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Introduction
Spacecraft pointing poses a complex problem involving nonlinear dynamics with either linear

and/or nonlinear control laws.  Primary control actuators usually include thrusters for rapid and

coarse attitude maneuvers, and reaction wheels for slow and precise attitude maneuvers.  Other

types of control mechanisms include gravity-gradient stabilization and magnetic torquer

assemblies.  Control algorithms can be divided into open-loop systems and closed-loop

(feedback) systems.  Open-loop systems usually require a pre-determined pointing maneuver, and

are typically determined using optimal control techniques which involve the solution of a two-

point-boundary-problem.  An example of open-loop control is the time-optimal attitude

maneuver (e.g., see the excellent survey paper by Scrivener and Thompson [1]).  Closed-loop

systems can provide robustness with respect to spacecraft modeling uncertainties and unexpected

disturbances.

The control technique used in this note is based upon sliding mode (variable structure)

control (see [2]).  This type of control has been successfully applied for spacecraft pointing and

regulation using both a Rodrigues (Gibbs vector) representation [3] and a quaternion

representation [4].  An advantage of the quaternion representation is that singularities in the

kinematic equations can be avoided.  However, the use of quaternions requires an extra

parameter which leads to a non-minimal parameterization.  The Rodrigues parameters provide a

minimal (i.e., three dimensional) parameterization.  However, a singularity exists for 180°

rotations, which hinders this parameterization for extremely large angle rotations.  This difficulty

may be overcome by applying successive rotations, each less than 180°.  However, the overall

maneuver may require extra control authority and power requirements which may not be

necessary.  In this note, a sliding mode controller is developed based upon the modified
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Rodrigues parameters [5-6].  Advantages of using this attitude representation include: (1)

rotations of up to 360° are possible, and (2) the parameters form a minimal parameterization.

Attitude Kinematics and Dynamics
In this section, a brief review of the kinematic equations of motion using the modified

Rodrigues parameters is shown.  This parameterization is derived by applying a stereographic

projection of the quaternions.  The quaternion representation is given by
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where �n  is a unit vector corresponding to the axis of rotation and θ  is the angle of rotation.  The

modified Rodrigues parameters are defined by [5]
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where p  is a 3 1×  vector.  The kinematic equations of motion are derived by using the

spacecraft’s angular velocity (ω ), given by [6]

�p p p I p p pT T= − + × +×
1

4
1 2 23 3
 �� �ω (4)

where I3 3×  is a 3 3×  identity matrix, and p×  is a 3 3×  “cross product” matrix defined by

p

p p

p p

p p

× ≡
−

−
−

�

�

�
�
�

�

�

�
�
�

0

0

0

3 2

3 1

2 1

(5)

The dynamic equation of motion are given by Euler’s equation, defined by
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�ω ω ω= × +− −J J J u1 1 (6)

where J  is the spacecraft’s inertia ( 3 3× ) matrix, and u  is a torque input.

Sliding Mode Controller
In this section a sliding mode controller is developed using the modified Rodrigues

parameters.  It is assumed that measurements of both the spacecraft attitude and angular rate are

available, which may be provided by a Kalman filter.  The nonlinear model for spacecraft motion

is summarized by

�p F p= � �ω (7a)

�ω ω= + −f J u� � 1 (7b)

where

F p p p I p p pT T� � 
 �� �≡ − + × +×
1

4
1 2 23 3 (8a)

f J Jω ω ω� � ≡ ×−1 (8b)

Under ideal conditions, the state trajectories move onto a sliding manifold s= 0� � , where s is

given by

s m p≡ −ω � � (9)

The quantity m p� �  is obtained using a desired vector field from the kinematic relations (see [3]),

given by

m p F p d p� � � � � �= −1 (10)

where

F p p p p p I p p pT T T− −
×= + − − × +1 2

3 34 1 1 2 2� � 
 � 
 �� � (11)

The quantity d p� �  is formed by allowing a linear behavior in the sliding motion, given by
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d p p p
d� � 
 �= −Λ (12)

where p
d

 is the desired reference trajectory, and Λ  is a diagonal matrix with negative elements.

This allows for decoupled sliding motions and exponential convergence towards the final desired

orientation.  The sliding mode controller which produces a negative definite derivative of the

Lyapunov function s sT  is given by ([3])
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where K  is a 3 3×  positive definite, diagonal matrix.  The saturation function is used to

minimize chattering in the control torques.  This function is defined by
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where ε  is a small positive quantity.

Regulation

The regulation problem requires that the final spacecraft position be zero (i.e., unity

quaternion).  This corresponds to desired modified Rodrigues parameters given by p
d

= 0 .  Also

the Λ  matrix in Equation (12) is assumed to be given by a scalar λ� �  times the identity matrix,

which leads to

m p p p p p I p p p pT T T� � 
 � 
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This relation can be simplified significantly by applying some cross product relations, which

leads to
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The partial derivative of Equation (16) with respect to p  is given by
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Tracking

The tracking problem requires the system attitude to follow a desired reference trajectory.

Equation (10) for the tracking problem is derived to be
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The partial derivative of Equation (18) with respect to p  is given by
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Spacecraft Simulation
The spacecraft simulation involves a multi-axis rest-to-rest maneuver.  The inertia matrix for

the simulated spacecraft is given by [3]

J = −diag kg m2114 86 87, , (20)

The initial conditions for the angular velocity are set to zero, and the initial conditions for the

modified Rodrigues parameters are given by

p t T
0 01 05 10� � = − . . . (21)

The desired attitude parameters are set to zero (i.e., the regulation case).  The diagonal

elements of K  in Equation (13) are all set to 0.0015, and the constant λ  is set to -0.015 sec−1.

The parameter ε  in the saturation controller is set to 0.01.  Also, the control torques are limited

to 1.0 N-m.  A plot of the closed-loop modified Rodrigues parameters is shown in Figure 1.

Also, plots of the angular velocity trajectories and applied control torques are shown in Figures 2

and 3, respectively.  Using Equation (3), the rotation for the initial conditions in Equation (21) is
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approximately 193°.  Therefore, converting the modified Rodrigues parameters shown in Figure

1 to quaternions (see [6]) reveals that the scalar (fourth) quaternion crosses the zero.  Therefore,

the Gibbs vector control formulation in [3] becomes singular, but is easily handled by the

modified Rodrigues parameter control formulation.

Figure 1  Plot of Closed-Loop Modified Rodrigues Trajectories

Figure 2  Plot of Closed-Loop Angular Velocity Trajectories

Figure 3  Plot of Applied Control Torques

Conclusions
In this note, a sliding mode controller was developed for attitude pointing using the modified

Rodrigues parameters.  The modified Rodriques parameters represent a minimal parameterization

with a singularity at 360°.  These parameters avoid the normalization constraint associated with

the quaternion parameterization, and allow for rotations of greater than 180° for which the Gibbs

vector parameterization becomes singular.  Simulation results indicate that the new algorithm

was able to accurately control the attitude of a spacecraft for large angle maneuvers.
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Figure 1  Plot of Closed-Loop Modified Rodrigues Trajectories

Figure 2  Plot of Closed-Loop Angular Velocity Trajectories

Figure 3  Plot of Applied Control Torques


