
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JESTPE.2016.2586378, IEEE Journal

of Emerging and Selected Topics in Power Electronics

Sliding Mode Fixed Frequency Current Controller 
Design for Grid-Connected NPC Inverter 

Fadia Sebaaly, Student, IEEE, Hani Vahedi, Student, IEEE, 
Hadi Y. Kanaan, Senior Member, IEEE, Nazih Moubayed, and Kamal Al-Haddad, Fellow, IEEE 

Abstract—In this paper, a fixed-frequency pulse width 
modulation (PWM) based on sliding-mode current controller 
(SMCC) is designed and applied to a utility interface three-
phase/wire/level Neutral-Point-Clamped (NPC) inverter. The 
proposed design methodology of the SMC is based on a constant 
switching frequency operation and on Gao’s reaching law that 
allows chattering compensation. The aim of the controller is to 
inject a controlled active power from renewable energy sources 
into the grid while controlling the power factor and minimizing 
supply current harmonics. Moreover, the DC-link voltages 
across the split capacitors are controlled with a simple 
proportional -integral (PI) regulator. Experimental results show 
the advantages of the proposed control algorithm in terms of fast 
dynamic response, low voltage ripple on the dc bus, low current 
THD, and robustness towards external perturbations from DC 
and AC sides, moreover a comparison with a PWM-PI current 
controller is presented. 

Keywords—Sliding-mode control, three-phase neutral-point-
clamped inverter, active rectifier, NPC, active filters, hybrid 
filters. 

I. INTRODUCTION

HE increasing use of multilevel inverters in renewable
energy conversion applications is mainly due to their

inherent harmonic reduction ability, operation at low 
switching frequency, and their capacity to deliver high power 
ratings which result in high penetration of sustainable energy 
resources such as wind and solar. Nowadays, power 
electronics devices are used as the interfacing part in 
sustainable power generation systems [1, 2]. The increasing 
request for high quality electric energy in modern and smart 
grids has pushed the researchers to focus more on multilevel 
power converter topologies and to spend great efforts in 
developing their structure and control circuits. 
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Combination of power semi-conductor switches and DC 
links that generate multi-step voltage waveform is a main 
contribution in the multilevel topologies design [3, 4]. Many 
advantages of grid-connected multilevel inverters have been 
reported by researches [5-8]. 

Neutral-Point-Clamped (NPC) [9], Flying-Capacitor (FC) 
[10] and Cascaded H-Bridge (CHB) [11] are the most
common topologies in multilevel inverters that have been
built by manufacturing companies. Used as utility interface
for renewable energy conversion systems, the three-level
neutral-point-clamped inverter (3L-NPC) is the most
attractive topology because of smaller size DC buses for the
three-leg/phase topologies [12-18].

The major requirements for a current controller can be 
described as follows: 1) provide an ideal tracking, fast 
dynamic response and high utilization of the DC link voltage, 
2) ensure a low current THD, and finally 3) allow a constant
switching frequency for safety purposes and low switching
losses. Many current control techniques were proposed for
three-phase grid-connected inverters [19]. Among the
proposed approaches, the nonlinear techniques show better
performance against system uncertainties. Among nonlinear
control techniques Sliding Mode Control (SMC) proved to be
one of the most cost-effective methods due to its robustness,
stability, good dynamic response and its high compatibility
with the inherent switching nature of power converters [20-
23]. Due to its advantages, SMC was adopted not only in
electric drives systems for direct torque control [24, 25] but
also in inverters interfacing renewable energy sources such as
wind energy systems [25, 26] and fuel cell applications [27].

In spite of its advantageous performance, SMC suffers from 
chattering problem with leads to variable and high switching 
frequency that leads to high power losses and considered to 
be highly control-sensitive to noise. For this purpose solutions 
have proposed the introduction of constant timers in the 
hysteretic module of SM controller [28] or the adoption of an 
adaptive hysteresis band that varies the parameter changes to 
fix the switching frequency [29]. Lately, a combination of a 
variable hysteresis band and switching decision (SDA) 
algorithms that ensure switching spectrum concentrated 
around the desired switching frequency is presented  in [30] . 
However, all these solutions requires additional control 
components or extra input voltage. 

T 
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Fig. 1. Three-phase/wire/level NPC grid connected inverter as electric energy conversion system. 

Another solution to operate at a constant switching 
frequency is by employing a pulse width modulator that uses 
an equivalent control law derived from the SM control. This 
law is used as a control signal compared to a fixed-frequency 
ramp in the modulator. Its main advantage is that the 
frequency of the output signal is kept constant regardless of 
the control signal variation.  In literature, the design of a 
PWM-based SM controller was presented for buck converters 
[31], single phase unipolar inverters [32], DC-DC converters 
[33]. 

 For grid connected inverters, studies focused on  direct 
power (DP) based SM  on two-level inverters [34, 35] and 
multilevel inverter [36]. Fewer attempts have adopted the SM 
method as a current control [30]. Besides, compliance with 
grid requirements in literature is not almost achieved where 
harmonic content of the current delivered to the grid is still 
relatively high. It can be concluded that even though the 
previous studies on the topic provide details on SM 
controllers for grid connected inverters, however they lack the 
full design and implementation of a PWM- based SM control 
for 3L-NPC grid connected inverter.  

In this paper, we present the design of a fixed-frequency 
PWM-based SM current controlled NPC inverter in grid 
connection operation. Chattering compensation is done by the 
adoption of Gao’s reaching law [37] . The advantages of the 
proposed controller are: 1) compliance with the grid 
requirements without the use of bulky filters at the output of 
NPC inverter, 2) accurate tracking response, 3) low THD and 
low ripple for the injected currents and synchronization with 
the grid voltage, and 4) stabilized DC bus voltage as well as 
output voltages under external perturbations. The 
performance and robustness of the proposed control system 
are tested and compared to a conventional PI-PWM regulator 
on a laboratory prototype of the NPC inverter. The obtained 
experimental results confirm the above-mentioned benefits of 
the proposed control technique. 

The paper is divided as follows: in Section II, the 
mathematical model of the three-wire 3L-NPC grid connected 

inverter is presented; section III details the proposed sliding-
mode control algorithm, while the experimental results are 
discussed in section IV. Finally, section V concludes the 
study. 

II. THE THREE LEVEL NEUTRAL POINT CLAMPED GRID 

CONNECTED INVERTER 

Renewable energy sources are harvested using appropriate 
power electronic converters aimed to maximize power 
transfer between these sources and a common regulated DC 
bus. The energy transfer between the multiple energy sources 
and the utility is assumed by the 3L-NPC grid converter 
which regulates the dc bus voltage at a set point ensuring 
efficient and well-regulated high quality power transfer 
between fluctuating sources and the grid.  The 3L-NPC 
multilevel inverter has been introduced in [5] as a three-leg 
topology with four power switches and two clamping diode in 
each leg, and split DC-bus capacitors. This inverter, depicted 
in Fig. 1, showed lower stress on the semiconductors devices 
by reducing the voltage at its terminals. Its main drawback is 
the balancing issue between upper and lower DC-link 
capacitors voltages. As seen from the switching states, 
switches (1,3) or (2,4) in each leg are complementary. Table 1 
gives the output voltage between phase a and the capacitors 
midpoint, for each combination of the switching states. The 
same values are obtained for the other two phases (b and c). 
The zero-voltage level obtained by this structure is the main 
factor in increasing the number of output voltage levels, 
which leads to a lower voltage harmonics content. 

TABLE I 
SWITCHING STATES OF PHASE A IN 3L-NPC INVERTER 

Switching 
function 

Switching states 
Output 
Voltage 𝒖𝒂 𝑻𝟏𝒂 𝑻𝟐𝒂 𝑻𝟑𝒂 𝑻𝟒𝒂 𝑽𝒂𝒏

+1 1 1 0 0 +Vdc/2 

0 0 1 1 0 0 

–1 0 0 1 1 –Vdc/2 
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The dynamic model of the system in Fig. 1 is given in the 
stationary reference frame as: 

,
 abc

abc abc g abc

d i
L Ri v v

dt
     (1) 

2 1 1

1 2 1  
3

1 1 2

dc
abc abc

V
v u

  
    
   

 (2) 

Where iabc are the grid currents, vabc represent the inverter 
output voltages, vg,abc the grid voltages, uabc the switching 
function defined in Table I for each configuration, Vdc the DC-
bus voltage, R and L the line resistor and inductor, 
respectively. 

For a simpler design of the control system and for better 
tracking performance, the dq-model of the system is 
considered. It is obtained through a transformation from the 
stationary to a synchronous rotating frame using the following 
matrix: 

2 2
cos cos cos

3 32

3 2 2
sin sin sin

3 3

T
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    

 (3) 

Where denotes the angular position of (dq) rotating frame 
with respect to (abc) stationary frame. It yields: 

,

 dq

dq DC dq g dq

d i
L Ai v u v

dt
     (4) 

,
R L d

A
L R dt

 


 
  
 

 (5) 

III. SLIDING MODE CONTROL DESIGN 

The goal of the SMC is to ensure high dynamic tracking 
performance for the inverter output currents. In the first stage 
of the control design process, the sliding surface should be 
chosen according to the desired dynamics in the sliding mode 
of operation. Once the sliding surface is defined, the reaching 
control law ensuring system stability on the surface is then 
developed. Finally, the generated SMC law is transferred as a 
control signal to be compared with the fixed-frequency ramp 
of the pulse width modulator. 

A. Sliding surface design 

The basic idea of a SM current control is to design a certain 
sliding surface in its control law that will track the desired 
state variables towards its desired references. For this purpose 
two sliding surfaces are introduced in SRF frame; Sd for 
controlling the direct current and Sq for the indirect one, 
whereas id,ref  and iq,ref are the d-axis and q-axis reference 

currents, respectively that should be tracked by the control 
system.  

,

,

S i id d d ref

S i iq q q ref

 

   (6) 

The performance of the SMC is evaluated by the system 
tracking behavior and especially against disturbances. In 
order to obtain a sliding mode over a surface a sliding vector 
where 𝜎 is presented. 

0
d

q

s

s


 
  
 

 (7) 

An equivalent control law ueq that satisfies the condition  𝜎̇ = 0 should be elaborated. Therefore, (8) is obtained. 
. . .

,
. . .

,

.
0d d d ref

q q refq

S i i

S i i


 

    
   

               (8) 

The main drawback of the SMC method is the chattering 
problem that is due to the discontinuity in the control law. 
Reducing the system chattering remains a challenge in the 
SMC design. Gao et al have proposed a complete definition 
for the reaching law that weaken system chattering [37].  
In form of equation it can be written by:  

 

q d qd

.  sgn( )
  , > 0, , > 0sgn( )

d d d d

q q qq

S k S
k kS k S


  

  
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(9) 

In the presented work, the following assumptions will be 
considered: 

 
 

sgn

sgn

DC d gd d d d d q

DC q gq q q q q d
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Where d, q, kd, kq are the SM control parameters. By 
computing the derivative of (6) and integrating then equations 
(4), (5) and (9), the following relations would be attained: 

. .

,,

. .

,,

1

1

d d refd d d d d d ref

q q refq q q q q q ref

S RS sgn(S ) k S Ri L i
L
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L





 
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B. Stability and reaching conditions 

It is evident that the system stability is ensured by the 
following conditions: 
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Fig. 2. Control system applied to the grid-connected three-phase/wire/level NPC inverter. 
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In terms of functions it can be written as: 

. .1 2[( ) ( sgn( ) )],,
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Which yields in terms of d, q, kd and kq 
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The non-positivity condition for Lyaponov function V that 
ensure the best reaching condition given in (15) is also 
ensured by the same parameters conditions given by (14).  

 2 21

2 d qV S S  (15) 

The choice of the parameters is very critical for this type of 

controller. High values of such parameters would increase the 
chattering problem; while lower values affect the converging 
process where a narrower band is obtained. A trade-off 
between these two selection approaches has to be considered. 
In order to achieve PWM-fixed switching frequency control, 
a relationship between the SM equivalent control law ueq and 
the control signal of the PWM modulator should be 
elaborated. A detailed description about the derivation of 
PWM-based SM control system by mapping the equivalent 
control function into a duty cycle function of the PWM 
modulator is given in [31]. Since the SRF frame has been 
considered in our proposed work, two equivalent control laws 
are elaborated (ud,eq , uq,,eq) from equation (10) and therefore a 
transformation into natural control frame (abc) is applied. 
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A block-diagram of the whole control system is shown in 
Fig. 2. Since the inverter is connected to the grid, the 
synchronization with the grid voltages is a matter of 
importance in the control design. The electrical grid is usually 
a complex dynamic system. Grid connection requires multiple 
features for a system to fulfill grid requirements at any time 
and in an accurate manner, and to respond instantaneously to 
grid faults. Information on the grid instantaneous state is 
transferred in real-time to the controller algorithm for 
synchronization procedure. The main goal of the converter is 
to inject a line current in phase with the grid voltage to get a 
unity power factor. So, the value of the grid phase-voltage 
angle is monitored continuously and used in the 
transformation matrix (3). Many synchronization methods 
were introduced for this purpose while the basic Phase-
Locked Loop (PLL) technique is adopted in this proposed 
work. The Sliding mode current controller on d-axis is 
detailed in Fig. 3. It is noted that the same procedure is 
adopted for the current controller on q-axis. 

As explained earlier, the voltage balancing process remains 
a drawback in this topology. So, a PI controller has been 
added in order to maintain the capacitor voltages at equal 
values which is observable in Fig. 2. 

IV. EXPERIMENTAL RESULTS AND DISCUSSION 

A laboratory scale prototype of three-phase/wire/level grid-
connected NPC has been implemented in order to validate the 
proposed sliding mode control scheme. Twelve 1.2 kV, 35A 
SiC MOSFETs of type SCT2080KE and 6 SiC fast-recovery 
clamping diodes of type SCS220KG are employed. The 
controller is implemented using the DSpace ds1103 real-time 
controller board with associated I/Os. The adopted sampling 
time is 22μs. The system parameters used for experimentation 
are given in Table II. Reported results cover both steady state 
and transient operations of the converter. 

Figs. 4 and 5 show the steady operation of the NPC inverter 
in grid-connected mode while the SMC is controlling the 
injected current to be in phase with the grid voltage. Three 
levels phase-to neutral and five levels phase-to-phase inverter 
output voltages are well obtained. 
The five-level symmetrical output voltage of the NPC inverter 
demonstrates the good dynamic performance of PWM 
technique leads to have fixed and low switching frequency 
with low power losses. Moreover, the low voltage ripple of 
capacitor proves the proper design of the controller in 
balancing the DC capacitor voltages with less deviation as it 
is very clear in Fig.5. The grid voltage and current waveforms 
(from phase a) have also been captured by AEMC power 
analyser, as illustrated in Fig. 6. It is clear that the power 
factor is almost 1. Although the source voltage has a THD 
3.1% and the controller takes samples from this voltage 
waveform, the injected current contains low harmonics such 
that the THD is only 2.6% that is still below the accepted 
limit of IEEE standards. 
 

TABLE II 
EXPERIMENTAL SYSTEM PARAMETERS 

Variable Description Values 
Vdc DC bus voltage (V) 300 
fg Grid Frequency (Hz) 60 

C1 , C2 DC-link Capacitance (μF) 650 
L Line inductance (mH) 5 

vxg (x:a,b,c) Grid rms phase voltage  (V) 100 
ix (x: a,b,c) Grid rms current (A) 3.5 

fsw Switching frequency (kHz) 2 
Sliding Mode Current Controller Parameters 

d d-axis  parameter 1 200 
kd d-axis parameter 2 100 
q q-axis parameter 1 200 
kq q-axis parameter 2 50 

Proportional Integral (PI) Controller Parameters 
Kp Proportional gain (Kp) 0.1 
Ki Integral gain (Ki) 0.5 

 

 
Fig. 4. Steady state voltage and current waveforms for grid connected NPC.  

 

Fig. 5. DC bus voltages and grid side voltage/current waveforms.  
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Fig. 6. Grid side voltage and current waveform, RMS values and THD. 

It should be mentioned that this low THD has been 
achieved by firing the switches in only 2 KHz, which is 
significantly less than the similar works in 2-level converters. 
The low switching frequency makes the multilevel inverters 
suitable for high power applications especially in renewable 
energy conversion that needs high efficiency interfaces to 
deliver power to the grid.  

In order to study more the operation of the system with the 
controller proposed, different tests were adopted to compare 
the SMC with a conventional PI regulator.  

A. Test 1: operation with DC voltage variations

The main drawback of the 3L-NPC is the balancing
between upper and lower capacitors. To study the behavior of 
the system under DC link variation a DC voltage variation of 
30V has been applied to the controller as it can be seen in Fig. 
7. In Fig. 7.a, the results when the proposed SMC is used are
shown while Fig. 7.b shows the results of the PI regulator.
The SMC shows better performance of maintaining the
balancing between the DC side voltages when the DC side
voltage change from 300V to 330V and returns back to 300V;
lower DC voltage ripples are obtained as well as an accurate
tracking to voltage variations.

B. Test 2: operation with grid voltage disturbances

A variation of 17% in the AC voltage amplitude is applied
in this case. It is evident that the system operates with a unity 
power factor under this perturbation. Moreover, the balancing 
between the DC side voltages is more controlled when a SMC 
is used as it is shown in Fig. 8.  

C. Test 3: operation with current reference variations

Moreover, to validate the fast tracking response and good
dynamic performance of the designed controller, a change in 
the current reference value from 5A to 8A was adopted as it is 
shown in Fig. 9. It is evident that during the change in 
injected current amplitude, the controller takes action 
properly in making it in-phase with grid voltage as well as 
controlling the capacitors voltages. The change in reference 

current amplitude has been made during the real-time 
implementation. 

D. Test 4: operation with reactive power variation

In order to investigate more the controller introduced, a 
reactive power test was adopted. A variation in the phase shift 
of 30° is applied to the controller during the real-time 
implementation as it is shown in Fig. 10. It is evident in the 
zoomed part of Fig. 10, that the controller responds and 
injects a shifted current to the AC side while maintaining the 
DC bus voltages equal. It should be noted that the same 
performance was obtained with the PI regulator. 

E. Test 5: THD and power factor versus switching frequency

and power variations.

In order to study better the performance and the robustness 
of this controller, the operation of the overall grid connected 
system has been tested for different switching frequencies 
with the same system parameters shown in table II. As it is 
presented in Fig.11 the SMC shows the same performance for 
higher switching frequencies. A THD current less than 5% 
and a high power factor were always attained. From other 
side, the system operates normally with a conventional PI 
regulator for switching frequencies less than 6 kHz. For 
higher switching frequencies, the system was not able to 
stabilize the DC voltages and inject a synchronized current to 
the grid. A tuning for the PI parameters is requested while the 
SMC shows a high robustness under switching frequencies 
variations. Finally, Fig. 12 depicts the results of the system 
tested in transmitted power variations; the SMC shows a 
system operation nearby the conventional one in terms of 
high power factor and low THDi 

V. CONCLUSION

In this paper a sliding mode current control technique has 
been proposed and implemented on a grid connected NPC 
inverter as renewable energy resources interface to the grid. 
The main advantage of this technique is that a low THD 
current is given to the grid with only L filter required. 
Experimental results that confirm the good dynamic 
performance of this technique are presented. The overall 
system shows robustness 
against external disturbances at the DC and AC sides. 
Moreover, it shows better performance in stabilizing the DC 
link voltages than a PI regulator in higher switching 
frequencies. Not only the robustness and the dynamic 
response of the system against external perturbations have 
been verified, but also the ability of the system to inject a 
synchronized current with low THD and low ripples to the 
grid has been proved. Eventually, it can be concluded that the 
presented 3 Phase/Wire/Level NPC inverter using 
implemented sliding mode controller can be a good candidate. 
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(a) (b) 

Fig. 7.  DC bus voltage variations between 300V and 330V (a) SMC. (b) PI 

  

(a) (b) 

Fig. 8. AC voltage variation from 100V to 83 V. (a) SMC. (b) PI 

 
 

(a) (b) 

Fig. 9. System respone to a sudden increase/decrease of reference current. (a) SMC . (b) PI 
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Fig. 10. Phase shift variation between 0° to 30°. 

Fig. 11. System operation versus switching frequency variations; THDi 

(a) 

Fig. 12. System operation versus transmitted power. (a) PF   (b) THDi 
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