
 Open access  Journal Article  DOI:10.1109/TSP.2003.820069

Sliding window adaptive SVD algorithms — Source link 

Roland Badeau, Gael Richard, Bertrand David

Institutions: Télécom ParisTech

Published on: 01 Jan 2004 - IEEE Transactions on Signal Processing (IEEE)

Topics: Sliding window protocol, Adaptive algorithm, Singular value decomposition, Adaptive filter and Signal processing

Related papers:

 Projection approximation subspace tracking

 Tracking a few extreme singular values and vectors in signal processing

 Bi-iteration SVD subspace tracking algorithms

 Fast approximated power iteration subspace tracking

 Fast orthonormal PAST algorithm

Share this paper:    

View more about this paper here: https://typeset.io/papers/sliding-window-adaptive-svd-algorithms-
55uljj2r57

https://typeset.io/
https://www.doi.org/10.1109/TSP.2003.820069
https://typeset.io/papers/sliding-window-adaptive-svd-algorithms-55uljj2r57
https://typeset.io/authors/roland-badeau-2ovjb0kwg3
https://typeset.io/authors/gael-richard-2b341yt73l
https://typeset.io/authors/bertrand-david-406bs125p1
https://typeset.io/institutions/telecom-paristech-1m3vvikr
https://typeset.io/journals/ieee-transactions-on-signal-processing-ei2rx4on
https://typeset.io/topics/sliding-window-protocol-165czqsq
https://typeset.io/topics/adaptive-algorithm-2ihh4oqu
https://typeset.io/topics/singular-value-decomposition-34pa8zhi
https://typeset.io/topics/adaptive-filter-325y9iaj
https://typeset.io/topics/signal-processing-5eu95ymi
https://typeset.io/papers/projection-approximation-subspace-tracking-o7o9n1m3u6
https://typeset.io/papers/tracking-a-few-extreme-singular-values-and-vectors-in-signal-2ah7bznzzr
https://typeset.io/papers/bi-iteration-svd-subspace-tracking-algorithms-2ftdc349yt
https://typeset.io/papers/fast-approximated-power-iteration-subspace-tracking-3akhd6qo5e
https://typeset.io/papers/fast-orthonormal-past-algorithm-1ayfsrc5v8
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/sliding-window-adaptive-svd-algorithms-55uljj2r57
https://twitter.com/intent/tweet?text=Sliding%20window%20adaptive%20SVD%20algorithms&url=https://typeset.io/papers/sliding-window-adaptive-svd-algorithms-55uljj2r57
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/sliding-window-adaptive-svd-algorithms-55uljj2r57
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/sliding-window-adaptive-svd-algorithms-55uljj2r57
https://typeset.io/papers/sliding-window-adaptive-svd-algorithms-55uljj2r57


HAL Id: hal-00945196
https://hal.inria.fr/hal-00945196

Submitted on 24 Mar 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Sliding window adaptive SVD algorithms
Roland Badeau, Gael Richard, Bertrand David

To cite this version:
Roland Badeau, Gael Richard, Bertrand David. Sliding window adaptive SVD algorithms.
IEEE_J_SP, IEEE, 2004, 52 (1), pp.1–10. hal-00945196

https://hal.inria.fr/hal-00945196
https://hal.archives-ouvertes.fr


THE FINAL VERSION OF THIS PAPER WAS PUBLISHED IN IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 52, NO. 1, JANUARY 2004 1

Sliding Window Adaptive SVD Algorithms
Roland Badeau, Gaël Richard, Bertrand David

Abstract— The singular value decomposition (SVD) is an im-
portant tool for subspace estimation. In adaptive signal process-
ing, we are especially interested in tracking the SVD of a
recursively updated data matrix. This paper introduces a new
tracking technique, designed for rectangular sliding window data
matrices. This approach, derived from the classical bi-orthogonal
iteration SVD algorithm, shows excellent performance in the
context of frequency estimation. It proves to be very robust to
abrupt signal changes, due to the use of a sliding window. Finally,
an ultra-fast tracking algorithm with comparable performance
is proposed.

Index Terms— Subspace tracking, sliding window, SVD.

I. INTRODUCTION

S
UBSPACE-based signal analysis consists in splitting the

observations into a set of desired and a set of disturbing

components, which can be viewed in terms of signal and

noise subspaces. This approach has been widely studied in the

fields of adaptive filtering, source localization, or parameter

estimation [1]. The eigenvalue decomposition (EVD) and the

singular value decomposition (SVD) are commonly used in

subspace estimation. However, they usually lead to compu-

tationally demanding algorithms. Therefore, in an adaptive

signal processing context, there is a real need for fast tracking

techniques.

A reference method in subspace tracking is I. Karasalo’s

algorithm [2], which involves the full SVD of a small matrix.

More recently, the FST algorithm presented in [3] replaces this

SVD by Givens rotations, resulting in a faster tracking. An-

other approach consists in interlacing a recursive update of the

estimated covariance matrix or the data matrix with one or a

few steps of a standard SVD or power iteration algorithm. This

is the case of the Jacobi SVD method [4], the transposed QR-

iteration [5], the orthogonal / bi-orthogonal iteration [6], [7],

and the power method [8]. Some tracking techniques are based

on other matrix decompositions, such as the rank-revealing QR

factorization [9], the rank-revealing URV decomposition [10],

and the Lankzos (bi)-diagonalization [11]. A conceptually

different approach considers the principal subspace estimation

as a constrained or unconstrained optimization problem [12]–

[17]. In particular, it is established in [13], [18] that the

classical Oja method [12] can be viewed as an approximated

gradient descent of a mean square error function. A number

of faster subspace tracking methods have been developed
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based on the combination of the gradient descent approach

with a projection approximation hypothesis [18]–[21]. Other

techniques rely on the noise and signal subspace averaging

method [22], the maximum likelihood principle [23], the

operator restriction analysis [24], or the perturbation theory

[25]. A review of former literature can be found in [1].

Most of these adaptive techniques are designed for exponen-

tial forgetting windows. Indeed, this choice tends to smooth the

signal variations and thus allows a low-complexity update at

each time step. However, it is only suitable for slowly varying

signals. Conversely, a few subspace trackers are based on

sliding windows, which generally require more computations,

but offer a faster tracking response to sudden signal changes

[18], [26]. The tracking of the full SVD in the sliding window

case was investigated in [27] and [28].

In this paper, we will focus on the bi-orthogonal iteration

SVD method [29], [30]. This technique has been widely

investigated by P. Strobach, who proposed various subspace

tracking algorithms designed for exponential forgetting win-

dows [6], [7]. In [27], the sliding window case was addressed,

but the approach was limited to real square Hankel data

matrices. The adaptive SVD technique presented in this paper

overcomes this limitation. Our work mainly differs from that

presented in [7] by the way the basic sequential bi-iteration

SVD algorithm is simplified.

Compared to the above mentioned subspace tracking meth-

ods, our fastest algorithm has the advantage of

• computing an orthonormal subspace basis at each time

step, which is required for some subspace-based estima-

tion methods, such as MUSIC [31],

• relying on a sliding window, which offers a faster tracking

response to abrupt signal variations,

• tracking the full SVD, which may be useful for rank

estimation and tracking, as in [7] and [28],

• relying on an approximation of the data matrix which is

less restrictive than the classical projection approximation

[18], leading to better tracking results.

The paper is organized as follows. In section II, we recall

the principles of the bi-orthogonal iteration approach, from

which our new Sliding Window Adaptive SVD (SWASVD)

algorithm is derived. A fast implementation of SWASVD

is then presented in section III. In section IV, the capacity

of these new tracking algorithms to cope with transients

is illustrated in the context of frequency estimation. Their

performance is compared to that of some of the most robust

and efficient methods found in the literature. Finally, the main

conclusions of this paper are summarized in section V.

II. SLIDING WINDOW ADAPTIVE SVD

The bi-orthogonal iteration SVD algorithm is a straightfor-

ward extension of the classical orthogonal iteration, which
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TABLE I

BI-ORTHOGONAL ITERATION SVD ALGORITHM

Initialize : QA(0) =

24 Ir

0

35
FOR n = 1, 2 . . . UNTIL CONVERGENCE DO :26666666666664 First Iteration :

B(n) = X QA(n − 1) matrix product

B(n) = QB(n) RB(n) skinny QR factorization

Second Iteration :

A(n) = XH QB(n) matrix product

A(n) = QA(n) RA(n) skinny QR factorization

computes the EVD of a square matrix [32, section 8.2.4].

In this section, it will be shown how this algorithm can be

made adaptive, and how its computational complexity can be

reduced with a low-rank approximation of the data matrix.

A. The bi-orthogonal iteration SVD algorithm

The bi-orthogonal iteration algorithm computes the r dom-

inant singular values and vectors of a data matrix X ∈ C
L×N

(with r ≤ rmax , min(L,N)). The SVD of X is the

factorization X = U ΣV H , where U ∈ C
L×rmax and V ∈

C
N×rmax are orthonormal matrices and Σ ∈ R

rmax×rmax is

a non negative diagonal matrix: Σ = diag(σ1, σ2, . . . , σrmax
)

where σ1 ≥ σ2 ≥ . . . ≥ σrmax
≥ 0. Thus the r dominant

singular values are {σ1, σ2, . . . , σr}, the r dominant left

singular vectors are the r first columns of the matrix U , and

the r dominant right singular vectors are the r first columns

of the matrix V . In many signal processing applications, r is

much lower than rmax.

The quasi-code of the bi-orthogonal iteration SVD algo-

rithm is given in Table I. This algorithm generates two

auxiliary matrices B(n) ∈ C
L×r and A(n) ∈ C

N×r. It can

be shown [29], [30] that the columns of QB(n) converge to

the r dominant left singular vectors, the columns of QA(n)
converge to the r dominant right singular vectors, and RB(n)
and RA(n) both converge to Σ.

B. The sequential bi-iteration SVD algorithm

The bi-orthogonal iteration algorithm can simply be adapted

in a tracking context. Suppose the data matrix is updated

according to the following scheme:

X(t) =




x(t)H

x(t − 1)H

...

x(t − L + 1)H




where x(t) is the N dimensional data vector at time t1.

The SVD of X(t) can be approximated and updated just by

1In the context of frequency estimation, the coefficients of x(t) are the
successive samples of the signal: x(t) = [x(t), x(t−1), . . . , x(t−N +1)]T .
In the context of Direction Of Arrival (DOA) estimation, x(t) is the snapshot
vector received from the N captors.

replacing the iteration index n in Table I by the discrete time

index t.

The sequential bi-iteration algorithm is summarized in Ta-

ble II. In the right column, the computational complexities are

quantified with a multiplicative factor related to the flop (real

FLoating point OPeration) count, as obtained with the Matlab

flops command [32, section 1.2.4]. For example, a dot product

of N dimensional complex vectors involves 8N flops.

In spite of its robustness, the main drawback of this SVD

tracking algorithm is its high computational complexity (since

in practice r << max(N,L), its dominant cost is 16NLr).

However, some simplifications will be brought below, that will

result in lower-complexity algorithms.

TABLE II

SEQUENTIAL BI-ITERATION SVD ALGORITHM

Initialize : QA(0) =

24 Ir

0

35
FOR EACH TIME STEP DO :26666666666664 First Iteration : Complexity :

B(t) = X(t) QA(t − 1) 8NLr

B(t) = QB(t) RB(t) 19Lr2

Second Iteration :

A(t) = X(t)H QB(t) 8NLr

A(t) = QA(t) RA(t) 19Nr2

C. Low-rank approximation of the updated data matrix

In this section, a low-rank approximation of the data matrix

X(t) will be introduced. In array processing, it is well known

that rank reductions have a noise-cleaning effect. Here, this

approximation will result in a faster tracking algorithm.

First, the time-updating structure of the data matrix can

advantageously be taken into account. Indeed, it can be noticed

that
[

X(t)
x(t − L)H

]
QA(t−1) =

[
xH(t)

X(t − 1)

]
QA(t−1). (1)

Now consider the compressed data vector h(t) = QA(t −
1)H x(t). According to the definition of B(t) (see Table II),

equation (1) becomes
[

B(t)
× . . .×

]
=

[
h(t)H

X(t − 1)QA(t − 1)

]
(2)

where the symbol × denotes uninteresting quantities.

To go further, P. Strobach [7] introduces the low-rank

approximation X̃(t) = X(t)
(
QA(t − 1)QA(t − 1)H

)
=

QB(t)RB(t)QA(t− 1)H of X(t), which corresponds to the

projection of the rows of X(t) onto the subspace spanned by

QA(t − 1). Consequently,

X̃(t − 1)QA(t − 1) = QB(t − 1)RB(t − 1)ΘA(t − 1)

where ΘA(t − 1) = QA(t − 2)H QA(t − 1). It can be seen

that this approximation is less restrictive than the classical
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projection approximation [18], which implicitely assumes that

ΘA(t − 1) = Ir.

However, we prefer use the low-rank approximation X̂(t) =(
QB(t)QB(t)H

)
X(t) = QB(t)RA(t)H QA(t)H . It corre-

sponds to the projection of the columns of X(t) onto the

subspace spanned by QB(t − 1). Consequently,

X̂(t − 1)QA(t − 1) = QB(t − 1)RA(t − 1)H

This choice has the advantage of involving more up to date

matrix factors than X̃(t). Moreover, the explicit computation

of the matrix ΘA(t − 1) is avoided.

The substitution of X̂(t − 1) to X(t − 1) in equation (2)

yields

[
B(t)

× . . .×

]
≃

[
h(t)H

QB(t − 1)RA(t − 1)H

]
. (3)

In the same way, it can be noticed that

[
X(t)H x(t − L)

] [
QB(t)

0 . . . 0

]

=
[

x(t) X(t − 1)H
] [

QB(t)
0 . . . 0

]
.

(4)

According to the definition of A(t) (see Table II), equation

(4) becomes

A(t) =
[

x(t) X(t − 1)H
] [

QB(t)
0 . . . 0

]
. (5)

Taking into account that the sequential bi-iteration SVD

algorithm satisfies the equation QA(t − 1)HA(t) =
B(t)HQB(t) = RB(t)H , a pre-multiplication of both sides

of (5) by QA(t − 1)H yields

RB(t)H =
[

h(t) QA(t − 1)H X(t − 1)H
]

[
QB(t)

0 . . . 0

]
.

(6)

Then let x⊥(t) = x(t) − QA(t − 1)h(t). This vector is

orthogonal to span(QA(t − 1)), so that x(t) can be written

as a sum of two orthogonal vectors

x(t) = QA(t − 1)h(t) + x⊥(t). (7)

The substitution of X̂(t − 1) to X(t − 1) in equations (5)

and (6) respectively yields

A(t) ≃
[

QA(t − 1) x⊥(t)
]

[
h(t) RA(t − 1)QB(t − 1)H

1 0 . . . 0

] [
QB(t)

0 . . . 0

]
(8)

and

RB(t)H ≃
[

h(t) RA(t − 1)QB(t − 1)H
]

[
QB(t)

0 . . . 0

]
.

(9)

Let qB1
(t) be the column vector obtained by transposing

the first row of QB(t). Equations (8) and (9) finally yield

A(t) ≃ QA(t − 1)RB(t)H + x⊥(t) qB1
(t)H . (10)

Note that the exact computation of B(t) and A(t) requires

16NLr operations whereas the approximated matrices (3)

and (10) can be computed in 4Lr2 and 4Nr2 operations.

Therefore, introducing these approximations in the sequential

bi-iteration SVD algorithm leads to the lower complexity

algorithm herein called SWASVD, summarized in Table III. Its

dominant cost is only 23(L + N)r2. Moreover, it can be seen

that for all r ≤ rmax, SWASVD requires less computations

than the sequential bi-iteration algorithm. From now on, B(t)
and A(t) will denote the approximated auxiliary matrices.

TABLE III

SLIDING WINDOW ADAPTIVE SVD ALGORITHM (SWASVD)

Initialize : QA(0) =

24 Ir

0

35 ; QB(0) =

24 Ir

0

35 ; RA(0) = Ir;

FOR EACH TIME STEP DO :26666666666666666666666664
Input : x(t)

First Iteration : Complexity :

h(t) = QA(t − 1)H x(t) 8Nr24 B(t)

× . . .×

35 =

24 h(t)H

QB(t − 1) RA(t − 1)H

35 4Lr2

B(t) = QB(t) RB(t) 19Lr2

Second Iteration :

x⊥(t) = x(t) − QA(t − 1) h(t) 8Nr

A(t) = QA(t − 1) RB(t)H + x⊥(t) qB1
(t)H 4Nr2

A(t) = QA(t) RA(t) 19Nr2

III. FAST IMPLEMENTATION OF THE SLIDING WINDOW

ADAPTIVE SVD ALGORITHM

A major drawback in the SWASVD algorithm is the explicit

computation and QR factorization of the approximated matri-

ces B(t) and A(t). However, these operations can be avoided

by directly updating the QR factorizations.

Since this update is simpler in the case of A(t), the

optimization of the second iteration will be presented first.

A. Fast implementation of the second iteration

In the second member of equation (10), the vector x⊥(t) is

orthogonal to span(QA(t − 1)). It can be normalized as

x̄⊥(t) =
x⊥(t)

‖x⊥(t)‖
(11)

(in the special case x⊥(t) = 0, x̄⊥(t) is forced to be 0). Then

A(t) can be written as the product

A(t) =
[

QA(t − 1) x̄⊥(t)
]
T A(t) (12)

of a N × (r+1) orthonormal matrix by the (r+1)× r matrix

T A(t) =

[
RB(t)H

‖x⊥(t)‖ qB1
(t)H

]
. (13)

Now consider the QR factorization of T A(t):

T A(t) = GA(t)

[
RA(t)
0 . . . 0

]
(14)
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where GA(t) is a square (r+1)× (r+1) orthonormal matrix

and RA(t) is a square r × r upper-triangular matrix (it will

be shown below that RA(t) is also the triangular factor in the

QR factorization of A(t), as defined in section II). Equations

(12) and (14) yield

A(t) =
([

QA(t − 1) x̄⊥(t)
]
GA(t)

) [
RA(t)
0 . . . 0

]
. (15)

This last equation shows an explicit QR factorization of

A(t). From (15), QA(t) can be directly extracted:


 QA(t)

×
...

×


 =

[
QA(t − 1) x̄⊥(t)

]
GA(t). (16)

Therefore, the QR factorization of A(t) can be updated with

the smaller factorization (14) and the product (16).

B. Fast implementation of the first iteration

The QR factorization of B(t) is more difficult to update

because of the row-shifting in the updating scheme of the data

matrix. An elegant but complex way of achieving this update

can be found in [27]. A simpler solution, inspired from the

considerations of section III-A, is proposed below.

Let qBL
(t−1) be the column vector obtained by transposing

the last row of QB(t − 1). Consider the orthonormal matrix

Q̃B(t − 1) obtained by a circular permutation of the rows of

QB(t − 1):

Q̃B(t − 1) =




0 . . . 0 1

IL−1

0
...

0


 QB(t − 1).

Finally, consider the L dimensional vector z = [1, 0 . . . 0]
T

.

Equation (3) yields

B(t) = Q̃B(t − 1)RA(t − 1)H + z h̃(t)H

where h̃(t) = h(t) − RA(t − 1) qBL
(t − 1).

Now, the orthogonal decomposition of x(t) given in equa-

tion (7) will be transposed to z. Thus, let z⊥(t) = z −
Q̃B(t − 1) qBL

(t − 1). It can be noticed that qBL
(t − 1) =

Q̃B(t − 1)H z, so that the vector z⊥(t) is orthogonal to

span(Q̃B(t − 1)). Then z can be written as a sum of two

orthogonal vectors:

z = Q̃B(t − 1) qBL
(t − 1) + z⊥(t). (17)

As for x(t), let

z̄⊥(t) =
z⊥(t)

‖z⊥(t)‖

(in the special case z⊥(t) = 0, z̄⊥(t) is forced to be 0).

Finally, B(t) can be written as the product

B(t) =
[

Q̃B(t − 1) z̄⊥(t)
]
T B(t) (18)

of a L× (r +1) orthonormal matrix by the (r +1)× r matrix

T B(t) =

[
RA(t − 1)H

0 . . . 0

]
+

[
qBL

(t − 1)
‖z⊥(t)‖

]
h̃(t)H . (19)

Now consider the QR factorization of T B(t):

T B(t) = GB(t)

[
RB(t)
0 . . . 0

]
(20)

where GB(t) is a square (r+1)× (r+1) orthonormal matrix

and RB(t) is a square r × r upper-triangular matrix (it will

be shown below that RB(t) is also the triangular factor in the

QR factorization of B(t), as defined in section II). Equations

(18) and (20) yield

B(t) =
([

Q̃B(t − 1) z̄⊥(t)
]
GB(t)

) [
RB(t)
0 . . . 0

]
. (21)

This last equation shows an explicit QR factorization of the

matrix B(t). As for QA(t), QB(t) can be directly extracted

from this factorization:


 QB(t)

×
...

×


 =

[
Q̃B(t − 1) z̄⊥(t)

]
GB(t). (22)

Therefore, the time-consuming direct QR factorization of

B(t) can be split into the smaller QR factorization (20) and

the product (22). Finally, equations (14), (16), (20) and (22)

lead to the fast implementation of the SWASVD algorithm

given in Table IV 2, herein called SWASVD2. Its dominant

cost is only 8(N + L)r2. Therefore, SWASVD2 is approxi-

mately three times faster than SWASVD. As a comparison,

the dominant cost of the exponential forgetting window Bi-

SVD1 algorithm presented in [7] is 8Nr2 at each time step. It

can be seen that SWASVD2 requires a number of additional

operations proportional to the sliding window length. However,

this increased computational cost is compensated by better

performance, as shown in the next section.

C. A step towards linear complexity

In spite of the various optimizations that were introduced

above, the SWASVD2 algorithm is not the fastest subspace

tracker which can be found in the literature (for instance,

the algorithms presented in [18]–[21] require only O(Nr)
operations).

To reach this minimal complexity, P. Strobach [7] assumes

that the matrix ΘA(t) = QA(t−1)HQA(t) is close to the r×r

identity matrix (which is the same as the classical projection

approximation [18], as mentioned in section II-C). Such an

approximation is not required here, since the use of X̂(t− 1)

2The computation of x̄⊥(t) is subject to rounding errors that might affect
the algorithm stability, due to a loss of orthogonality among the columns of
QA. Note that the orthogonality can be maintained by repeating one or a few
times the following operations:

• projection of x̄⊥(t) onto span(QA)⊥;
• renormalization of x̄⊥(t).

The same method can be applied to z̄⊥(t), in order to maintain the

orthogonality among the columns of eQB .
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TABLE IV

FAST IMPLEMENTATION OF THE SLIDING WINDOW ADAPTIVE SVD

ALGORITHM (SWASVD2)

FOR EACH TIME STEP DO :266666666666666666666666666666666666666666664

First Iteration : Complexity :

h(t) = QA(t − 1)H x(t) 8Nr

z⊥(t) = [1, 0 . . . 0]T − Q̃B(t − 1) qBL
(t − 1) 8Lr

z̄⊥(t) =
z⊥(t)

‖z⊥(t)‖
10L

h̃(t) = h(t) − RA(t − 1)qBL
(t − 1) 4r224 RA(t − 1)H

0 . . . 0

35+

24 qBL
(t − 1)

‖z⊥(t)‖

35 h̃(t)H

= GB(t)

24 RB(t)

0 . . . 0

35 12r3h
QB(t) ×

i
=
h

Q̃B(t − 1) z̄⊥(t)
i

GB(t) 8Lr2

Second Iteration :

x⊥(t) = x(t) − QA(t − 1) h(t) 8Nr

x̄⊥(t) =
x⊥(t)

‖x⊥(t)‖
10N24 RB(t)H

‖x⊥(t)‖ qB1
(t)H

35 = GA(t)

24 RA(t)

0 . . . 0

35 12r3h
QA(t) ×

i
=
h

QA(t − 1) x̄⊥(t)
i

GA(t) 8Nr2

instead of X̃(t− 1) avoids the explicit computation of ΘA(t)
in SWASVD2.

Table IV shows that the 8(N + L)r2 dominant cost of

SWASVD2 is due to the use of the full rotation matrices

GB(t) and GA(t). These matrices are computed so as to make

RB(t) and RA(t) upper triangular.

In fact, it can be shown that this triangular constraint does

not affect the signal subspace estimation. If RB(t) and RA(t)
were not triangular, the algorithm would also converge to

an orthonormal matrix spanning the signal subspace (this

approach is known as the power method [8]). The triangular

constraint is only required to guarantee the convergence to the

r dominant singular vectors.

Therefore, linear complexity can be reached by simply

relaxing this constraint. The exact QR factorization can be re-

placed by an "approximated QR factorization", which involves

a "nearly triangular" right factor. This method, herein called

SWASVD3, is presented in the appendix and requires O(Nr)
operations. Its subspace tracking performance is exactly the

same as that of SWASVD2. Although the convergence to the

singular vectors and values is no longer theoretically guaran-

teed, the algorithm proves to robustly track their variations.

IV. SIMULATION RESULTS

In this section, the performance of the new tracking algo-

rithms is illustrated in the context of frequency estimation.

A discrete signal x(t) can be described using a Hankel

data matrix X(t). In the Exponentially Damped Sinusoidal

(EDS) model case, it can be shown that span(X(t)) is a

r dimensional subspace, where r is the number of complex

sinusoids. The ESPRIT high resolution method can be used to

estimate the model parameters, among which the frequencies

of the sinusoids [33], [34].

Here, this high resolution method has been tested in con-

junction with several subspace trackers on a synthetic signal

(an application to real audio signals was proposed in [33],

involving the sequential iteration SVD algorithm).

The test signal of Figure 1-a is a sum of r = 4 com-

plex sinusoidal sources plus a complex white gaussian noise.

The frequencies of the sinusoids vary according to a "jump

scenario" (proposed by P. Strobach in the context of DOA

estimation [35]): their values abruptly change at different time

instants, between which they remain constant. Their variations

are represented on Figure 1-b.

The SWASVD2 algorithm was applied to this signal with

matrix dimensions N = 80 and L = 120. As in [35], the

signal-to-noise (SNR) ratio was fixed to 5.7dB.

Figure 2-a shows the frequency tracking result. The dotted

line indicates the true frequency parameters, while the solid

line indicates the estimated frequencies. It can be noticed that

SWASVD2 robustly tracks abrupt frequency variations.

The performance of the subspace estimation is also analyzed

in terms of the maximum principal angle between the true

dominant subspace of the data matrix (obtained via an exact

singular value decomposition), and the estimated dominant

subspace of the same data matrix (obtained with the tracker).

This error criterion was originally proposed by P. Comon and

G.H. Golub as a measure of the distance between equidi-

mensional subspaces [1]. Figure 2-b shows that the subspace

estimation fails on transient regions, but gives excellent results

everywhere else. This is not surprising since the subspace

modeling does not make sense in transient regions.

Figure 3 shows the result obtained with the ultra-fast

SWASVD3 algorithm on the same test signal. It can be

noticed that this algorithm reaches the same performance as

SWASVD2.

These results have been compared to those obtained with

some of the most robust subspace trackers found in the

literature [2], [5]–[8], [18]–[20], [27], [28]. Three of them are

illustrated in figures 4, 5 and 6:

• the exponential forgetting window Bi-SVD1 algorithm by

Strobach [7],

• the FAST algorithm by Real et al. [28], which is a recent

contribution to sliding window SVD subspace tracking,

• our sliding window version of the NIC subspace tracker

by Miao and Hua [19].

Despite the good performance of the Bi-SVD1 algorithm,

its convergence is slower than that of SWASVD3 after abrupt

signal variations3. This may be explained by the use of

an exponential forgetting window. Note that the Bi-SVD3

subspace tracker, also presented in [7], has a lower complexity

(its dominant cost is 80Nr), but it proved to be unstable on

this test signal.

Concurrently, the FAST subspace tracker is better than Bi-

SVD1 in terms of the maximum principal angle error (figure

5-b). However, its dominant cost is 8NLr, and the frequency

3The forgetting factor α ≃ 0.99 was chosen to get an effective window
length equal to L.
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Fig. 1. (a): Test signal; (b): Normalized frequencies of the sinusoids.

tracking response (figure 5-a) remains slower than that of

SWASVD3 . Note that the dominant cost of the approximated

FAST2 algorithm [28] is also 8NLr.

The Novel Information Criterion (NIC) subspace tracker

was introduced in [19] as a robust generalization of the

PAST algorithm [18]. Figure 6-a shows the frequency tracking

obtained with our sliding window version of NIC4, whose

dominant cost is 30Nr. It can be noticed that this fast subspace

tracker is very stable and converges much faster than Bi-

SVD1 and FAST. However, this algorithm only converges to

an orthonormal matrix spanning the principal subspace. It does

not compute the singular vectors and values of the data matrix

(which might be important for rank estimation and tracking),

and does not guarantee the orthonormality of the subspace

basis at each time step (which is required for some subspace-

based estimation methods, such as MUSIC [31]).

Finally, SWASVD outperformed all the other subspace

trackers that we have tested on the same test signal (Karasalo’s

algorithm [2], TQR-SVD [5], Loraf [6], Bi-SVD3 [7], NP3

[8], PAST [18], OPAST [20], SHSVD [27] and FAST2 [28]).

These results were not presented here to keep the presentation

as concise as possible.

V. CONCLUSIONS

This paper introduced new SVD tracking algorithms, de-

rived from the classical bi-orthogonal iteration method. These

algorithms have been designed for a sliding window data

matrix, a characteristic that distinguishes them from most of

existing subspace tracking techniques. The results obtained on

synthetic signals in the frequency estimation context showed

their robustness to abrupt signal variations.

We successfully obtained an ultra-fast tracking algorithm

with linear complexity, without degrading the excellent perfor-

mance of our O((N + L)r2) subspace tracker. This could be

achieved by means of an approximated fast QR factorization.

4The learning step size η was equal to 0.5.
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Fig. 2. O((N + L)r2) SWASVD2 algorithm: (a): Frequency tracking; (b):
Maximum principal angle trajectory.
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Fig. 3. O((N + L)r) SWASVD3 algorithm: (a): Frequency tracking; (b):
Maximum principal angle trajectory.

Finally, these subspace tracking algorithms may be consid-

ered as the starting point of a real-time frequency tracker,

whose full implementation would additionally require an adap-

tive version of the ESPRIT algorithm.

APPENDIX

ULTRA-FAST SWASVD3 ALGORITHM

This appendix introduces the ultra-fast SWASVD3 tracking

algorithm. Since there is no room here for a complete descrip-

tion, only the main steps will be highlighted, and some details

required for a full implementation will be skipped.

A. Fast approximated QR factorization

Remember that the first iteration in SWASVD2 relies on the

low-dimensional QR factorization (20). Generally, this factor-

ization requires 12r3 operations. Now suppose that RA(t−1)
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Fig. 4. O(Nr2) Bi-SVD1 algorithm: (a): Frequency tracking; (b): Maximum
principal angle trajectory.
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Fig. 5. O(NLr) FAST subspace tracker: (a): Frequency tracking; (b):
Maximum principal angle trajectory.

is not only upper triangular, but also diagonal (in practice,

this is nearly the case, since RA converges to the diagonal

matrix Σ in the original bi-orthogonal iteration SVD algorithm

of Table I). In this case, RA(t − 1)H is also diagonal, and

therefore upper triangular, so that T B(t) defined in equation

(19) is an upper triangular plus rank one matrix. In particular,

it is well known that the QR factorization of such a matrix

can be achieved in O(r2) computations, using only 2r Givens

rotations [32, section 12.5]. Therefore, equation (20) can be

written

T B(t) = G̃B(t)R̃B(t) (23)

where G̃B(t) is a product of 2r Givens rotations and R̃B(t)
is a (r + 1) × r upper-triangular matrix (whose last row is

equal to 0 in this particular case).

In practice, RA(t − 1) is not diagonal, and this fast QR-
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Fig. 6. O(Nr) sliding window NIC subspace tracker: (a): Frequency
tracking; (b): Maximum principal angle trajectory.

factorization can not be achieved. However, since RA(t−1) is

nearly diagonal, applying the fast QR-factorization technique

as it is with this non diagonal matrix gives a nearly upper

triangular matrix R̃B(t).
This fast approximated QR-factorization is the key step of

our ultra-fast tracking algorithm. Note that equation (23) is

not an approximation but a strict equality.

B. Modification of the first iteration

Equation (21) now becomes:

B(t) =
([

Q̃B(t − 1) z̄⊥(t)
]
G̃B(t)

)
R̃B(t). (24)

A new difficulty arises: QB(t) can no longer be directly

extracted from this factorization (as in equation (22)), since

the last row of the nearly upper triangular matrix R̃B(t) is

generally not equal to 0. Consequently, the dimensions of the

second member matrices in equation (24) can not be reduced.

Therefore, it will be necessary to explicitly force this last

row to be zero. Suppose that there exists a rotation matrix

GRB
(t)H such that the last row of GRB

(t)HR̃B(t) is equal

to 0. Then let [
RB(t)
0 . . . 0

]
, GRB

(t)HR̃B(t).

Now equation (22) stands with

GB(t) , G̃B(t)GRB
(t). (25)

Such a matrix GRB
(t)H will be given in the next section.

C. Choice of an appropriate rotation matrix

First, note that if z⊥(t) = 0, the last row of R̃B(t) is 0.

From now on, suppose that z⊥(t) 6= 0. A first step towards

the obtention of the rotation matrix GRB
(t)H will be the com-

putation of a unitary vector w̄(t) such that w̄(t)HR̃B(t) =
[0 . . . 0]. Consider the r dimensional vector

v(t) = RA(t − 1)−1h(t) − qBL
(t − 1)
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TABLE V

ULTRA-FAST SLIDING WINDOW ADAPTIVE SVD ALGORITHM

(SWASVD3)

FOR EACH TIME STEP DO :266666666666666666666666666666666666666666666666666666666666666666666666666666664

First Iteration : Complexity :

h(t) = QA(t − 1)H x(t) 8Nr

z⊥(t) = [1, 0 . . . 0]T − Q̃B(t − 1) qBL
(t − 1) 8Lr

z̄⊥(t) =
z⊥(t)

‖z⊥(t)‖
10L

h̃(t) = h(t) − RA(t − 1)qBL
(t − 1) 4r2

T B(t) = eGB(t) eRB(t) 64r2

v(t) = RA(t − 1)−1h(t) − qBL
(t − 1) 4r2

µ(t) =
1+qBL

(t−1)H
v(t)

‖z⊥(t)‖
8r

w(t) = eGB(t)H

24 −v(t)

µ(t)

35 64r

w̄(t) = 1
‖w(t)‖ exp(i phase(wr+1(t)))

w(t) 10r

γr(t) = 1

for n = r downto 1 8r

sn(t) =
w̄n(t)∗

γn(t)

cn(t) =
p

1 − |sn(t)|2

γn−1(t) = γn(t) cn(t)

endh
QB(t) ×

i
=
h

Q̃B(t − 1) z̄⊥(t)
i

GB(t) 96Lr

Second Iteration : Complexity :

x⊥(t) = x(t) − QA(t − 1) h(t) 8Nr

x̄⊥(t) =
x⊥(t)

‖x⊥(t)‖
10NeT A(t) = eGA(t) eRA(t) 32r2eRA(t) GB(t) = GRA

(t)

266666664 RA(t)

×

.

.

.

×

0 . . . 0 ×

377777775 64r2h
QA(t) ×

i
=
h

QA(t − 1) x̄⊥(t)
i

GA(t) 192Nr

and the scalar

µ(t) =
1 + qBL

(t − 1)Hv(t)

‖z⊥(t)‖
.

Then a direct calculation shows that the vector

w(t) = G̃B(t)H

[
−v(t)
µ(t)

]

satisfies the homogenous equation w(t)HR̃B(t) = [0 . . . 0],
and so does the normalized vector5

w̄(t) ,
1

‖w(t)‖ exp (iphase(wr+1(t)))
w(t)

The phase shift is chosen so that w̄r+1(t) ≥ 0 (this choice

will be explained below).

Now, we are looking for a rotation matrix GRB
(t)H whose

last row is w̄(t)H (so that the last row of GRB
(t)H R̃B(t)

is 0). An appropriate choice for GRB
(t)H is a product of

5Note that w(t) can not be equal to 0, since either v(t) 6= 0, or v(t) = 0,
which yields µ(t) 6= 0.

r Givens rotations6 as defined in equation (26) on page 9

(because it would be the classical way of zeroing the last

row of R̃B(t) if its r first rows had an exact upper-triangular

structure).

Then, it can be easily shown that the last row of GRB
(t)H

is equal to

[γ1(t) s1(t), γ2(t) s2(t), . . . , γr(t)sr(t) | γ0(t)]

where γn(t) =
r∏

i=n+1

ci(t) for n ∈ {1, . . . , r−1} and γr(t) =

1. To make this row equal to w̄(t)H , the coefficients cn(t) et

sn(t) can be computed recursively:
γr(t) = 1
for n = r downto 1

sn(t) = w̄n(t)∗

γn(t)

cn(t) =
√

1 − |sn(t)|2

γn−1(t) = γn(t) cn(t)
end

Note that all the cn(t) are non negative numbers, so that

γ0(t) ≥ 0. Therefore, it can be noticed that w̄r+1(t) ≥ 0 was a

necessary condition to guarantee the equality between w̄(t)H

and the last row of GRB
(t)H (this condition was sufficient

because of the orthonormality of both row vectors).

Finally, the matrix GB(t) defined in equation (25) is

expressed as a product of only 2r + r Givens rotations.

Therefore, QB(t) can be computed using equation (22) in

only 96Lr operations (by recursively applying the Givens

rotations). Consequently, the whole first iteration is reduced

to linear complexity (see Table V)7,8.

D. Modification of the second iteration

Contrary to RB(t), it will now be shown that RA(t) can

be made exactly upper triangular in O(r2) operations. Indeed,

substituting equations (19),(20) into equations (13),(14) shows

that RA(t) satisfies the recurrence

GA(t)




RA(t)

×
...

×
0 . . . 0 ×


 = T̃ A(t)GB(t) (27)

where

T̃ A(t) =




RA(t − 1)

0
...

0
0 . . . 0 0




+

[
h̃(t)

‖x⊥(t)‖

] [
qBL

(t − 1)
‖z⊥(t)‖

]H

.

6Note that these Givens rotations are not real but complex transformations.
Their orthonormality is guaranteed if

• cn(t) ≥ 0,
• |cn(t)|2 + |sn(t)|2 = 1.

7Note that the vector RA(t−1)−1h(t) can be computed in 4r2 operations
using simple back substitution, since RA(t − 1) is triangular.

8The pseudo-code for SWASVD3 in Table V should not be implemented
as it is. An efficient implementation should recursively apply all the Givens
rotations without storing them in memory.
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GRB
(t)H =

2666664 1

. . .

1
cr(t) −sr(t)∗

sr(t) cr(t)

3777775 . . .

266666664 1
c2(t) −s2(t)

∗

1

. . .

1
s2(t) c2(t)

3777777752666664 c1(t) −s1(t)
∗

1

. . .

1
s1(t) c1(t)

3777775 (26)

It can be noticed that the first member of equation (27) is an

exact QR factorization of the second one. Therefore, GA(t)
and RA(t) can be obtained by computing this QR factorization

instead of using equation (14).

Moreover, T̃ A(t) is an upper triangular plus rank-one ma-

trix. It is well-known that the QR factorization of such a matrix

can be achieved using only 2r Givens rotations.

Now consider this fast QR factorization:

T̃ A(t) = G̃A(t) R̃A(t).

Finally, the QR factorization of R̃A(t)GB(t) gives

R̃A(t)GB(t) = GRA
(t)




RA(t)

×
...

×
0 . . . 0 ×


 (28)

and equations (27) and (16) now stand with

GA(t) , G̃A(t)GRA
(t). (29)

Since GB(t) is a product of 3r Givens rotations, it can

be shown that the QR factorization in equation (28) can be

achieved using only 4r Givens rotations9. Therefore, the whole

QR factorization in equation (27) requires only 2r+4r Givens

rotations, i.e. O(r2) operations. Then the matrix QA(t) can

be computed using equation (16) in O(Nr) operations (by

recursively applying the Givens rotations). Finally, the whole

second iteration is reduced to linear complexity (see Table V).

It can be seen that the dominant cost of SWASVD3 is

104(2N + L)r. Although this complexity is linear in r, the

multiplicative factor is quite high. Therefore, this algorithm

is less computationally demanding than SWASVD2 only for

high values of r (for instance, if N is much smaller than L,

SWASVD3 is faster than SWASVD2 for all r ≥ 12; in the

general case, r ≥ 24 is a sufficient condition).
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9In particular, GB(t) is the product of eGB(t) (which contains 2r Givens
rotations) and GRB

(t) (which contains r Givens rotations). Consequently,
the QR factorization in equation (28) can be achieved in two steps:

• QR factorization of the product of an upper triangular matrix andeGB(t). It can be readily verified that the upper triangular structure

can be recursively maintained (each Givens rotation in eGB(t) can be
compensated by a Givens rotation in GRA

(t)).
• QR factorization of the product of an upper triangular matrix and

GRB
(t). It must be noticed that such a product is an upper triangular

plus rank one matrix. Therefore, the fast QR factorization method
presented in [32, section 12.5] can be applied. It involves only 2r
Givens rotations.
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