the form

=i d;
1 —_dt 1 ldt load dr 1 (4 6)
1 . d. '
=-7 [Rmsl — e + Misgn(sy) + Ryt iioed + ulLalload]-
Clonerstor Huoviitior Faml

#, , 8

FIGURE 4.1 Schematic diagram of automotive.
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In sliding mode on the surface 51 = t1ipatery — i) = 0 the average value of M;sgn(s;) found
by a low pass filter [2] is of the following form

. d,
z = [Misgn(si)]eq = [61 — Roytt1itond — ullalload]- 4.7)
Denoting ¢ = 1/R;, (4.7) may be represented as
—~ Rpuyi uLd' = u ! R0 +Ldu = e, —uqh(f). (4.8)
€l wl]load 1 dtlload =l€e lRL w0 dar 0 = €] 19 . .
where vy = fjgaq - Rz, In (4.8) the function A(¢) is

d,
h(t) = iioad — Lgtlloam 4.9)

and the parameter Ry, is considered as unknown constant, Ry = 0, here to embrace the fact of
parameter variation. Note that DC output voltage vy is available and its derivative may be
found from

d 1, d.
a—l: by = E ipattery + Rbattery a‘; battery - (4.10)

In addition the battery current is readily available and its derivative may be found from

d R, . vo

1
aibattery = - leattery - g‘i(zul —uy —u3) + ZMI sgn(sy). 4.11)

Therefore, the function A(f) may be found from (4.9)
Introduce a new variable

z = e) — wuyqh(t). (4.12)

Now, with the measurement of engine speed w and known function A(¢), a Sth-order non-
linear asymptotic observer is proposed to estimate back EMF e; unknown load current and
unknown constant ¢ simultaneously:

&1 =& — Lulé, — (z+ w13h(1))]

i . 382\, 342, R N
e’l = ——(aﬂ + }27)6’] - —&72-6,1 — L21[61 — (Z + ulqh(t))]

é):&—L31(d)—w) (413)

6= —Lat( — o)
¢ =Ly (& — G+ mgh®))
Simulation results may be found in Figure 4.2 where the proposed observer demonstrates its

capability of estimating unknown constant g (upper-right of Fig. 4.2), load current ijoaq
(lower-right of Fig. 4.2) and back EMF (upper/lower-left of Fig. 4.2).
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FIGURE 4.2 Estimation results of unknown constant ¢, load current ijp,q and back EMFE

5 NO, CONTROL FOR EGR-VGT DIESEL ENGINE

Exhaust gas recirculation (EGR) combined with the variable geometry turbocharging pro-
vides an important avenue for NO, emission reduction. In this section we study the problem
of EGR-VGT control from the sliding mode design perspective. The departure point for our
work is the reduced order model in [10] that we use for the control design:

where:

. ¢ Pc ]
=k - —kop1 + Wegr |, 5.1
14! ll:Tan ((pl/pa)l _ 1) D1 egr ( )
P2 = ky(kep1 + Wfd - Wegr -~ Uy), (5.2)
. 1 D\ A
Pe=—- [Pc _ nmn,TZCp(l - (ﬁ—z) )uz,], (5.3)

p1/p2: intake/exhaust manifold pressure.
Pc: compressor power.

k,: pumping rate constant,
Weg:: EGR flow rate which is equal to ujs or uy,
#¢, 1, compressor and turbine isentropic efficiencies,
7,,: turbocharger mechanical efficiency,
7: turbine-to-compressor power transfer time constant,
Cp, Cy: specific heats at constant pressure, volume.
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To account for the fact that the turbine cannot immediately realize the commanded air flow
because of the actuator dynamics, a first order linear system is introduced as

. 1 1
Uy = ——Uy+—Vvay, (54)
T4 T4

where

14: time constant,
vy commanded VG turbine flow rate, that is achieved in steady-state.

Controlling only p, or Pc may result in either unstable zero dynamics or slow rate of
convergence. To cope with this problem, first of all, desired system states are selected based
on some specific operating points and the problem is then redefined as a stabilization one
with states Ap;, Ap, and AP, the difference between desired and actual one. Following the
approach in [11], a new variable is found by solving an appropriate partial differential
equation such that the system may be reduced to the regular form. This variable is

p1e i i A —
$ap, = APc +y~ﬂn—];2—;—£ [Apz - 112'M(Ap2 + Pades)' ™ + Ip_ M(p2des)l ‘]. (5.5)

This new variable has the property that ¢ Ap,. does not depend explicitly on the control input.
The system in the regular form is

. . + (o
Apy =k ["ke - (Ap1 + Pides) + 1 Par. )

— W, 5.6
T.Cp (AP + Prges/Pa) — 1 egr] (56)

where

T C ;l _ ;t _
(x%) = P¢ — 5”"—",;2—’1 [Apz L1 (Apy + prses) "+ L (prges)’ “].
2T 1—p L—p

. 1 1
¢’APC = —'T“d’APC ——Pé

T
ApZ + pf,’ [(Ap2 +P2des)l_ﬂ - (p2des)1_#] (5.7)
4 Mt T2Cy p-1
e () |
+kt|l - (| —— ko(ADy + Praes) + We — Wy,
2 AD2 + Dices k(AP + P1des) T eg]
Apy = kolke(Ap1 + praes) + VVfd - Wegr] — ka(uy + trges) (5.8)

Note that the control u, explicitly affects only (5.8). The EGR flow rate, Wy, is treated as an
external input to these equations as it is controlled by a separate controller.

The state variable, Ap,, involved in the Eq. (5.7) may be treated as a fictitious control
input,

Ap2 = —Ks . ¢APC’ KS > 0, (59)
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to speed up the dynamics of the state, ¢,p.. This relationship can be held by enforcing the
sliding mode on the surface,

s=Ap, +Kg - ¢APC =0. (5.10)

With the actuator dynamics (5.4) included, the relative degree of the system from u; to s
increases by one and the proposed control algorithm is not directly applicable. What we can
do, however, is to modify the sliding surface as

S=§4+a-5, a>0, (5.11)

where

$ 2 Tzntmr’tuiscp Daim . KsPc
= 1+ Kg—=-2- 2] — [— _
tep [ A Tk § 23 Ti

' « I (5.12)
+ Kg 2 Thuis>p (1 - (’—’;‘T‘“) )(uz + tzdes)

Trckn

and o determines the rate of decay for s (after the sliding mode is enforced). The control vy,
is then developed to enforce the sliding mode on the surface (5.11). The control algorithm
and observer for its implementation are described in [12]. The actual control input is
implemented as a discontinuous function

) = M - sgn(S). (5.13)

The performance of the proposed SM control is examined by simulation. The controller
parameters, (K5, o and M), were determined from the simulations of the reduced order model
augmented with VGT actuator dynamics. The EGR flow rate W, is assumed to be generated

150 3rd Order Model
- : : l I - wc'
3 : | T — . Desired W
8 y00f----- E l :, ] ‘ ‘
=] N | B y T A I romm T
| ! : ! ; :
;0 ! ! : : :_ |

50 5 : : ! ; :

1 2 3 4 5 6 7
80 ' . '
]

;* ! — W r
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;
!
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FIGURE 5.1 Desired versus regulated values of compressor mass flow rate and EGR mass flow rate.
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7th Order Model
1560 T T T T T v
O — W,
3 : | R el Bl ¢
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g ] ! ) |
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FIGURE 5.2 Closed loop responses on the higher order (7th-order) model.

by a first order lag with the steady-state value of W;’gr. The closed loop responses are illu-
strated in the following Figure 5.1.

The same controller with the same set-points was applied to the more accurate, higher
order model {10] and acceptable performance has been observed in Figure 5.2. Note that, for
the scenario of higher order model, the EGR flow was generated by assuming that the EGR
valve position is driven by a first order lag towards the desired position. The non-monotonic
character of EGR flow response is due to the dependence of this flow on intake and exhaust
manifold pressures.

6 AUTOMOBILE CLIMATE CONTROL USING SLIDING MODE

In this section a temperature regulation problem for an automotive air conditioning system
with Electronic Variable Compressor (EVC) will be studied. Note that the capacity EVC is
indirectly regulated by the pressure difference of crankcase and suction port through the
electronically controlled Valve Duty Cycle (VDC).

The climate control system consists of several components such as condenser, orifice
tubes, evaporator, refrigerant accumulator and electronic variable compressor. The motion
equations may be partitioned into two groups.

First group consists of the Refrigerant Cycle subsystem

Pd — _L[Q_Pd —Pcond]’ Pccmd — _LI:P‘[ — Peond _Pcond '*Pevap]’

R, Ry
P _ 1 [ Peond — Pevap Revap — Py
evap — E‘ R2 - R3 »

. Povw — F ; KePeoyap — Tai
PS:——[_E‘?_P—S—Q], Taimutz%l‘alm_“t_ (6.1)
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and the second one that describes the behaviors of EVC

_ —Pcc +VDC - Py + (1 — VDC)Ps

PCC T
B B. K L, - 2Apiston
—_ 2, AR L2 cisn p  p Pgi
Y=ot Tt TR B Peet Prid 6.2)
L3Ay; X
+ 22500 () P+ 2Pec), Pric = Po - sgn(d)

LM
Q = Know(N) - x(N is measurable compressor speed).

Nomenclature for (6.2) may be found in Table IIL

According to the motion equations, the refrigerant flow rate, O, may be considered as the
intermediate control input of the block describing refrigerant cycle subsystem. Next, the flow
rate may be regulated by proper VDC control action according to the nonlinear compressor
dynamics.

To assign desired refrigerant flow rate Q we consider first the refrigerant cycle subsystem
(6.1). The eigenvalues of (6.1) differ considerably and the dynamics of Py, Pcong and Peyap
dynamics may be disregarded because they are all stable. Instead of conventional eigenvalue
assignment method the intermediate control design Q for this multi-rate system may be
decoupled into the following steps:

1. The Zero Dynamics of the refrigerant system (marked by dashed line), if considering Peyqp
as the system output, are stable which implies that we may control Peyap rather than all the
states of the multi-rate system (6.1).

2. Since the dynamics of Tyirow determined by 74 are acceptable, one may regulate the
temperature to desired one considering Py, as a fictitious control.

3. Assume the desired Pevy, may be assigned as P:vap = T4es/Ks. As a result the last
equation of (6.1) becomes

K¢Peyap — T K¢(Tges/Ks) — Tai

p airout 6\ 4 des/ 26 airout

Tairout = Ta = z , T4>0,
4

which implies Thirout — Tyes at the rate of K¢/74. Tyes is the set-point of evaporator out
temperature.

TABLE III Nomenclature of an Automotive Air Conditioning System (6.1) and (6.2).

Parameters Explanation Parameters Explanation

Py Discharge pressure Peond Condenser pressure

Peyap Evaporator pressure Py Friction magnitude

P Suction pressure x Compressor stroke

Pcc Crank case pressure Thirout Evaporator out temperature

Psic Friction in terms of pressure vDC Valve Duty Cycle (Actual control
action)

N Engine speed Q Refrigerant flow rate
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4. From the last second and third equations of (6.1), the desired refrigerant flow Q for
refrigerant cycle may be selected as

Qdesired = Xdes * Kitow = (C3 + C4)[r* + K(Pevap - P:Vap)]’

| R 1 [P cond — P evap:l
Ci+ Gy Ry ’

such that the Pevap — Fg,,, tends to the desired one. This design may be verified by
substituting Qgesired N0 Pevap dynamics.

5. The rate of Peypp — P:vap is determined by K after desired Qyesireq 18 assigned.

Next, we may calculate desired crank case pressure which makes EVC generate desired
refrigerant flow rate Qgesired

_ [(2Ly = L3)Ps + L3Pg + L2 Pric — (L1 Kcomp)/ ApistonXdes)
(Pcc)des =
2(Ly ~ L3)

(6.3)

which may be derived from the second equation of EVC dynamics (6.2) assuming the
subsystem is stable. Note that xgs in (6.3) implies the desired refrigerant flow rate
Odesired (Qdesired = Xges * Kfiow)-

Since the desired crank case pressure may be evaluated, the discontinuous control action of
compressor (indeed, VDC) as a continuous state function by selecting the slope & and small
region ¢

(k- S +bias) if |(k-S +bias)| < ¢
VDC(k - S + bias) = 1.0 if (k- S + bias) > ¢
0.0 if (k.S + bias) < —¢,
S = Pcc — (Pcc)gess

(6.4)

where bias = 0.5 because VDC may only vary from 0 to 1. Note that § = 0 is the switching
surface. A plot of this function may be seen below (Fig. 6.1)

For different sensor availability scenarios different observers are designed to acquire
necessary information for controller. See [16] for more details about observer design.
Numerical simulation is performed to regulate evaporator out temperature to 50 °F and result
is demonstrated in the following Figure 6.2. Basically, smooth crank case pressure curve
implies smooth control action which is another requirement for climate controller.

A
1.0
/|
!
Ibias:().s

H » ks
|

/

-& &

FIGURE 6.1 Schematic diagram of function (6.4).
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FIGURE 6.2 Temperature (Desired Tyiroun is 50 °F) tracking performance.

7 ESTIMATION WITH BINARY SENSOR USING SLIDING MODE

For a system using a binary sensor where only the sign of the output is available, the con-
ventional observer approach is no longer valid. For such a system, a new observer design
approach is explored to provide a guaranteed convergence of the observer. Consider a system
with a scalar output y, the sign of the state cx in

x=Ax + B
X x + Bu (7.1)
y = sgn(cx).

It is assumed that input u is such that cx varies its sign in any time interval (¢, 00). Let z; be
the states at sensor switching instants and 74 be the interval between switching instants:

zr =x(t) and Ty =& — by (7.2)

If the z;’s are known exactly for the entire process, the states in time between #;, and ;| may
be evaluated

X(O) = Az j A9 Bu(x) e, (7.3)

t

However, if it is known only that for any time # the value cz; = 0, # <t < 441, that is the
case with the binary sensor measurement, then a discrete-time observer is needed to estimate
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the discrete sequences z;. Then, the continuous-time states x(¢f) may be found using (7.3). The
discrete-time observer for z; can be constructed in the form

U3
3 = ™13, + J e IBu(t) dr + Li_1(cEra1 — cZ—1) (7.4)

t1

The selection of the vector gain L;_, for this type of observer is not a trivial task since the
system in question is time-varying (because the sensor switching interval 7, varies in time).
For notational simplicity (7.4) may be represented in the following format

2 = FiaZk—1 + Gro ()| + Li1(CZit — c2zi-1) (7.5)

where Fy_; = 4™ and Gy {u())* = [* 9 Bu(r)dr.

. f1 ™ ey .
To provide convergence of the observer in general cases, a deadbeat observer structure is

selected with transformation of the system into a specific canonical system representation.
Transform the system as

wi = Ex_iwie1 + Gt {u(0) (7.6)

fe-1

with transformation matrix T

Wiet = TheiXimt,  Fror = TioiFat T, G fu(@d)e | = Gr{u(D))i | T, (1.7

1

such that the system transition matrix has the following structure

0O ... ... 0 flk_]‘

i Lo 00 0 fuo

Fii=11 1 0 0 fu, (7.8)
0o 0 1 .o
[0 0 U foker

where the f;_,’s depend on F;_;. Then, the gain L;.; is selected such that the effect of the
time varying parameter in the state transition matrix is canceled by feedback, i.e., the
deadbeat observer can be designed by selecting the gain L,_; as Ly_1 = [—fix—1 - — fuk—1] .
The resulting observer has the following structure

Wi = Fr_yWimy + G {u@)e |+ Lot (Bemy — wiert) (7.9)

This deadbeat observer converges with » step where # is the dimension of the system. Now the
discrete event system is estimated using the observer designed above. The next step is to
construct the continuous states between the discrete intervals. Knowing the estimated states at
each switching instant, the continuous states (states between switching) can be calculated as
described by Eq. (7.3). The proof of convergence for proposed observer may be found in [6].

The developed methodology was applied to air fuel ratio control of combustion engines.
Air fuel ratio should be maintained at certain level with high accuracy. Therefore air and
fuel flow rate to cylinder should be found. The dependence between injected fuel and fuel
injected to cylinder is complicated and depends on condensing and evaporating of fuel
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injected into the film. To calculate AFR the mass of fuel should be estimated. We will now
demonstrate how it can be done having binary reading sensor only and taking into account
its dynamics. Consider the model including fuel dynamic, AFR in the cylinder, delay and
sensor dynamics

d———)f(is—e—) = ayx1(0) + byu(0),

(7.10)

dx
o = 2(0) +ann(0 = 0) + bu(0 - 0,),

where parameters a;, a;, by, by and a;; are known parameters [7]. The first equation
describes the fuel film dynamics while the second one is the AFR sensor dynamics with only
binary sensor reading. The state variables x = ixo]” are [rig (/)m]T, the fuel film mass rate
and air flow rate respectively. Input u = g is the fuel injection rate. Due to the binary
characteristics of exhaust oxygen sensor, the measurement equation becomes

y = sgn(xy), (7.11)

The observer is designed and results of experiment may be found in Figure 7.1. It shows the
estimation of the fuel flow rate in fuel film and linear AFR. After initial transient due to the
difference in initial conditions, the estimated state converges to the actual states (Fig. 7.1(a))
within a reasonable accuracy except during throttle tip in.

FIGURE 7.1 Observerresponses during throttle tip-in: (a) Estimated and measured AFR (b) Estimated fuel film mass.
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8 ANTI-LOCK BRAKE SYSTEM (ABS) CONTROL USING
SLIDING MODE SELF-OPTIMIZATION

To maximize the braking force ABS controller should be able to maximize the friction
coefficient between tires and road surfaces. The friction coefficient depends on the slip rate,
the ratio of real and calculated vehicle speed, and this function is unknown and is varying
depending on road surface. In this section a sliding mode self-optimization methodology
[13,14] is applied to search the optimal friction gain during the course of braking.

This study is conducted based on the model of longitudinal motion. Assumption is
made that right wheels and left wheels have different slip-friction functions and the functions
are both unknown. The model consists of two parts: Rotational Dynamics of wheels
and Longitudinal Dynamics of vehicle. The following equations of rotational dynamics
are derived under the assumption that the engine is disengaged in course of braking:

de)i:RwFti_Btwi“Tbi, i= 1,2,3,4 (81)

where Fy;s are tire friction/tractive forces with road and T;s are braking torque. The gov-
erning equations for longitudinal motion are of the form,

(M + 4xmy,) - Vi, = —Fy — Fp — Fy — Fiy — F,. (8.2)

where the nonlinear terms inside (8.2) may be found below:

F, = C44sV} (Aerodynamic drag force)
Fit = Neonti(A1)  Fio = Nionttt(A2)  Fis = Nreartt(43)  Fra = Nrearft(4s)

1 Maheo -
Niont =3 (1 - g)Mcarg — 2%y | (Front wheel normal forces)
2 ¢ ¢ 8.3)

1 Meacheg -
Niear = 7 I:(%)Mcarg + —c—%ﬁ VL] (Rear wheel normal forces)
Vi —R
Jy = LT (Slip rate).
Vi

Details of model variables and parameters may be found in Table IV.

The slip-friction function, u(4;), is unknown and depends only on the road surfaces/
conditions. A typical plot of the function may be found in Figure 8.1. Usually, the maximum
value of friction is for relative slip A = 0.2 for many road conditions. The brake controller
should be able to find the optimal coefficient of friction under the fact that the function itself

TABLE IV Nomenclature of Vehicle Model (8.1), (8.2) and (8.3).

Parameters Explanation Parameters Explanation

Jow Wheel inertia R, Wheel radus

B, Viscous friction ratio m,, Wheel mass

M Vehicle total mass Cy Aero drag force coefficient

Ar Effective frontal are 14 Distance between front and
rear wheels

As Slip rate u() Coeff. of friction between road
and tire

a Distance from vehicle mass front heg Height of vehicle mass center

wheel center
w; Wheel rotational speed 143 Vehicle longitudinal velocity
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FIGURE 8.1 Slip versus coefficient of friction curves for surfaces.

is not available. Assume that f(1) is the function to be maximized and this function has only
one extreme point. The design of sliding mode self-optimization system is performed based
on [14, 15]. The basic idea of the theory is to design sliding mode control to force the system
to track an introduced monotonously increasing function g(f) = p, where p, is positive
constant.

Let the system output y be the tire tractive force F;. The forces may be measured directly
by on-board accelerometer or it may be estimated by angular speed of wheels. Define the
tracking error as ¢ = g — y and let s; = ¢ and 5, = & + J where J is the design parameter to
be selected and g is a monotonously increasing function described by g = p,, py > 0. Note
that the braking torque, T3, is handled as a control action which may have two different
values, (—F;R,) or (Tp; — FyR,,). Then the motion equation w.r.t. angular velocity of one
wheel, for example, the first one associated with the control algorithm, is of the form

Jpy = =By —u

where u is the control input from sliding mode optimizer,

U= Tbl —Fthw S182 > 0
- —F,lRW S92 < 0

Modify reference function g(¢) by adding a double-hystereses component (as shown in Fig. 8.2)

& = pg + Mv(s, 52).

“up AY
5
Ii-FuR, v
> o >
-F,R, 24
N -M
7.y

FIGURE 8.2 Control input u(s)s,) and double-hystereses function Mv(sy,s2).
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FIGURE 8.3 Sliding mode self-optimizer.

By enforcing sliding mode on either the surface s; = 0 or 5; = 0, the system output can be
maximized by tracking the reference function g(7), As for the rest of the wheels, their control
signals follow the first wheel (or the master wheel) where the proposed sliding mode opti-
mizer is installed. Schematic diagram of self-optimizer is shown in the following Figure 8.3
which reveals the whole control design.

The following simulation is performed under the scenario that no on-board accel-
erometer is available and, initially, constant brake torque is applied at the very first
beginning to totally lock up all wheels. Common drivers usually apply full brake under
urgent situation. This status is compliant with the first moment when maximum vehicle
deceleration is demanded. The controllers take over after 0.2 second to regulate brake
torque. As can be seen from the following Figure 8.4, controllers are capable of reaching
optimal slip after 0.5 second and the optimal level is maintained during whole braking
process.
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FIGURE 8.4 Braking performance after wheels are locked up.
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