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Abstract. We present an on-the-fly abstraction technique for infisitge con-
tinuous-time Markov chains. We consider Markov chains #ratspecified by a
finite set of transition classes. Such models naturallyesgmt biochemical reac-
tions and therefore play an important role in the stochastideling of biological
systems. We approximate the transient probability distidims at various time in-
stances by solving a sequence of dynamically constructstizath models, each
depending on the previous one. Each abstract model is afffiaitkov chain that
represents the behavior of the original, infinite chain miyia specific time inter-
val. Our approach provides complete information about abdly distributions,
not just about individual parameters like the mean. Theresfeach abstrac-
tion can be computed, and the precision of the abstractiimecewhen desired.
We implemented the algorithm and demonstrate its usefsilaed efficiency on
several case studies from systems biology.

1 Introduction

We present a new abstraction technique for infinite-statémmoous-time Markov chains
(CTMCs) that are specified by a finite set of transition clasSeich models naturally
represent biochemical reactions and therefore play an riraporole in the stochas-
tic modeling of inter- and intracellular processesstateis a vectorz € N{j whose
dimensionn is the number of chemical species, and whose componentstéteevari-
ables) represent the number of molecules of each speciesartysis of Markov mod-
els reveals the biological role of intrinsic noise in gerswork structures, which has
received much attention in systems biology [35, 44]. Thehwetof choice has been
Monte Carlo simulation. This is because standard numesigkition algorithms for
CTMCs do not apply to infinite-state systems, whereas uppentbs for the state vari-
ables are rarely known, and even if they are known, the dtyuos suffer from a “curse
of dimensionality,” i.e., state explosion. The usual measi interest is the full prob-
ability distribution of state variables at various timetarsces. Repeated simulation,
however, while useful to give some information about indial state parameters such
as means and variances, is too expensive to obtain moreriafiam about probability
distributions [12].

In the context of systems biology, the computation of eveababilities is impor-
tant for several reasons. First, cellular process may éegidbabilistically between
several possibilities, e.g., in the case of developmemtiéties [21, 4, 39]. In order to
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Fig. 1. Sliding window method. In each iteration step, the wind®ly captures the se; of states
where the significant part of the probability mass is locanéihlly (light gray), the setS;4 of
states that are reached after a time step (dark gray), arsdates that are visited in between.

verify, falsify, or refine the mathematical model based opegitmental data, the like-
lihood for each of these possibilities has to be calculaBad.also full distributions

are of interest, such as the distribution of switching delf80], the distribution of

the time of DNA replication initiation at different origir{84], and the distribution of

gene expression products [46]. Finally, many parametenasbn methods require the
computation of the posterior distribution because meadsvariances do not provide
enough information to calibrate parameters [22].

If the populations of certain chemical species are largen the discrete structure
of model renders its analysis difficult. However, their effen the system’s variance
may be small, and if this is the case, they can be approxinza®aming a continuous
deterministic change, and it would be better to use contistgiate approximations
such as the Langevin approach [25]. For species with smallilatdons, however, a
continuous approximation is not appropriate and other @ppration techniques are
necessary to reduce the computational effort of the arglysi

We propose a new numerical solution algorithm that apprat@sthe desired prob-
ability distributions by solving a sequence of dynamicanstructed abstract mod-
els. Each abstract model is a finite CTMC that representsehavior of the original,
infinite CTMC during a specific time interval. In each step, @mstruct geometric
boundaries in the original state space which encompasddtessvhere most of the
probability mass is located. These boundaries form a “wividbat moves through the
infinite state space. The state space of each abstract neofteghied by the finitely
many states inside the window, together with a single alisgiiate that represents all
of the infinitely many states outside the window. In subsegtime intervals, the win-
dow movement follows the direction in which the probabilityass moves; see Fig. 1.
In each step, the initial conditions are given by a probghbilector (whose support is
shown in light gray); then an abstract model is constructetbge state space is de-
picted by the dashed rectangle), and solved to obtain thieveetor (dark gray).

Our approach works well if during each time interval, mostief probability mass
is concentrated on a tractable subset of the states. Oftnveeld systems, such as a
biological process, have this property, while, for insgna random-walk model will
become intractable after a certain time period, becauseribieability mass will be
distributed uniformly on the entire infinite state space.dale compute the error of each
abstract model, and refine the precision of the abstractitenvdesired, by enlarging
the window (as usual, there is a trade-off between precemmhcost of the analysis).



To demonstrate the effectiveness of our approach, we hapleimented the algo-
rithm and applied it successfully to several examples frgstesns biology. The exper-
imental results show that our method allows for an efficieralygsis while providing
high accuracy. The two most complex examples that we conai@einfinite in three
dimensions and describe networks of at least seven cheramations. It is difficult to
find comparison data, because these examples are beyorbiheef what has been
handled in other work on solving CTMCs.

Related work Various abstraction techniques for Markov chains Wiitite state spaces
have been developed during the last years [10, 11, 26, X8jiterstate Markov chains
with discrete timehave been considered in the context of probabilistic las®nnel
systems [1-3, 38] and probabilistic pushdown systems [3327]. In the infinite-state
continuous-time setting, model-checking algorithms feasj-birth-death processes and
Jackson queuing networks have been studied by Remke [4@ewthe underlying
Markov chains are highly structured and represent speasd<of CTMCs defined by
transition classes. The closest work to ours is the modetidhg algorithm for infinite-
state CTMCs by Zhang et al. [47]. Depending on the desiredgion, their algorithm
simply explores the reachable states up to a finite path deptiontrast, our approach
takes into account the direction into which the probabiiitgiss moves, and constructs
a sequence of abstract models “on-the-fly,” during the watifbn process. Similar ap-
proaches have also been used in the context of biochemation networks. Similar
to [47], Munsky et al. [32] explore models up to a specifiedtidimath depth, whereas
Burrage et al. [7] consider a finite projection that is dodbifenecessary. The latter
method, however, requires a priori knowledge about thectioe and spread of the
probability mass.

2 Transition Class Models

Our approach builds on a high-level modeling formalismlezhlransition Class Mod-

els(TCMs), which provides a functional description of strueh Markov chains with

countably infinite state spaces. TCMs have been used in ogi¢lé€ory [43] and re-
cently for stochastic models of coupled chemical reactjdtag We consider a dynam-
ical system with a countable s&tof states.

Definition 1. A transition clas<” is a triple (G, u, «) with a guard setG C S, an
update function: : G — S, and arate functiom : G — R~ (. Atransition class model
(TCM) is a pair(y, {C1, ..., Ck}), wherey € S'is an initial state andC1, ..., Ci} is
a finite set of transition classes.

The guard se contains all states in which a transition of clas€’ is possible, and
u(z) is the target state of the transition. EaCkransition has an associated rater)
that depends on the current state

Example 1.We consider a simple birth-death process with= Ny, y = 0, and two
transition classe€, = (G, up, ap) andCy = (G4, ug, ag). A birth event increments
the value of the state variable by 1 at a constant kate 0, whereas a death event
decrements it by 1 at a constant rate- 0. Formally, for allz € S, we defineG, = S,
up(z) =+ 1L, ap(x) =N Gg={x €S|z >0}, us(z) =2 — 1, andag(z) = p.



In practice, we can usually express the &ty a finite number of constraints on the
state variables of the system, amdnda by elementary arithmetic functions.

Stochastic SemanticsFor a given TCMM = (y, {C4, ..., Cx}) we derive a continuous-
time Markov chain (CTMC) X (¢),t > 0) with state spacé. Leti € {1,...,k} and

C; = (G;,u, «;). We define the probability of a transition of typg, occurring within

an infinitesimal time intervak, ¢ + dt), by

Pr(X(t+dt) =ui(z) | X(t) =) = a;(x) - dt 1)

for all z € G;. We call o;(z) the rate of the transitionz — wu;(z). Note that the
transition probability in Eq. 1 does not dependidout only on the length of the interval.
Moreover, ag X (t),t > 0) possesses the Markov property, the above probability does
not depend on the states visited before tim@incey is the initial state of\/, we have
Pr(X(0)=y) = 1, and, forz € S, we define the probability that the process is in
statex at timet by

p () =Pr(X(t)=x|X(0)=y). )

In the sequel, a matrix description of the transition prolitéds is more advantageous.
To simplify our presentation, for afl, we extend the domain of both; andu; to S
and setw;(z) = 0if 2 ¢ G;. Let@ : S x S — R be the function that calculates the
transition rate of each pajr, ') of states withr # 2/, that is,

Qw,2') = Zi:ui(w):m’ i(2)- ®)

As for the diagonal of the matrix, we s€t(z,z) = —3_,,,, Q(z,2"). By assuming
a fixed enumeration of, we can regard) as a matrix, calledyenerator matrixof
(X(t),t > 0), and describe the evolution of the system by Kkleémogorov differential
equation[9]

dp®

a p(t) Q. (4)

We write 1, for the column vector with zeros everywhere except at siatehere it is
one. By(-)T we denote matrix transposition. If we assume that the Inibadition of
the system i9(? = (1,)7 and(X (¢),t > 0) is a regular Markov chain [9] then Eq. 4
has the unique solution

p =p - exp(Q1). (5)

Assume thatS| < co. Thenexp(Qt) = >27=(Qt)"/itand, forallt > 0, (exp(Qt)), ,

is the probability to reach statefrom x aftert time units. Analytic solutions for the
functionp() can only be derived for special cases. If the underlyinglyafphe CTMC

is acyclic, a closed-form expression o) (z) can be calculated using the recursive
scheme of the ACE algorithm [29]. In general, finding theestabbabilities as a sym-
bolic function oft is not possible.

! Note that the stochastic semantics ignores self-loopsiusecthey do not have any effect on
the probabilitiep™® ().



Numerical solutions of the differential equation in Eq. 41aky exploit the follow-
ing property. If we split the time interval, ¢) into r intervals(to, 1), ..., [tr—1,t)
withty < ... < t., andty = 0, t,. = t, then Eq. 5 can be rewritten as

pltr) = p(to) -exp(Qt,)
= p() . exp(Q(t; — to)) - exp(Qta — t1)) - ... - exp(Q(t, — t,—1))
= pt) . exp(Q(ta —t1)) ... - exp(Q(t, —t,_1)) (6)

. Copt) L ep(Qt — o).

This yields an iterative scheme for the system of diffedr@quations given by Eq. 4.
However, numerical solution approaches suffer from thetfeat even if upper bounds
on the state variables of the system are known, the size dtrilnecated) state space
is still too large for an efficient solution. We present a waycbmbat this problem

by constructing and analyzing abstract models that apprata the behavior of the
infinite-state Markov chain during each interval.

Biochemical Reaction Networks. We illustrate our approach by presenting transition
class models of cellular chemical systems. According tdhbkery ofstochastic chem-
ical kinetics[16], a network of chemical reactions can be modeled as a CTWIE
consider a system of different types of molecules and assume that moleculegleoll
randomly and may undergo chemical reactions. If we assuntieefiuthat the reaction
volume (e.g., a cell) has a fixed size and temperature, aswétlat the system is well-
stirred, a state of the system is given by the numbers of mtdsof each type. Hence,
the state spacg consists ofn-dimensional vectoréey, . .., z,) € Nj. The different
types of reactions are usually specified by meanste¢hiometric equationsg-or in-
stance A + B — C means that if a molecule of typ& hits a molecules of typ&, they
may form a complex molecul€'. We call the molecule types that are consumed by a
reactionreactantsin the above examplej andB are reactants. Each reaction type can
be described by a transition class, and for a cfass (G, u, «), the guard> contains
the states in which enough reactants are available. Thaeifidationu specifies how
many molecules of each type are produced and how many areroedsby the reac-
tion. Thus,u is of the formu(z) = = + v wherev € Z". Recall that the probability of

a transition of clasg’; occurring in the next infinitesimal time interval of lengthis
«;(x) - dt. For a stochastic kinetic analysis;(z) is the product of a constant and the
number of distinct combinations of reactants. This enstirasa chemical reaction is
more likely to happen if many reactants are available.

Example 2.We consider a simple transition class model for transaiptif a gene into
messenger RNA (mRNA), and subsequent translation of tier laito proteins [45].
An illustration is given in Fig. 2. This reaction network oives three chemical species,
namely, gene, mRNA, and protein. As always only a single coipthe gene exists,
a state of the system is uniquely determined by the numberRfAnand protein
molecules. Thereforey = NZ and a state is a paiiwg, zp) € S. We assume that
initially there are no mRNA molecules and no proteins in thgtem, i.e.y = (0,0).
Four types of reactions occur in the system. Let{1,...,4} andC; = (G;, u;, o;)
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Fig. 2. Transcription of a gene into mRNAFig. 3. Probability distribution of the gene expres-
and subsequent translation into a protein.sion network at = 1000.

be the transition class that describesitile reaction type. We first define the guard sets
G1,...,G4 and the update functions, . . ., u4.

— Transition clas€”; models gene transcription. If@, -transition occurs, the num-
ber of MRNA molecules increases by 1. Thus(zr, xp) = (zg + 1,2p). This
transition class is possible in all states, i@;,= S.

— We represent the translation of mRNA into protein@y. A Cs-transition is only
possible if there is at least one mMRNA molecule in the systéfa.setGy =
{(zg,zp) € S | xr > 0} anduz(zr,zp) = (xr,zp + 1). Note that in this
case mRNA is a reactant that is not consumed.

— Both mRNA and protein molecules can degrade, which is madeye”; andCj.
HenceGs = G3, G4 = {(zg,zp) € S | xp > 0}, us(zr,xp) = (xg — 1,2p),
andu4(xR,xp) = (:L'R,.’L'p — ].)

Letey, co, c3, c4inR< g be constants. Gene transcription happens at the constant ra
a1(xr,xp) = c1, as only one reactant molecule (the gene) is available.r@hslation
rate depends linearly on the number of mMRNA molecules. Taereas (g, zp) =
co-x . Finally, for degradation, we se (zr, 2p) = c3-xr anday(zg, xp) = c4-xp.

Fig. 3 shows the probability distributigst?) of the underlying Markov chain after
t = 1000 seconds. The parameters are chosen as0.05, c; = 0.0058, ¢5 = 0.0029,
andcy = 10~%, wherecs andc, correspond to a half-life of 4 minutes for mRNA and
2 hours for the protein [45]. Most of the probability mass centrates on the part of
the state space whebe< zi < 30 and25 < zp < 110 and, in a 3D-plot, it forms a
steep “hill” whose top represents the states with the higtredability. Note thaevery
state in the infinite se¥ has a non-zero probability at all time poirts- 0, because the
underlying graph of the Markov chain is strongly connectsltime passes, the hill
moves through the state space until the distribution reaithsteady-state.

3 Abstraction of TCMs

Our approach is based on the observation that a Markov chesioriting a certain
real-world system often has the following property. Aftéairing with probability 1



Input:  TCM (y,{C1,...,Cr}), t1,..., tr With0 < t1 < ... < tr.
Output: Approximationg?), ..., p*~) and errore.

1 Initialize Wy = {y}, p(y) = 1, ande = 0.

2 forje{l,...,r}do

3 Seth]- = tj — tj_l.

4 ComputelV; depending om, C, ..., Cy, andh;.

5 Construct generatd@p; of the abstract model based 6Ah, ..., C;, andW;.
p(x) ifceW,_inNW;j,

6 Setq(x) = Zmewj,l\wj p(z) if © = xy,
0 otherwise.

7 Computep = q - exp(Q;h;).
8  Setp!'i)(x) = p(z) for x € W; andp'*s) (z) = 0 otherwise.
9 Sete = € + p(xy);

10 end

Alg.1. The basic steps of the approximate solution of the Markovncha

in the initial statey, the probability mass does not distribute uniformlySnsuch as,
for instance, in the case of a random walk. Instead, at eartt jpotime, most of the
probability mass distributes among a finite, relatively Bmamber of states. This set
of states changes as time progresses, but it never exceesitam size. Often, the
states with “significant” probability are located at the sapart of the state space, as
illustrated in Fig. 3.

Let (y,{C1,...,Cx}) be a TCM and lep™® be the probability distribution of the
associated CTMC. We propose an abstraction techniquedaaimputation op(*) that
proceeds in an iterative fashion. We divide the time intej¥&) into r intervals as in
Eq. 6 and approximatg’!), ... p(t*) by considering a sequence ofibstractions of
the Markov chain under study. Lgte {1,...,r}. In thej-th step, we construct, on-
the-fly, a finite Markov chain for the system behavior during intervalt; 1, t;) from
the transition class description. The state space of-ifieabstract model is the sBt;;
of states where most of the probability mass is located dutin ,,¢;). We refer to
this set as avindow The remaining states are collapsed into a single absodbatg
xy, 1.e., a state that cannot be left.

3.1 Algorithm

Alg. 1 describes an iterative method to approximgte), ..., p(**) by vectorsp(tt),
..., p'*). We start with probability 1 in the initial state(line 1). In line 4, we compute
the windowWW; such that most of the probability mass remains withip during the
nexth; time units. In line 5, we construct the generator matrix efabstract model (the
finite Markov chain with state spad&; U{z;}). We define the initial distribution of the
abstract model in line 6 and calculate its solution in lind[e approximatior(%:) of
p'%) is then defined in line 8. Finally, in line 9, we add the appnexiion error tce. A
detailed error analysis is given below. Note that afterjtieloope = 1_Z:EEW,~ p(z),
that s, in each loop, the probability of beingin may increase. Thus, '

Z.’L‘Esﬁ(tl) S e S Zmesﬁ(h).



The general idea of this abstraction approach is apparemt fig. 3, but the main
difficulty is to find the states that can be neglected in gtéme 4). In Section 3.2, we
explain how to predict the direction and spread of the proigmass duringt; 1, ¢;).

Lete > 0. For an intervalt, t + h), we define the sizeu(e, t, h) of the set of sig-
nificant states as the smallest number for which there eMists S, |IW| = m(e, t, h)
such that

P(X{t)eW,t' €t,t+h)>1—e (7)

The valuem(e, t, h) indicates how strongly the probability mass spreads ouf dar-
ing [t,t + h). Consider, for instance, a random walk on the non-negattegér lattice
in the plane that starts i0, 0) [33]. Between each pair of neighbor states there is a
transition with rate 1. Foh > 0, the valuem(e, t, h) approaches infinity as — oo.
As opposed to the random walk example, in many systeifist, k) is a manageable
number of states, evendfis small and is large (or tends to infinity). Consider, for in-
stance, Ex. 2 and assume that 500, ¢ = 10~°. For each intervak, ¢t + h) C [0, ),
m(e, t, h) does not exceed 20000 states. Alg. 1 works weth{k,¢;_1, k;) is a man-
ageable number of states for allNote that, in particular, cellular usually follow a small
number of trends, that is, the quantitative outcomes of mical experiments can usu-
ally be classified within a small number of different categer Thus, our approach is
well suited for TCMs of biological systems.

Construction of the Abstract Model. Forj € {1,...,r}, let W be such that

P(X(h) S Wj,h S [tj_l,tj)) >1—- €5 (8)

wheree; > 0 is the approximation error of thgth step. Note that Eq. 8 implies that
W; N Wiy # 0, because the intersection of two successive windows mugaico
those states that have a high probability at timelt is far too costly to construct the
smallestset with this property. Instead, we propose a cheap cortgtrucf a setlV;
with a hyper-rectangular shape. We will outline the corgdtan in Section 3.2. The
abstract Markov chain of thg-th step has the finite state spaldg U {x;}, where

xy represents all states € S\ W;. The transitions of the abstract model are given
by the transition classes of the original model except thiaransitions of states at
the boundary lead te;. Formally, for each clas€’ = (G, u, «) of the infinite-state
Markov chain(X (¢),t > 0), we defineC” = (G, v/, /) such thatG’ = G N W,

iy Julx) if u(z) e Wy,
w(z) = {xf otherwise,

anda/(z) = a(x) for all x € G'. Thus, we consider an (extended) subgraph of the
one underlyingd X (¢),¢t > 0), with vertexes sell/;, and all edges leading frof; to

S\ W; redirected to the extensiary. Note that no transitions are possible framp

We will see thatzy can be used to calculate the approximation error as it cepthe
probability mass that leavé§’;.

Error Analysis. Recall that if@ is the generator matrix of the original Markov chain
(cf. Eq. 3),exp(Qh;) is the transition probability matrix for time stég. Let @, be the
generator matrix of the abstract Markov chain construatetie j-th step (see Alg. 1,



line 5). Forz, = € W}, we use the approximation

(exp(Qhy)), , =P (X(t;) =z | X(tj-1) =)
~ P (X(t;) = zAX(h) € W, h € (tj1,t5) | X(tj-1) =) (9)
= (exp(Qjhy)), . -
inline 5 of Alg. 1. Thus, we ignore the probability to reacfrom x afterh; time units
by leavingl¥; at least once.

For the error analysis, we assume that the vegtaf size|1V;| + 1 is such that
qj(z) = pt=1)(x)if x € W;. Thisis true forj = 1 and forj > 1 we replacei-1)(z)
by pti-1)(z) in Alg. 1. In line 7 and 8, we defing(*/)(z) = (q; - exp(Q;h;)), for
z e Wj. Thus,

P9 (2) = (g - exp(Q;hy)),

~ Z.’L‘EWj p( !

= vew, P(X(tj1) =2 X(t;) =2 | X(tj-1) = )

R es P(X(tj1) =) - P(X(t)) = 2| X(tj-1) = x)

=P (X(t;) = 2) = p!")(2).
The first approximation is due to Eq. 9. The second approximapbmes from the fact
that we ignore the probability of not being Wi; at time¢;_;. In both cases we use an
underapproximation. By setting’s) (z) = 0 if = ¢ W;, we obtainp*s)(z) < pti)(2)
forall z € S. Overall, we use three approximations, where probabdityast” namely,

(10)

(a) the probability that is lost due to the approximatioregiy Eq. 9,

(b) the probability of not starting iil’; at timet;_; (second approximationin Eq. 10),

(c) the probability of leavingV; during(t;_1,t;) (which arises due to the approxima-
tionp()(2) =~ 0 if z ¢ W;).

Itis easy to see that, if the probability of beingliy; during[t;_1,t;) is atleastl — ¢,
(see Eq. 8), then all three errors are at mgsThus,||p(*) —p(*3)||; < ¢;. Note that the
entryp(z¢) that is computed in line 7 of Alg. 1 contains all three appneaiion errors
(a), (b), (c). After the termination of the for loop,contains the total approximation
error, which is at most; + ... + e,.

Numerical Solution Methods. For the solution step in line 7 of Alg. 1, we apply
a numerical method to compute the matrix exponential) /fis small then the matrix
exponential can be computed efficiently using, for instaReglé approximation [5, 31].

If the size of(); is large butQ; is sparse then iterative methods perform better, such
as uniformization [24, 17], approximations in the Krylovbspace [37], or numerical
integration [18, 19].

3.2 Window Construction

Let us now focus on the construction of the €t in line 7 of Algorithm 1 (see also
Eqg. 8). Recall that this requires the prediction of the sizé lacation of the probabil-
ity mass durindt;_1,t;). For arbitrary transition class models, a cheap prediation



the future behavior of the process is not possible as thsitram classes may describe
any kind of “unsystematic” behavior. However, many systdrage certain linearity
properties, which allow for an efficient approximation o&tfuture behavior of the
process. Consider a transition cl&ss = (G, um, @), and assume that the succes-
soru,,(x) of a statex € G,,, is computed as,,,(z) = = + v,,,, wherev,, € Z" is

a constant change vector. In many applications, a disctate wariable represents the
number of instances of a certain system component typehigincremented or decre-
mented by a small amount. For instance, in the case of bioickaéreaction networks,
vm € {—2,—1,...,2}", because a reaction changes the population vectors of the
chemical species by an amount of at most two. Any reactiandogiires the collision of
more than two molecules is usually modeled as a sequenceearbsecactions. For the
rate functionw,,,, we assume that the relative differenog, (z) — au, (u(x))|/am(x)

is small forallxz € G,,,. Thisis the case if, for instance,,, is linear or at most quadratic
in the state variables. According to stochastic chemiaatics, this assumption is ad-
equate for biochemical reaction networks, because thefateeaction is proportional
to the number of distinct combinations of reactants. Finale assume that the sefs,
can be represented as intersections of half plangs Afain, this assumption holds for
biochemical reaction networks, &5, refers to the availability of reactant molecules.

The conditions stated above ensure that we can derive gaotnetindaries for the
window W;. More precisely, in line 4 of Alg. 1 we can construct ardimensional
hyper-rectangulall’; such that the left hand of Eq. 8 is close to one. Intuitivedg t
boundaries ofV; describe upper and lower bounds on the state variahles . , z,,.
Consider, for instance, Fig. 3 and recall that the initiatesof the process ig= (0, 0).

For the rectangléV = {(zg,zp) € S| 0 < zr < 30,0 < zp < 120}, we have
P(X(t) € W,t € [0,1000)) ~ 0.99.

For the construction dfl’;, we use a technique that considers only the “worst case”
behavior of the Markov chain during;_+,¢;) and is therefore cheap compared to the
solution of the abstract model. The random variablg( X (¢)) represents the rate of
transition typeC,,, at timet. We can assume that during a small time interval of length
A, a (X (t+ h)) is constant, witt) < h < A. If z is the current state then the number
of C,,-transition within the nextA time units is Poisson distributed with parameter
am(x)- A [42]. We can approximate this number by the expectatigiiz) - A of the
Poisson distribution. As we are interested in an upper anddbound, we additionally
consider the standard deviatigfie,,, () - A of the Poisson distribution. Thus, in the
worst case, the number of transitions of typg is

— atleasts,, (z, A) = max(0, am(x) - A — y/am(x) - A),

—atmosts (r, A) = am(z) - A+ Jam(z) - A
Note that if, for instancey, () - A = 1, then we have a confidence®i.97% that the
real number of transitions lies in the interval

am(x) - A — Vam () A ap(z) - A+ /am(x) - A} .
Letr,, € {xF,r} andz(®) =z. Forl =0,1,..., the iteration

2D = 2O £ ¢ 4k (20, A) (11)



yields worst-case approximations®f(t + A), X (t+2A4), ... under the condition that
X (t) = x. Note thatrV) € RZ,. For functionsv,,, that grow extremely fast in the state
variables, the iteration may yield bad approximationssitis based on the assumption
that the rates are constant during a small interval. In timéeot of biochemical reaction
networks, the linearity properties mentioned above ari#lad and Eq. 11 yields ad-

equate approximations. The bourigs(z) andb; (z) for dimensiond € {1,...,n}
are given by the minimal and maximal values during the iteratMore precisely,
bt (z) = [max; a:g)] andb; (z) = [min a:g)J, wherez() = (xgl), ce xg))

In order to constructV’;, we do not consideall combinations{x}", k] } x ... x
{@f, K }in Eq. 11. We choose only those combinations that do not prederentially
transition types leading to opposite directions in theessptace. Consider, for instance,
Ex. 2 withz = (5,50) and A = 10. If we assume that more reactions of tyfeand
C, happen (than on average) and fewefandCy, we gets; (z, A) = ¢; - 10 +
Ver 10 = 1.2,k3 (2, A) = ¢2-10-54++/c3 - 10 - 5 = 0.83, k3 (2, A) = max(0, c3-10-
5—+/c3-10-5) =0, k; (z,A) = max(0,cs-10-50 — \/c4 - 10 - 50) = 0. This means
that the number of protein and mRNA molecules increases:@nd= (6.2, 50.83). We
do not consider the combinations that contain bojfmndn;. As C equateg’; and
vice versa, these combinations do not result in extremeegaddi the state variables.
For each dimension, we can identify two combinations theltlyininimal and maximal
values by examining the vector field of the transition clas&¥e refer to a chosen
combination as &ranchand fix for each transition clags,, a choicex,, = &} or
km = Kk, forall [.

For the construction dfl’;, we first need to define the significant set of states at time
t;—1. A very precise method would require sorting of the vegtér-1) (), which we
find far too expensive. Therefore, we opt for a simpler solutvhere we define the set
S; = {z € S| pti-1)(z) > §} of states significant at timg_,. Here,§ > 0 is a small
constant that is several orders of magnitude smaller thedelsired precision. For our
experimental results, we uséd= 10~'° and decreased this value during the iteration
it > s, plti-1)(x) exceeded our desired precision. For each branch, we cartii@u
iteration in Eq. 11 for[h;/A] steps with 10 different initial states randomly chosen
from S;. This yields a cheap approximation of the behavior of theegss during the
interval [0, k7). For dimensiond, let b7 andb; denote the bounds that we obtain by
merging the bounds of each branch and each randomly chagen\&ie set

W;=5;U{e=(x1,...,2,) €S| b; <zq4< b;,l <d<n}.
We choose the time step$ in the order of the expected residence time of the current
state such that the assumptiongf (X (¢)) being constant is reasonable.

The boundaries of the window become roughiifs large. Therefore, for the experi-
mental results in Section 4, we chodsedynamically. During the iterative computation
of the bound$} andb;, we compute the size of the current winddi. We stop the
iteration if |1/;| exceeds twice the size 6f; but not beford?; has reached a minimal
size of5000 states. By doing so, we induce a sliding of the window, whilforced
to move from its previous location. It is, of course, alwapsgible to choose a smaller
value forh; if the distribution at a specific time instahk ¢;_, + h; is of interest.

Precision. If the approximation erroe in Alg. 1 exceeds the desired error threshold,
the window construction can be repeated using a larger windg. This may hap-



pen if the confidence of the estimated intervg), (x, A), s (x, A)] for the number of
transitions of typen is not large enough. In this case, the approximafién can be
used to determine where to expdfg. Several heuristics for the window expansion are
possible. The smooth distribution of the probability mdssyever, suggests to expand
only those boundaries &¥; where states with a high probability are located.

4 Experimental Results

We implemented Alg. 1 in C++ and run experiments on a 3.16 Git&d Linux PC with
6 GB of RAM. We consider various examples and present oulteesuTable 1. For
the parameters, we used values from literature. We proviligaled description of the
parameters and branches that we used for the gene exprezsiople (cf. Ex. 2). For
the parameter details of the remaining examples, we ref@3fo

First we applied our method to finite examples and those weda@umalyzed in the
literature (Examples 1-3). We then considered signifigdatiger examples (Examples
4-6). The examples studied in [47, 32] are much simpler tharones presented here.
These approaches explore the reachable states up to acltdin, which yields large
spaces that contain many states with a very small probabiiitr instance, in the case
of Ex. 2 the path depth is proportional to the expected nurnb@rotein molecules
(see also Fig. 3). The states reachable within this fixed mumbsteps always include
states with a high number of mMRNA molecules although theibpbility is very small.
In contrast, with our method, we achieve a similar accuraliflenusing windows that
are much smaller. We are therefore able to handle more carepiamples.

The enzyme reaction is a prototype of a stiff model and had 5i&es. The crys-
tallization example is also finite but has 5499981 reachsfales. To the best of our
knowledge, the crystallization, the gene expression, hedirus example have not yet
been solved numerically by others. Goutsias model and thgnea reaction have been
considered by Burrage et al. [7], but as already stated, theihod requires additional
knowledge about the direction and spread of the probalnilags.

For the gene expression example, we chapse (0,0), a time horizon oft =
10000, and rate constantg = 0.05, co = 0.0058, ¢c3 = 0.0029, ande¢, = 1074,
wherecs andce, correspond to a half-life of 4 minutes for mRNA and 2 hourstfar
protein [45]. We use four branches for the iteration givertgy 11. We maximize the
number of MRNA molecules by choosing andx; and minimize it withx,” ands; .
Transition classe€’; andC), are irrelevant for this species. We maximize the number
of proteins by choosing ", 3, x5, andx} . The number of proteins becomes minimal
with k77, k5, /{3‘, andﬁi‘.

In Table 1, the colummef. refers to the literature where the example has been pre-
sented. Colum#dimlists the number of dimensions of the set of reachable ststate
that this is not equal to the number of chemical species siadain conservation laws
may hold or the copy number of some species can never exceed a smadl zol-
umn #tclassegefers to the number of transition classes, and colinfinite indicates
whether the model has an infinite number of states or not. lkmoemean|V;| we

2 For instance, in the case of complex formation the numbepwofptex molecules is uniquely
determined by the initial populations and the remaining bermof complex components.



name ‘ref. ‘#dim ‘#tclasse*a’nfinite ‘mean W]

running time‘%constr. ‘ error ‘steps‘

enzyme reaction[7] | 2 3 no 1437 15se 6 1x107° 4
crystallization |[20]| 2 2 no 47229 8907se¢ 30 [2x 1077|517
protein synthesi$47]| 1 4 yes 179 2se¢ <1 [2x1078 8
gene expressiof4s]| 2 4 yes 32404 107se¢ 39 [2x107°| 87
Goutsias model[7] | 3 10 yes 710204 25593 sec 6 9x107% 54

Virus model [[6]| 3 7 yes 1092441 27850sec 9 6 x107% 51

Table 1. Experimental results of the sliding window method.

list the mean size of the windows that we considered duriegtération. The running
times of the sliding window method are given in the columnning timesand%constr.
refers to the percentage of time used for the constructidimeofvindow boundaries and
the generator matriceg;. For the computation of the matrix exponential (compare lin
7 of Alg. 1) we used the uniformization method [24, 17]. Théuoon error in Table 1
refers to the total approximation error of our method. THewwm stepsn Table 1 gives
the number- of steps in Alg. 1. For each example, the method yields ateuesults.
We never had to recompugé’’) because too much probability was lost. The numeri-
cal solution of the abstract models takes most of the runining whereas the window
construction takes less than 40% of the running time. Sineertemory requirements
of the sliding window method are not excessive as it is the éasother methods, we
are able to numerically approximate the solution of comphedels that have not been
solved before.

5 Conclusion

The sliding window method is a new approach to analyze imfisiate continuous-
time Markov chains. The method applies in particular to Markhains that arise from
networks of biochemical reactions. It is therefore a pramgispproach for the analysis
of cellular stochasticity, which has become increasinglgartant in recent years.

We approximate the probability distributions of the infeanllarkov chain at various
time instances by solving a sequence of dynamically coa&dfinite Markov chains.
The abstract models can be solved with any existing numeaigarithm for finite
Markov chains. Moreover, it is possible to combine our applowith other techniques,
such as time scale separation methods [20, 36, 8].

We demonstrated the effectiveness of our method with a nuofbexperiments.
The results show that we can solve more complex systems teaiops approaches in
acceptable time.

As further enhancements, we plan to develop a steady-stdettbn mechanism,
which allows us to compute the steady-state distributighéflocation and size of the
window becomes stable. Moreover, we plan to investigatditiisg of the windows,
which will be particularly useful for multistable systems.
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