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Abstract. We present an on-the-fly abstraction technique for infinite-state con-
tinuous-time Markov chains. We consider Markov chains thatare specified by a
finite set of transition classes. Such models naturally represent biochemical reac-
tions and therefore play an important role in the stochasticmodeling of biological
systems. We approximate the transient probability distributions at various time in-
stances by solving a sequence of dynamically constructed abstract models, each
depending on the previous one. Each abstract model is a finiteMarkov chain that
represents the behavior of the original, infinite chain during a specific time inter-
val. Our approach provides complete information about probability distributions,
not just about individual parameters like the mean. The error of each abstrac-
tion can be computed, and the precision of the abstraction refined when desired.
We implemented the algorithm and demonstrate its usefulness and efficiency on
several case studies from systems biology.

1 Introduction

We present a new abstraction technique for infinite-state continuous-time Markov chains
(CTMCs) that are specified by a finite set of transition classes. Such models naturally
represent biochemical reactions and therefore play an important role in the stochas-
tic modeling of inter- and intracellular processes. Astateis a vectorx ∈ N

n
0 whose

dimensionn is the number of chemical species, and whose components (thestate vari-
ables) represent the number of molecules of each species. The analysis of Markov mod-
els reveals the biological role of intrinsic noise in gene-network structures, which has
received much attention in systems biology [35, 44]. The method of choice has been
Monte Carlo simulation. This is because standard numericalsolution algorithms for
CTMCs do not apply to infinite-state systems, whereas upper bounds for the state vari-
ables are rarely known, and even if they are known, the algorithms suffer from a “curse
of dimensionality,” i.e., state explosion. The usual measure of interest is the full prob-
ability distribution of state variables at various time instances. Repeated simulation,
however, while useful to give some information about individual state parameters such
as means and variances, is too expensive to obtain more information about probability
distributions [12].

In the context of systems biology, the computation of event probabilities is impor-
tant for several reasons. First, cellular process may decide probabilistically between
several possibilities, e.g., in the case of developmental switches [21, 4, 39]. In order to
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Fig. 1.Sliding window method. In each iteration step, the windowWj captures the setSj of states
where the significant part of the probability mass is locatedinitially (light gray), the setSj+1 of
states that are reached after a time step (dark gray), and thestates that are visited in between.

verify, falsify, or refine the mathematical model based on experimental data, the like-
lihood for each of these possibilities has to be calculated.But also full distributions
are of interest, such as the distribution of switching delays [30], the distribution of
the time of DNA replication initiation at different origins[34], and the distribution of
gene expression products [46]. Finally, many parameter estimation methods require the
computation of the posterior distribution because means and variances do not provide
enough information to calibrate parameters [22].

If the populations of certain chemical species are large, then the discrete structure
of model renders its analysis difficult. However, their effect on the system’s variance
may be small, and if this is the case, they can be approximatedassuming a continuous
deterministic change, and it would be better to use continuous-state approximations
such as the Langevin approach [25]. For species with small populations, however, a
continuous approximation is not appropriate and other approximation techniques are
necessary to reduce the computational effort of the analysis.

We propose a new numerical solution algorithm that approximates the desired prob-
ability distributions by solving a sequence of dynamicallyconstructed abstract mod-
els. Each abstract model is a finite CTMC that represents the behavior of the original,
infinite CTMC during a specific time interval. In each step, weconstruct geometric
boundaries in the original state space which encompass the states where most of the
probability mass is located. These boundaries form a “window” that moves through the
infinite state space. The state space of each abstract model is formed by the finitely
many states inside the window, together with a single absorbing state that represents all
of the infinitely many states outside the window. In subsequent time intervals, the win-
dow movement follows the direction in which the probabilitymass moves; see Fig. 1.
In each step, the initial conditions are given by a probability vector (whose support is
shown in light gray); then an abstract model is constructed (whose state space is de-
picted by the dashed rectangle), and solved to obtain the next vector (dark gray).

Our approach works well if during each time interval, most ofthe probability mass
is concentrated on a tractable subset of the states. Often real-world systems, such as a
biological process, have this property, while, for instance, a random-walk model will
become intractable after a certain time period, because theprobability mass will be
distributed uniformly on the entire infinite state space. Wecan compute the error of each
abstract model, and refine the precision of the abstraction when desired, by enlarging
the window (as usual, there is a trade-off between precisionand cost of the analysis).



To demonstrate the effectiveness of our approach, we have implemented the algo-
rithm and applied it successfully to several examples from systems biology. The exper-
imental results show that our method allows for an efficient analysis while providing
high accuracy. The two most complex examples that we consider are infinite in three
dimensions and describe networks of at least seven chemicalreactions. It is difficult to
find comparison data, because these examples are beyond the scope of what has been
handled in other work on solving CTMCs.

Related work Various abstraction techniques for Markov chains withfinitestate spaces
have been developed during the last years [10, 11, 26, 28]. Infinite-state Markov chains
with discrete timehave been considered in the context of probabilistic lossy-channel
systems [1–3, 38] and probabilistic pushdown systems [13–15,27]. In the infinite-state
continuous-time setting, model-checking algorithms for quasi-birth-death processes and
Jackson queuing networks have been studied by Remke [40], where the underlying
Markov chains are highly structured and represent special cases of CTMCs defined by
transition classes. The closest work to ours is the model-checking algorithm for infinite-
state CTMCs by Zhang et al. [47]. Depending on the desired precision, their algorithm
simply explores the reachable states up to a finite path depth. In contrast, our approach
takes into account the direction into which the probabilitymass moves, and constructs
a sequence of abstract models “on-the-fly,” during the verification process. Similar ap-
proaches have also been used in the context of biochemical reaction networks. Similar
to [47], Munsky et al. [32] explore models up to a specified finite path depth, whereas
Burrage et al. [7] consider a finite projection that is doubled if necessary. The latter
method, however, requires a priori knowledge about the direction and spread of the
probability mass.

2 Transition Class Models

Our approach builds on a high-level modeling formalism, calledTransition Class Mod-
els (TCMs), which provides a functional description of structured Markov chains with
countably infinite state spaces. TCMs have been used in queuing theory [43] and re-
cently for stochastic models of coupled chemical reactions[41]. We consider a dynam-
ical system with a countable setS of states.

Definition 1. A transition classC is a triple (G, u, α) with a guard setG ⊂ S, an
update functionu : G → S, and arate functionα : G → R>0. A transition class model
(TCM) is a pair(y, {C1, . . . , Ck}), wherey ∈ S is an initial state and{C1, . . . , Ck} is
a finite set of transition classes.

The guard setG contains all statesx in which a transition of classC is possible, and
u(x) is the target state of the transition. EachC-transition has an associated rateα(x)
that depends on the current statex.

Example 1.We consider a simple birth-death process withS = N0, y = 0, and two
transition classesCb = (Gb, ub, αb) andCd = (Gd, ud, αd). A birth event increments
the value of the state variable by 1 at a constant rateλ > 0, whereas a death event
decrements it by 1 at a constant rateµ > 0. Formally, for allx ∈ S, we defineGb = S,
ub(x) = x + 1, αb(x) = λ, Gd = {x ∈ S | x > 0}, ud(x) = x − 1, andαd(x) = µ.



In practice, we can usually express the setsG by a finite number of constraints on the
state variables of the system, andu andα by elementary arithmetic functions.

Stochastic Semantics.For a given TCMM = (y, {C1, . . . , Ck}) we derive a continuous-
time Markov chain (CTMC)(X(t), t ≥ 0) with state spaceS. Let i ∈ {1, . . . , k} and
Ci = (Gi, ui, αi). We define the probability of a transition of typeCi, occurring within
an infinitesimal time interval[t, t + dt), by

Pr (X(t + dt) = ui(x) | X(t) = x) = αi(x) · dt (1)

for all x ∈ Gi. We call αi(x) the rate of the transitionx → ui(x). Note that the
transition probability in Eq. 1 does not depend ont but only on the length of the interval.
Moreover, as(X(t), t ≥ 0) possesses the Markov property, the above probability does
not depend on the states visited before timet. Sincey is the initial state ofM , we have
Pr (X(0) = y) = 1, and, forx ∈ S, we define the probability that the process is in
statex at timet by

p(t)(x) = Pr (X(t) = x | X(0) = y) . (2)

In the sequel, a matrix description of the transition probabilities is more advantageous.
To simplify our presentation, for alli, we extend the domain of bothαi andui to S
and setαi(x) = 0 if x 6∈ Gi. Let Q : S × S → R be the function that calculates the
transition rate of each pair(x, x′) of states withx 6= x′, that is1,

Q(x, x′) =
∑

i:ui(x)=x′

αi(x). (3)

As for the diagonal of the matrix, we setQ(x, x) = −∑

x′ 6=x Q(x, x′). By assuming
a fixed enumeration ofS, we can regardQ as a matrix, calledgenerator matrixof
(X(t), t ≥ 0), and describe the evolution of the system by theKolmogorov differential
equation[9]

dp
(t)

dt
= p

(t) · Q. (4)

We write1y for the column vector with zeros everywhere except at statey, where it is
one. By(·)T we denote matrix transposition. If we assume that the initial condition of
the system isp(0) = (1y)T and(X(t), t ≥ 0) is a regular Markov chain [9] then Eq. 4
has the unique solution

p
(t) = p

(0) · exp(Qt). (5)

Assume that|S| < ∞. Thenexp(Qt) =
∑∞

i=0(Qt)i/i! and, for allt ≥ 0, (exp(Qt))x,z

is the probability to reach statez from x after t time units. Analytic solutions for the
functionp(t) can only be derived for special cases. If the underlying graph of the CTMC
is acyclic, a closed-form expression forp(t)(x) can be calculated using the recursive
scheme of the ACE algorithm [29]. In general, finding the state probabilities as a sym-
bolic function oft is not possible.

1 Note that the stochastic semantics ignores self-loops, because they do not have any effect on
the probabilitiesp(t)(x).



Numerical solutions of the differential equation in Eq. 4 usually exploit the follow-
ing property. If we split the time interval[0, t) into r intervals[t0, t1), . . . , [tr−1, tr)
with t0 < . . . < tr, andt0 = 0, tr = t, then Eq. 5 can be rewritten as

p
(tr) = p

(t0) · exp(Qtr)

= p
(t0) · exp(Q(t1 − t0)) · exp(Q(t2 − t1)) · . . . · exp(Q(tr − tr−1))

= p
(t1) · exp(Q(t2 − t1)) · . . . · exp(Q(tr − tr−1))

...
. . .

...
= p

(tr−1) · exp(Q(tr − tr−1)).

(6)

This yields an iterative scheme for the system of differential equations given by Eq. 4.
However, numerical solution approaches suffer from the fact that even if upper bounds
on the state variables of the system are known, the size of the(truncated) state space
is still too large for an efficient solution. We present a way to combat this problem
by constructing and analyzing abstract models that approximate the behavior of the
infinite-state Markov chain during each interval.

Biochemical Reaction Networks.We illustrate our approach by presenting transition
class models of cellular chemical systems. According to thetheory ofstochastic chem-
ical kinetics[16], a network of chemical reactions can be modeled as a CTMC. We
consider a system ofn different types of molecules and assume that molecules collide
randomly and may undergo chemical reactions. If we assume further that the reaction
volume (e.g., a cell) has a fixed size and temperature, as wellas that the system is well-
stirred, a state of the system is given by the numbers of molecules of each type. Hence,
the state spaceS consists ofn-dimensional vectors(x1, . . . , xn) ∈ N

n
0 . The different

types of reactions are usually specified by means ofstochiometric equations. For in-
stance,A+B → C means that if a molecule of typeA hits a molecules of typeB, they
may form a complex moleculeC. We call the molecule types that are consumed by a
reactionreactants; in the above example,A andB are reactants. Each reaction type can
be described by a transition class, and for a classC = (G, u, α), the guardG contains
the states in which enough reactants are available. The update functionu specifies how
many molecules of each type are produced and how many are consumed by the reac-
tion. Thus,u is of the formu(x) = x + v wherev ∈ Z

n. Recall that the probability of
a transition of classCi occurring in the next infinitesimal time interval of lengthdt is
αi(x) · dt. For a stochastic kinetic analysis,αi(x) is the product of a constant and the
number of distinct combinations of reactants. This ensuresthat a chemical reaction is
more likely to happen if many reactants are available.

Example 2.We consider a simple transition class model for transcription of a gene into
messenger RNA (mRNA), and subsequent translation of the latter into proteins [45].
An illustration is given in Fig. 2. This reaction network involves three chemical species,
namely, gene, mRNA, and protein. As always only a single copyof the gene exists,
a state of the system is uniquely determined by the number of mRNA and protein
molecules. Therefore,S = N

2
0 and a state is a pair(xR, xP ) ∈ S. We assume that

initially there are no mRNA molecules and no proteins in the system, i.e.,y = (0, 0).
Four types of reactions occur in the system. Leti ∈ {1, . . . , 4} andCi = (Gi, ui, αi)
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Fig. 2. Transcription of a gene into mRNA
and subsequent translation into a protein.
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Fig. 3.Probability distribution of the gene expres-
sion network att = 1000.

be the transition class that describes thei-th reaction type. We first define the guard sets
G1, . . . , G4 and the update functionsu1, . . . , u4.

– Transition classC1 models gene transcription. If aC1-transition occurs, the num-
ber of mRNA molecules increases by 1. Thus,u1(xR, xP ) = (xR + 1, xP ). This
transition class is possible in all states, i.e.,G1 = S.

– We represent the translation of mRNA into protein byC2. A C2-transition is only
possible if there is at least one mRNA molecule in the system.We setG2 =
{(xR, xP ) ∈ S | xR > 0} andu2(xR, xP ) = (xR, xP + 1). Note that in this
case mRNA is a reactant that is not consumed.

– Both mRNA and protein molecules can degrade, which is modeled byC3 andC4.
Hence,G3 = G2, G4 = {(xR, xP ) ∈ S | xP > 0}, u3(xR, xP ) = (xR − 1, xP ),
andu4(xR, xP ) = (xR, xP − 1).

Let c1, c2, c3, c4inR>0 be constants. Gene transcription happens at the constant rate
α1(xR, xP ) = c1, as only one reactant molecule (the gene) is available. The translation
rate depends linearly on the number of mRNA molecules. Therefore, α2(xR, xP ) =
c2 ·xR. Finally, for degradation, we setα3(xR, xP ) = c3 ·xR andα4(xR, xP ) = c4 ·xP .

Fig. 3 shows the probability distributionp(t) of the underlying Markov chain after
t = 1000 seconds. The parameters are chosen asc1 = 0.05, c2 = 0.0058, c3 = 0.0029,
andc4 = 10−4, wherec3 andc4 correspond to a half-life of 4 minutes for mRNA and
2 hours for the protein [45]. Most of the probability mass concentrates on the part of
the state space where5 ≤ xR ≤ 30 and25 ≤ xP ≤ 110 and, in a 3D-plot, it forms a
steep “hill” whose top represents the states with the highest probability. Note thatevery
state in the infinite setS has a non-zero probability at all time pointst > 0, because the
underlying graph of the Markov chain is strongly connected.As time passes, the hill
moves through the state space until the distribution reaches its steady-state.

3 Abstraction of TCMs
Our approach is based on the observation that a Markov chain describing a certain
real-world system often has the following property. After starting with probability 1



Input: TCM (y, {C1, . . . , Ck}), t1, . . . , tr with 0 < t1 < . . . < tr.
Output: Approximationŝp(t1), . . . , p̂(tr) and errorǫ.

1 InitializeW0 = {y}, p(y) = 1, andǫ = 0.
2 for j ∈ {1, . . . , r} do
3 Sethj = tj − tj−1.
4 ComputeWj depending onp, C1, . . . , Ck, andhj .
5 Construct generatorQj of the abstract model based onC1, . . . , Ck andWj .

6 Setq(x) =

8

>

<

>

:

p(x) if x ∈ Wj−1 ∩ Wj ,
P

x∈Wj−1\Wj
p(x) if x = xf ,

0 otherwise.
7 Computep = q · exp(Qjhj).
8 Setp̂(tj)(x) = p(x) for x ∈ Wj andp̂(tj)(x) = 0 otherwise.
9 Setǫ = ǫ + p(xf);

10 end

Alg.1. The basic steps of the approximate solution of the Markov chain.

in the initial statey, the probability mass does not distribute uniformly inS, such as,
for instance, in the case of a random walk. Instead, at each point in time, most of the
probability mass distributes among a finite, relatively small number of states. This set
of states changes as time progresses, but it never exceeds a certain size. Often, the
states with “significant” probability are located at the same part of the state space, as
illustrated in Fig. 3.

Let (y, {C1, . . . , Ck}) be a TCM and letp(t) be the probability distribution of the
associated CTMC. We propose an abstraction technique for the computation ofp(t) that
proceeds in an iterative fashion. We divide the time interval [0, t) into r intervals as in
Eq. 6 and approximatep(t1), . . . , p(tr) by considering a sequence ofr abstractions of
the Markov chain under study. Letj ∈ {1, . . . , r}. In thej-th step, we construct, on-
the-fly, a finite Markov chain for the system behavior during the interval[tj−1, tj) from
the transition class description. The state space of thej-th abstract model is the setWj

of states where most of the probability mass is located during [tj−1, tj). We refer to
this set as awindow. The remaining states are collapsed into a single absorbingstate
xf , i.e., a state that cannot be left.

3.1 Algorithm

Alg. 1 describes an iterative method to approximatep(t1), . . . , p(tr) by vectorsp̂(t1),
. . ., p̂(tr). We start with probability 1 in the initial statey (line 1). In line 4, we compute
the windowWj such that most of the probability mass remains withinWj during the
nexthj time units. In line 5, we construct the generator matrix of the abstract model (the
finite Markov chain with state spaceWj∪{xf}). We define the initial distribution of the
abstract model in line 6 and calculate its solution in line 7.The approximation̂p(tj) of
p(tj) is then defined in line 8. Finally, in line 9, we add the approximation error toǫ. A
detailed error analysis is given below. Note that after thej-th loopǫ = 1−∑

x∈Wj
p(x),

that is, in each loop, the probability of being inxf may increase. Thus,
∑

x∈S p̂(t1) ≤ . . . ≤ ∑

x∈S p̂(tr).



The general idea of this abstraction approach is apparent from Fig. 3, but the main
difficulty is to find the states that can be neglected in stepj (line 4). In Section 3.2, we
explain how to predict the direction and spread of the probability mass during[tj−1, tj).

Let ǫ > 0. For an interval[t, t + h), we define the sizem(ǫ, t, h) of the set of sig-
nificant states as the smallest number for which there existsW ⊂ S, |W | = m(ǫ, t, h)
such that

P (X(t′) ∈ W, t′ ∈ [t, t + h)) ≥ 1 − ǫ. (7)

The valuem(ǫ, t, h) indicates how strongly the probability mass spreads out onS dur-
ing [t, t + h). Consider, for instance, a random walk on the non-negative integer lattice
in the plane that starts in(0, 0) [33]. Between each pair of neighbor states there is a
transition with rate 1. Forh > 0, the valuem(ǫ, t, h) approaches infinity ast → ∞.
As opposed to the random walk example, in many systemsm(ǫ, t, h) is a manageable
number of states, even ifǫ is small andt is large (or tends to infinity). Consider, for in-
stance, Ex. 2 and assume thath = 500, ǫ = 10−6. For each interval[t, t+h) ⊂ [0,∞),
m(ǫ, t, h) does not exceed 20000 states. Alg. 1 works well ifm(ǫ, tj−1, hj) is a man-
ageable number of states for allj. Note that, in particular, cellular usually follow a small
number of trends, that is, the quantitative outcomes of a biological experiments can usu-
ally be classified within a small number of different categories. Thus, our approach is
well suited for TCMs of biological systems.

Construction of the Abstract Model. For j ∈ {1, . . . , r}, let Wj be such that

P (X(h) ∈ Wj , h ∈ [tj−1, tj)) ≥ 1 − ǫj (8)

whereǫj > 0 is the approximation error of thej-th step. Note that Eq. 8 implies that
Wj ∩ Wj+1 6= ∅, because the intersection of two successive windows must contain
those states that have a high probability at timetj . It is far too costly to construct the
smallestset with this property. Instead, we propose a cheap construction of a setWj

with a hyper-rectangular shape. We will outline the construction in Section 3.2. The
abstract Markov chain of thej-th step has the finite state spaceWj ∪ {xf}, where
xf represents all statesx ∈ S \ Wj . The transitions of the abstract model are given
by the transition classes of the original model except that all transitions of states at
the boundary lead toxf . Formally, for each classC = (G, u, α) of the infinite-state
Markov chain(X(t), t ≥ 0), we defineC′ = (G′, u′, α′) such thatG′ = G ∩ Wj ,

u′(x) =

{

u(x) if u(x) ∈ Wj ,
xf otherwise,

andα′(x) = α(x) for all x ∈ G′. Thus, we consider an (extended) subgraph of the
one underlying(X(t), t ≥ 0), with vertexes setWj , and all edges leading fromWj to
S \ Wj redirected to the extensionxf . Note that no transitions are possible fromxf .
We will see thatxf can be used to calculate the approximation error as it captures the
probability mass that leavesWj .

Error Analysis. Recall that ifQ is the generator matrix of the original Markov chain
(cf. Eq. 3),exp(Qhj) is the transition probability matrix for time stephj . LetQj be the
generator matrix of the abstract Markov chain constructed in thej-th step (see Alg. 1,



line 5). Forx, z ∈ Wj , we use the approximation

(exp(Qhj))x,z
= P (X(tj) = z | X(tj−1) = x)

≈ P (X(tj) = z ∧ X(h) ∈ Wj , h ∈ (tj−1, tj) | X(tj−1) = x)
= (exp(Qjhj))x,z

.
(9)

in line 5 of Alg. 1. Thus, we ignore the probability to reachz from x afterhj time units
by leavingWj at least once.

For the error analysis, we assume that the vectorqj of size |Wj | + 1 is such that
qj(x) = p(tj−1)(x) if x ∈ Wj . This is true forj = 1 and forj > 1 we replacep(tj−1)(x)
by p̂(tj−1)(x) in Alg. 1. In line 7 and 8, we definêp(tj)(z) = (qj · exp(Qjhj))z

for
z ∈ Wj . Thus,

p̂(tj)(z) = (qj · exp(Qjhj))z

=
∑

x∈Wj
p(tj−1)(x) (exp(Qjhj))x,z

≈ ∑

x∈Wj
p(tj−1)(x) (exp(Qhj))x,z

=
∑

x∈Wj
P (X(tj−1) = x) · P (X(tj) = z | X(tj−1) = x)

≈ ∑

x∈S P (X(tj−1) = x) · P (X(tj) = z | X(tj−1) = x)

= P (X(tj) = z) = p(tj)(z).

(10)

The first approximation is due to Eq. 9. The second approximation comes from the fact
that we ignore the probability of not being inWj at timetj−1. In both cases we use an
underapproximation. By settinĝp(tj)(z) = 0 if z 6∈ Wj , we obtainp̂(tj)(z) ≤ p(tj)(z)
for all z ∈ S. Overall, we use three approximations, where probability is “lost” namely,

(a) the probability that is lost due to the approximation given by Eq. 9,
(b) the probability of not starting inWj at timetj−1 (second approximation in Eq. 10),
(c) the probability of leavingWj during[tj−1, tj) (which arises due to the approxima-

tion p(tj)(z) ≈ 0 if z 6∈ Wj).

It is easy to see that, if the probability of being inWj during[tj−1, tj) is at least1− ǫj

(see Eq. 8), then all three errors are at mostǫj . Thus,||p(tj)−p̂(tj)||1 ≤ ǫj . Note that the
entryp(xf ) that is computed in line 7 of Alg. 1 contains all three approximation errors
(a), (b), (c). After the termination of the for loop,ǫ contains the total approximation
error, which is at mostǫ1 + . . . + ǫr.

Numerical Solution Methods. For the solution step in line 7 of Alg. 1, we apply
a numerical method to compute the matrix exponential. IfQj is small then the matrix
exponential can be computed efficiently using, for instance, Padé approximation [5, 31].
If the size ofQj is large butQj is sparse then iterative methods perform better, such
as uniformization [24, 17], approximations in the Krylov subspace [37], or numerical
integration [18, 19].

3.2 Window Construction

Let us now focus on the construction of the setWj in line 7 of Algorithm 1 (see also
Eq. 8). Recall that this requires the prediction of the size and location of the probabil-
ity mass during[tj−1, tj). For arbitrary transition class models, a cheap predictionof



the future behavior of the process is not possible as the transition classes may describe
any kind of “unsystematic” behavior. However, many systemshave certain linearity
properties, which allow for an efficient approximation of the future behavior of the
process. Consider a transition classCm = (Gm, um, αm), and assume that the succes-
sorum(x) of a statex ∈ Gm is computed asum(x) = x + vm, wherevm ∈ Z

n is
a constant change vector. In many applications, a discrete state variable represents the
number of instances of a certain system component type, which is incremented or decre-
mented by a small amount. For instance, in the case of biochemical reaction networks,
vm ∈ { − 2,−1, . . . , 2}n, because a reaction changes the population vectors of the
chemical species by an amount of at most two. Any reaction that requires the collision of
more than two molecules is usually modeled as a sequence of several reactions. For the
rate functionαm, we assume that the relative difference|αm(x) − αm(u(x))|/αm(x)
is small for allx ∈ Gm. This is the case if, for instance,αm is linear or at most quadratic
in the state variables. According to stochastic chemical kinetics, this assumption is ad-
equate for biochemical reaction networks, because the rateof a reaction is proportional
to the number of distinct combinations of reactants. Finally, we assume that the setsGm

can be represented as intersections of half planes ofS. Again, this assumption holds for
biochemical reaction networks, asGm refers to the availability of reactant molecules.

The conditions stated above ensure that we can derive geometric boundaries for the
window Wj . More precisely, in line 4 of Alg. 1 we can construct ann-dimensional
hyper-rectangularWj such that the left hand of Eq. 8 is close to one. Intuitively, the
boundaries ofWj describe upper and lower bounds on the state variablesx1, . . . , xn.
Consider, for instance, Fig. 3 and recall that the initial state of the process isy = (0, 0).
For the rectangleW = {(xR, xP ) ∈ S | 0 ≤ xR ≤ 30, 0 ≤ xP ≤ 120}, we have
P (X(t) ∈ W, t ∈ [0, 1000)) ≈ 0.99.

For the construction ofWj , we use a technique that considers only the “worst case”
behavior of the Markov chain during[tj−1, tj) and is therefore cheap compared to the
solution of the abstract model. The random variableαm(X(t)) represents the rate of
transition typeCm at timet. We can assume that during a small time interval of length
∆, αm(X(t+h)) is constant, with0 ≤ h ≤ ∆. If x is the current state then the number
of Cm-transition within the next∆ time units is Poisson distributed with parameter
αm(x)·∆ [42]. We can approximate this number by the expectationαm(x) · ∆ of the
Poisson distribution. As we are interested in an upper and lower bound, we additionally
consider the standard deviation

√

αm(x) · ∆ of the Poisson distribution. Thus, in the
worst case, the number of transitions of typeCm is

– at leastκ−
m(x, ∆) = max(0, αm(x) · ∆ −

√

αm(x) · ∆),
– at mostκ+

m(x, ∆) = αm(x) · ∆ +
√

αm(x) · ∆
Note that if, for instance,αm(x) · ∆ = 1, then we have a confidence of91.97% that the
real number of transitions lies in the interval

[

αm(x) · ∆ −
√

αm(x) · ∆, αm(x) · ∆ +
√

αm(x) · ∆
]

.

Let κm ∈ {κ+
m, κ−

m} andx(0) = x. For l = 0, 1, . . ., the iteration

x(l+1) = x(l) +
∑k

m=1 vm · κm(x(l), ∆) (11)



yields worst-case approximations ofX(t+∆), X(t+2∆), . . . under the condition that
X(t) = x. Note thatx(l) ∈ R

n
≥0. For functionsαm that grow extremely fast in the state

variables, the iteration may yield bad approximations since it is based on the assumption
that the rates are constant during a small interval. In the context of biochemical reaction
networks, the linearity properties mentioned above are fulfilled and Eq. 11 yields ad-
equate approximations. The boundsb+

d (x) andb−d (x) for dimensiond ∈ {1, . . . , n}
are given by the minimal and maximal values during the iteration. More precisely,
b+
d (x) = ⌈maxl x

(l)
d ⌉ andb−d (x) = ⌊minl x

(l)
d ⌋, wherex(l) = (x

(l)
1 , . . . , x

(l)
n ).

In order to constructWj , we do not considerall combinations{κ+
1 , κ−

1 } × . . . ×
{κ+

k , κ−
k } in Eq. 11. We choose only those combinations that do not treatpreferentially

transition types leading to opposite directions in the state space. Consider, for instance,
Ex. 2 with x = (5, 50) and∆ = 10. If we assume that more reactions of typeC1 and
C2 happen (than on average) and fewer ofC3 andC4, we getκ+

1 (x, ∆) = c1 · 10 +√
c1 · 10 = 1.2, κ+

2 (x, ∆) = c2·10·5+
√

c2 · 10 · 5 = 0.83, κ−
3 (x, ∆) = max(0, c3·10·

5−√
c3 · 10 · 5) = 0, κ−

4 (x, ∆) = max(0, c4 ·10 ·50−√
c4 · 10 · 50) = 0. This means

that the number of protein and mRNA molecules increases andx(1) = (6.2, 50.83). We
do not consider the combinations that contain bothκ+

1 andκ+
3 . As C1 equatesC3 and

vice versa, these combinations do not result in extreme values of the state variables.
For each dimension, we can identify two combinations that yield minimal and maximal
values by examining the vector field of the transition classes. We refer to a chosen
combination as abranchand fix for each transition classCm a choiceκm = κ+

m or
κm = κ−

m for all l.
For the construction ofWj , we first need to define the significant set of states at time

tj−1. A very precise method would require sorting of the vectorp̂(tj−1)(x), which we
find far too expensive. Therefore, we opt for a simpler solution where we define the set
Sj = {x ∈ S | p̂(tj−1)(x) > δ} of states significant at timetj−1. Here,δ > 0 is a small
constant that is several orders of magnitude smaller than the desired precision. For our
experimental results, we usedδ = 10−10 and decreased this value during the iteration
if

∑

x 6∈Sj
p̂(tj−1)(x) exceeded our desired precision. For each branch, we carry out the

iteration in Eq. 11 for⌈hj/∆⌉ steps with 10 different initial states randomly chosen
from Sj . This yields a cheap approximation of the behavior of the process during the
interval [0, hj). For dimensiond, let b+

d andb−d denote the bounds that we obtain by
merging the bounds of each branch and each randomly chosen state. We set

Wj = Sj ∪ {x = (x1, . . . , xn) ∈ S | b−d ≤xd≤ b+
d, 1 ≤d≤n}.

We choose the time steps∆ in the order of the expected residence time of the current
state such that the assumption ofαm(X(t)) being constant is reasonable.

The boundaries of the window become rough ifhj is large. Therefore, for the experi-
mental results in Section 4, we choosehj dynamically. During the iterative computation
of the boundsb+

d andb−d , we compute the size of the current windowWj . We stop the
iteration if |Wj | exceeds twice the size ofSj but not beforeWj has reached a minimal
size of5000 states. By doing so, we induce a sliding of the window, which is forced
to move from its previous location. It is, of course, always possible to choose a smaller
value forhj if the distribution at a specific time instantt < tj−1 + hj is of interest.

Precision. If the approximation errorǫ in Alg. 1 exceeds the desired error threshold,
the window construction can be repeated using a larger window Wj . This may hap-



pen if the confidence of the estimated interval[κ−
m(x, ∆), κ+

m(x, ∆)] for the number of
transitions of typem is not large enough. In this case, the approximationp̂(tj) can be
used to determine where to expandWj . Several heuristics for the window expansion are
possible. The smooth distribution of the probability mass,however, suggests to expand
only those boundaries ofWj where states with a high probability are located.

4 Experimental Results

We implemented Alg. 1 in C++ and run experiments on a 3.16 GHz Intel Linux PC with
6 GB of RAM. We consider various examples and present our results in Table 1. For
the parameters, we used values from literature. We provide adetailed description of the
parameters and branches that we used for the gene expressionexample (cf. Ex. 2). For
the parameter details of the remaining examples, we refer to[23].

First we applied our method to finite examples and those we found analyzed in the
literature (Examples 1-3). We then considered significantly larger examples (Examples
4-6). The examples studied in [47, 32] are much simpler than the ones presented here.
These approaches explore the reachable states up to a certain depth, which yields large
spaces that contain many states with a very small probability. For instance, in the case
of Ex. 2 the path depth is proportional to the expected numberof protein molecules
(see also Fig. 3). The states reachable within this fixed number of steps always include
states with a high number of mRNA molecules although their probability is very small.
In contrast, with our method, we achieve a similar accuracy while using windows that
are much smaller. We are therefore able to handle more complex examples.

The enzyme reaction is a prototype of a stiff model and has 5151 states. The crys-
tallization example is also finite but has 5499981 reachablestates. To the best of our
knowledge, the crystallization, the gene expression, and the virus example have not yet
been solved numerically by others. Goutsias model and the enzyme reaction have been
considered by Burrage et al. [7], but as already stated, their method requires additional
knowledge about the direction and spread of the probabilitymass.

For the gene expression example, we choosey = (0, 0), a time horizon oft =
10000, and rate constantsc1 = 0.05, c2 = 0.0058, c3 = 0.0029, andc4 = 10−4,
wherec3 andc4 correspond to a half-life of 4 minutes for mRNA and 2 hours forthe
protein [45]. We use four branches for the iteration given byEq. 11. We maximize the
number of mRNA molecules by choosingκ+

1 andκ−
3 and minimize it withκ−

1 andκ+
3 .

Transition classesC2 andC4 are irrelevant for this species. We maximize the number
of proteins by choosingκ+

1 , κ+
2 , κ−

3 , andκ−
4 . The number of proteins becomes minimal

with κ−
1 , κ−

2 , κ+
3 , andκ+

4 .
In Table 1, the columnref. refers to the literature where the example has been pre-

sented. Column#dimlists the number of dimensions of the set of reachable states. Note
that this is not equal to the number of chemical species sincecertain conservation laws
may hold2 or the copy number of some species can never exceed a small value. Col-
umn#tclassesrefers to the number of transition classes, and columninfinite indicates
whether the model has an infinite number of states or not. In column mean|Wj | we

2 For instance, in the case of complex formation the number of complex molecules is uniquely
determined by the initial populations and the remaining number of complex components.



name ref. #dim #tclassesinfinite mean |Wj| running time %constr. error steps

enzyme reaction[7] 2 3 no 1437 15 sec 6 1 × 10−5 4

crystallization [20] 2 2 no 47229 8907 sec 30 2 × 10−7 5175

protein synthesis[47] 1 4 yes 179 2 sec < 1 2 × 10−8 8

gene expression[45] 2 4 yes 32404 107 sec 39 2 × 10−5 87

Goutsias model [7] 3 10 yes 710204 25593 sec 6 9 × 10−6 54

Virus model [6] 3 7 yes 1092441 27850 sec 9 6 × 10−6 51

Table 1.Experimental results of the sliding window method.

list the mean size of the windows that we considered during the iteration. The running
times of the sliding window method are given in the columnrunning timesand%constr.
refers to the percentage of time used for the construction ofthe window boundaries and
the generator matricesQj. For the computation of the matrix exponential (compare line
7 of Alg. 1) we used the uniformization method [24, 17]. The column error in Table 1
refers to the total approximation error of our method. The columnstepsin Table 1 gives
the numberr of steps in Alg. 1. For each example, the method yields accurate results.
We never had to recomputêp(tj) because too much probability was lost. The numeri-
cal solution of the abstract models takes most of the runningtime whereas the window
construction takes less than 40% of the running time. Since the memory requirements
of the sliding window method are not excessive as it is the case for other methods, we
are able to numerically approximate the solution of complexmodels that have not been
solved before.

5 Conclusion

The sliding window method is a new approach to analyze infinite-state continuous-
time Markov chains. The method applies in particular to Markov chains that arise from
networks of biochemical reactions. It is therefore a promising approach for the analysis
of cellular stochasticity, which has become increasingly important in recent years.

We approximate the probability distributions of the infinite Markov chain at various
time instances by solving a sequence of dynamically constructed finite Markov chains.
The abstract models can be solved with any existing numerical algorithm for finite
Markov chains. Moreover, it is possible to combine our approach with other techniques,
such as time scale separation methods [20, 36, 8].

We demonstrated the effectiveness of our method with a number of experiments.
The results show that we can solve more complex systems than previous approaches in
acceptable time.

As further enhancements, we plan to develop a steady-state detection mechanism,
which allows us to compute the steady-state distribution ifthe location and size of the
window becomes stable. Moreover, we plan to investigate a splitting of the windows,
which will be particularly useful for multistable systems.
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9. E. Çinlar.Introduction to Stochastic Processes. Prentice-Hall, 1975.
10. P. D’Argenio, B. Jeannet, H. Jensen, and K. Larsen. Reachability analysis of probabilistic

systems by successive refinements. InProc. PAPM-PROBMIV’01, pages 39–56, 2001.
11. L. de Alfaro and R. Pritam. Magnifying-lens abstractionfor Markov decision processes. In

Proc. CAV, volume 4590 ofLNCS, pages 325–338. Springer, 2007.
12. F. Didier, T. A. Henzinger, M. Mateescu, and V. Wolf. Approximation of event probabili-

ties in noisy cellular processes. Technical Report MTC-REPORT-2009-002, EPF Lausanne,
Switzerland, 2009. http://infoscience.epfl.ch/record/135535.

13. J. Esparza and K. Etessami. Verifying probabilistic procedural programs. InProc.
FSTTCS’04, volume 3328 ofLNCS, pages 16–31. Springer, 2005.

14. J. Esparza, A. Kucera, and R. Mayr. Model checking probabilistic pushdown automata. In
Proc. LICS ’04, pages 12–21. IEEE Computer Society, 2004.

15. K. Etessami and M. Yannakakis. Algorithmic verificationof recursive probabilistic state
machines. InProc. TACAS’05, LNCS, pages 253–270. Springer, 2005.

16. D. T. Gillespie.Markov Processes. Academic Press, N. Y., 1992.
17. D. Gross and D. Miller. The randomization technique as a modeling tool and solution pro-

cedure for transient Markov processes.Operations Research, 32(2):926–944, 1984.
18. E. Hairer, S. Norsett, and G. Wanner.Solving Ordinary Differential Equations I: Nonstiff

Problems.Springer, 2008.
19. E. Hairer and G. Wanner.Solving Ordinary Differential Equations II. Stiff and Differential-

Algebraic Problems.Springer, 2004.
20. E. Haseltine and J. Rawlings. Approximate simulation ofcoupled fast and slow reactions for

stochastic chemical kinetics.The Journal of Chemical Physics, 117(15):6959–6969, 2002.
21. J. Hasty, J. Pradines, M. Dolnik, and J. J. Collins. Noise-based switches and amplifiers for

gene expression.PNAS USA, 97:2075, 2000.
22. D. A. Henderson, R. J. Boys, C. J. Proctor, and D. J. Wilkinson. Linking systems biology

models to data: a stochastic kinetic model of p53 oscillations. In A. O’Hagan and M. West,
editors,Handbook of Applied Bayesian Analysis. Oxford University Press, 2009.

23. T. A. Henzinger, M. Mateescu, and V. Wolf. Sliding windowabstraction for infinite Markov
chains. Technical Report MTC-REPORT-2009-003, EPF Lausanne, Switzerland, 2009.
http://infoscience.epfl.ch/record/135537.



24. A. Jensen. Markoff chains as an aid in the study of Markoffprocesses.Skandinavisk Aktua-
rietidskrift, 36:87–91, 1953.

25. N. G. van Kampen.Stochastic Processes in Physics and Chemistry.Elsevier, 3rd edition,
2007.

26. J.-P. Katoen, D. Klink, M. Leucker, and V. Wolf. Three-valued abstraction for continuous-
time Markov chains. InProc. CAV, volume 4590 ofLNCS, pages 316–329. Springer, 2007.

27. A. Kucera. Methods for quantitative analysis of probabilistic pushdown automata.Electr.
Notes Theor. Comput. Sci., 149(1):3–15, 2006.

28. M. Kwiatkowska, G. Norman, and D. Parker. Game-based abstraction for Markov decision
processes. InQEST, pages 157–166. IEEE CS Press, 2006.

29. R. A. Marie, A. L. Reibman, and K. S. Trivedi. Transient analysis of acyclic Markov chains.
Perform. Eval., 7(3):175–194, 1987.

30. H. H. McAdams and A. Arkin. Stochastic mechanisms in geneexpression.Proceedings of
the National Academy of Science, USA, 94:814–819, 1997.

31. C. Moler and C. Van Loan. Nineteen dubious ways to computethe exponential of a matrix,
twenty-five years later.SIAM Review, 45(1):3–49, 2003.

32. B. Munsky and M. Khammash. The finite state projection algorithm for the solution of the
chemical master equation.J. Chem. Phys., 124:044144, 2006.

33. J. Norris.Markov Chains. Cambridge University Press, 1. edition, 1999.
34. P. Patel, B. Arcangioli, S. Baker, A. Bensimon, and N. Rhind. DNA replication origins fire

stochastically in fission yeast.Mol Biol Cell, 17:308–316, 2006.
35. J. Paulsson. Summing up the noise in gene networks.Nature, 427(6973):415–418, 2004.
36. S. Peles, B. Munsky, and M. Khammash. Reduction and solution of the chemical master

equation using time scale separation and finite state projection. J. Chem. Phys., 125:204104,
2006.

37. B. Philippe and R. Sidje. Transient solutions of Markov processes by Krylov subspaces. In
Proc. International Workshop on the Numerical Solution of Markov Chains, pages 95–119.
Kluwer Academic Publishers, 1995.

38. A. Rabinovich. Quantitative analysis of probabilisticlossy channel systems.Inf. Comput.,
204(5):713–740, 2006.

39. C. Rao, D. Wolf, and A. Arkin. Control, exploitation and tolerance of intracellular noise.
Nature, 420(6912):231–237, 2002.

40. A. Remke.Model Checking Structured Infinite Markov Chains. PhD thesis, 2008.
41. W. Sandmann and V. Wolf. A computational stochastic modeling formalism for biological

networks. InEnformatika Transactions on Engineering, Computing and Technology, vol-
ume 14, pages 132–137, 2006.

42. W. J. Stewart.Introduction to the Numerical Solution of Markov Chains.Princeton Univer-
sity Press, 1995.

43. C. Strelen. Approximate disaggregation-aggregation solutions for general queueing net-
works. InSociety for Computer Simulation, pages 773–778, 1997.

44. P. S. Swain, M. B. Elowitz, and E. D. Siggia. Intrinsic andextrinsic contributions to
stochasticity in gene expression.Proceedings of the National Academy of Science, USA,
99(20):12795–12800, 2002.

45. M. Thattai and A. van Oudenaarden. Intrinsic noise in gene regulatory networks.PNAS,
USA, 98(15):8614–8619, July 2001.

46. A. Warmflash and A. Dinner. Signatures of combinatorial regulation in intrinsic biological
noise.PNAS, 105(45):17262–17267, 2008.

47. L. Zhang, H. Hermanns, E. Moritz Hahn, and B. Wachter. Time-bounded model checking of
infinite-state continuous-time Markov chains. InACSD, 2008. China.


