
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS 1

Sliding Window-Based Fault Detection From

High-Dimensional Data Streams
Liangwei Zhang, Jing Lin, Member, IEEE, and Ramin Karim

Abstract—High-dimensional data streams are becoming
increasingly ubiquitous in industrial systems. Efficient detec-
tion of system faults from these data can ensure the reliability
and safety of the system. The difficulties brought about by high
dimensionality and data streams are mainly the “curse of dimen-
sionality” and concept drifting, and one current challenge is
to simultaneously address them. To this purpose, this paper
presents an approach to fault detection from nonstationary high-
dimensional data streams. An angle-based subspace anomaly
detection approach is proposed to detect low-dimensional sub-
space faults from high-dimensional datasets. Specifically, it selects
fault-relevant subspaces by evaluating vectorial angles and com-
putes the local outlier-ness of an object in its subspace projection.
Based on the sliding window strategy, the approach is further
extended to an online mode that can continuously monitor sys-
tem states. To validate the proposed algorithm, we compared
it with the local outlier factor-based approaches on artificial
datasets and found the algorithm displayed superior accuracy.
The results of the experiment demonstrated the efficacy of the
proposed algorithm. They also indicated that the algorithm has
the ability to discriminate low-dimensional subspace faults from
normal samples in high-dimensional spaces and can be adap-
tive to the time-varying behavior of the monitored system. The
online subspace learning algorithm for fault detection would be
the main contribution of this paper.

Index Terms—Big data analytics, fault detection, high-
dimensional data, stream data mining.

NOMENCLATURE

Acronyms

ABSAD Angle-based subspace anomaly detection.

AUC Area under curve.

EWPCA Exponentially weighted principal compo-

nent analysis.

FNR False negative rate.

FPR False positive rate.

ICA Independent component analysis.

KDE Kernel density estimation.

LOF Local outlier factor.

LOS Local outlier score.

MSPC Multivariate statistical process control.

Manuscript received May 16, 2015; revised September 2, 2015 and
November 2, 2015; accepted June 19, 2016. This paper was recommended by
Associate Editor G. Biswas. (Corresponding author: Liangwei Zhang.)

The authors are with the Division of Operation and Maintenance
Engineering, Luleå University of Technology, Luleå SE-97187, Sweden
(e-mail: liangwei.zhang@ltu.se).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TSMC.2016.2585566

PCA Principal component analysis.

ROC Receiver operating characteristic.

RPCA Recursive PCA.

SNN Shared nearest neighbors.

SOD Subspace outlier detection.

SPE Squared prediction error.

SWPCA Sliding window PCA.

TPR True positive rate.

X Design matrix.

m Number of data points (rows) in X.

n Number of dimensions (columns) in X.

N Index set of feature space {1, . . . , n}.
LOS Vector of LOSs.

i ith data point (row) in X, or the ith

window.

j jth element of a vector, or the jth dimen-

sion (column) of a matrix.

v Vector representation of a point.

p Data point (outlier candidate).

RP Set of reference points of a point.

q Data point represents the geometric center

of all the points in RP(p).

l Line connected through two points (e.g., p

and q).

dist(·, ·) Metric for measuring the distance between

two points.

kNN(i) k nearest neighbor list of the ith point.

SimSNN Similarity value of two points derived by

the SNN method.

SNNs s nearest neighbor list of a point derived

by the SNN method.

PCos(�l, �µn(j)) Average absolute value of cosine between

line l and the jth axis in all possible com-

binations of the 2-D spaces (j, j−), where

j− ∈ N\{ j}.
d Number of retained dimensions of a point.

G Threshold for singling out large PCos

values.

K(·) Kernel function.

h Smoothing parameter in the KDE.

W(i) All the samples preserved in the ith win-

dow profile.

kNN-list(i) Set of sets, containing the k nearest neigh-

bors of every sample in the ith window.

k-Dist(i) Vector, recording the k-distance of each

sample in the ith window.

CL(i) Scalar, the control limit of the ith

window.

2168-2216 c© 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

mailto:liangwei.zhang@ltu.se
http://ieeexplore.ieee.org
http://www.ieee.org/publications_standards/publications/rights/index.html

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS

α Acute angle between line l and axis x.

β Acute angle between line l and axis y.

γ Significance level.

σ Row vector, containing the columnwise

standard deviation of a matrix.

ε Significantly small positive quantity.

µ Axis-parallel unit vector.

θ Input parameter of the ABSAD-based algo-

rithm for selecting relevant subspace.

� Covariance matrix of a set of points.

Cardinality of a set.

� Mean vector of a matrix (� denotes

a placeholder).
�� Vector representation of a line.

�̂ Estimation of an underlying function.

�
∗ Normalized matrix (e.g., X

∗).

�
T Transpose of a vector or a matrix.

�
−1 Inverse of a square matrix.

�
Non-zero scalar quantity obtained by zero-

value replacement (e.g., l#j = 10−5, if

lj = 0).

�
− One of the remainder dimensions of the

original feature space excluding a specific

dimension (e.g., j− ∈ N\{ j}).
�

′
Projection of point, set of points or line on

the retained subspace (e.g., RP(p)
′
).

I. INTRODUCTION

F
AULT detection is one important task to identify defective

states and conditions within industrial systems, subsys-

tems, and components [1]. Early discovery of system faults

can ensure the reliability and safety of the systems and reduce

the risk of unplanned breakdowns [2], [3]. Primary fault detec-

tion techniques can be categorized into the classes of model-

based, signal-based, knowledge-based (data-driven), and active

ones [3], [4]. With the ever-increasing sensor data available,

knowledge-based techniques are finding more chances in fault

detection applications [5], [6]. Depending on whether the raw

data are labeled or not, knowledge-based techniques can be

further classified into supervised and unsupervised ones [3].

The former uses plentiful positive (faulty) and negative (nor-

mal) data to learn the underlying data generating mechanisms

for both classes, as has been done in [7], whereas the later

learns the normal system behavior only from normal sam-

ples, and faults are detected as deviations from the learned

normality, as has been done in [8]. Although supervised algo-

rithms can provide favorable results in detecting and even

isolating faults, faulty data for training purpose are generally

insufficient and expensive to acquire in real-world applica-

tions. This problem becomes even worse as dimensionality

increases since the number of data for covering a fraction

of the feature space grows exponentially with increasing

dimensionality [9].

With the advance of sensor technology, industrial systems

are increasingly equipped with a large number of sensors,

such as thermometers, vibroscopes, displacement meters,

flow meters, etc. Those sensors can continuously generate

high-dimensional data at high speed, namely high-dimensional

data streams. Recently, considerable interest has been focused

on big data analytics for its attempts to extract informa-

tion, knowledge and wisdom from these data, among which

fault detection is one of the most promising applications

wherein reliability meets big data [10]. However, it is chal-

lenging to utilize existing techniques to conduct fault detection

on these high-dimensional data streams which partly share

the characteristics of big data [11]. Current research on fault

detection from high-dimensional data streams are mainly stud-

ied from two aspects separately: 1) high dimensionality and

2) data stream.

High dimensionality is one measure of the high volume

of big data (the other measure being instance size) [12]. It

has been recognized as the distinguishing feature of mod-

ern field reliability data [10]. The “curse of dimensionality”

may cause the deterioration of many fault detection tech-

niques because the degree of data abnormality in fault-relevant

dimensions can be obscured or even masked by irrelevant

attributes [9], [13], [14]. Moreover, notions like proximity,

distance, or neighborhood become less meaningful as dimen-

sionality increases [15]. Existing MSPC methods, including

PCA and ICA, have been widely used in fault detection

applications [16], [17]. However, PCA assumes multivariate

normality of the measurements and ICA assumes the mea-

surements to be non-Gaussian distributed [6], and thereby

limiting their performance in real-world applications [18]. To

improve this, several studies have integrated MSPC meth-

ods with the density-based LOF technique, which is free

of distribution assumptions [18], [19]. Though better accu-

racy was reported, the performance of LOF implemented

on full-dimensional spaces still degrades as dimensionality

increases, as will be shown in Section IV-C. Theoretical stud-

ies on high-dimensional anomaly detection mainly focus on

subspace anomaly detection, including, for example, by ran-

dom projection or heuristic searches over subspaces [20], [21].

However, these methods are either arbitrary in selecting sub-

spaces or computationally intensive. Although several studies

have started to probe the above high dimensionality problem,

research concerning high-dimensional fault detection remains

under-explored.

Data stream refers to the data that are continuously gener-

ated at a high rate. It reflects the characteristics of big data in

the aspects of both high volume and high velocity. Normally,

data streams are also temporally ordered, fast-changing, and

potentially infinite [22], [23]. Moreover, they tend to be high-

dimensional in their nature in many cases, such as sensor

networks, cybersurveillance, and so on. The difficulties raised

by data streams in fault detection tasks can be summarized as

follows.

1) To have a timely assessment on the system status, algo-

rithms must have low-latency in responding to the fast-

flowing data stream. Therefore, “on-the-fly” analysis is

desired in this context [22].

2) It is impractical or even impossible to scan a potentially

infinite data stream multiple times considering the finite

memory resources [23]. Thus, algorithms that conduct

one-pass scan over the data stream are imperative.

3) Data streams can evolve as time progresses. This is

also known as concept drifting [7], [24]. In the context

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

ZHANG et al.: SLIDING WINDOW-BASED FAULT DETECTION FROM HIGH-DIMENSIONAL DATA STREAMS 3

of fault detection, the behavior of systems can vary

over time—time-varying—due to many reasons, such

as seasonal fluctuation, equipment aging, process drift-

ing, and so forth. Fault detection algorithms need to be

adaptive to this time-varying behavior of the monitored

system [25]. A large portion of online fault detection

algorithms were extended from existing ones for the

purpose of monitoring data streams, such as the RPCA,

EWPCA, and SWPCA [26]–[28]. The key to these algo-

rithms is that the learning model should be refined,

enhanced, and personalized while the stream evolves so

as to accommodate the natural drift in the data stream.

In spite of the extensive studies of fault detection

techniques, fault detection applications which specifi-

cally address the challenges imposed by data stream

properties are also limited [29].

Today, the capability of fault detection techniques in simul-

taneously addressing the challenges associated with high

dimensionality and data streams remains limited. To solve the

above problems, this paper proposes an unsupervised approach

to fault detection from high-dimensional data streams with

time-varying characteristics.

1) First, in considering the high-dimensional challenges in

fault detection tasks, an ABSAD approach is proposed.

The ABSAD approach selects fault-relevant subspaces

by evaluating vectorial angles and computes the local

outlier-ness of an object in its subspace projection by

a normalized Mahalanobis distance measure.

2) Second, aiming to detect faults from data stream with

time-varying characteristics, the ABSAD approach is

extended to an online mode based on the sliding window

strategy. According to the requirements of the ABSAD

approach, several necessities (mean vector, KNN list,

etc.) are identified and incorporated into the window

profile of the sliding window ABSAD algorithm.

The updating mechanisms to these necessities are inves-

tigated and thoroughly described. To validate the proposed

algorithm, we compared it with the LOF-based approaches

on artificial datasets and found the algorithm displayed

superior accuracy. The results of the experiment demon-

strated the efficacy of the proposed algorithm. They also

indicated that the algorithm is able to discriminate low-

dimensional subspace faults from normal samples in high-

dimensional spaces and can be adaptive to the time-varying

behavior of the monitored system. This paper contributes to

a new online subspace learning algorithm for detecting faults

from nonstationary systems. To the best of our knowledge,

no online fault detection algorithms utilizing angle evalu-

ation to select fault-relevant subspaces have been reported

to date.

The rest of this paper proceeds as follows. In Section II,

we propose an ABSAD approach with the aim of handling

high dimensionality challenges in anomaly detection tasks. To

address the challenges associated with data stream mining,

Section III extends the ABSAD approach to an online mode

based on the sliding window strategy. Section IV evaluates

the proposed algorithm on synthetic datasets and compares

it with other alternatives. Finally, the study is concluded in

Section V.

II. ANGLE-BASED SUBSPACE ANOMALY

DETECTION APPROACH

To mitigate the impact exerted by anomaly-irrelevant

attributes, the degree of deviation of a data point from its

neighboring points (i.e., local outlier-ness) should be com-

puted in a meaningful subspace instead of the full-dimensional

space. The subspace is said to be meaningful in the sense

that it should capture most information with regard to the dis-

cordance of an object to its adjacent ones. To this end, we

propose an ABSAD approach to exploring and selecting low-

dimensional, axis-parallel subspaces that can retain a large

portion of points’ local outlier-ness. For each data instance,

the degree of deviation from its neighborhood is evaluated on

the obtained subspace. A local outlier score is then computed

for these points indicating whether it is abnormal or not. More

theoretical discussions to this approach can be referred to [30].

In the following, we describe the ABSAD approach. We

first elucidate the model assumption, and then introduce the

structure of the ABSAD approach. Subsequently, we elaborate

the main steps of the approach respectively and integrate them

into a single algorithm.

A. Model Assumption

The separability of different data generation mechanisms

may not necessarily depend on the amount of data dimen-

sionality, but instead on the ratio of relevant versus irrelevant

attributes [13]. In cases where the relevant attributes account

for a large proportion of the whole dimensions, the separa-

bility among different mechanisms tends to increase, which

means traditional techniques are still valid and may work

even better in high-dimensional spaces. Conversely, when rel-

evant attributes are in a minority of the whole dimensions,

the curse of dimensionality would hamper anomaly detec-

tion tasks. This paper attempts to address the problem of the

latter case. Hereinafter, we assume the number of anomaly-

relevant attributes is in a minority of all the attributes in the

feature space.

B. Computational Procedure

The computational procedure of the ABSAD approach is

presented in Fig. 1. The first step, data preparation, usually

comprises data acquisition, data cleaning, feature selection,

and other preprocessing processes. The complexity of this step

mainly depends on the quality of the collected raw data. Since

this step is highly dependent on various applications and plen-

tiful studies have been conducted specifically on these topics,

the remainder of this section will instead focus on the core

part of the approach (enclosed by the outer box in Fig. 1).

In the following, we define X (X ⊆ Rm×n) as the

design matrix. Each row of the matrix represents a data point

(also known as data instance, object or observation) in a

n-dimensional feature space N, where N = {1, . . . , n} and

n ≥ 2. The objective of this approach is to define a function

which maps X to a real-valued vector LOS, i.e., f : X →LOS,

where LOS(i) is the ith point’s local outlier score. To evaluate

the local outlier-ness of a particular data point p, a set of refer-

ence points RP(p) of p needs to be specified beforehand. The

set RP(p) reflects the notion of locality. Additionally, a dis-

tance metric dist(p, o) (e.g., one of the Lp norms) measuring

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS

Fig. 1. Computational procedure of the ABSAD approach.

the distance between any two points p and o is required when

deriving the set RP(p).

C. Feature Normalization

The feature normalization step is to standardize the range

of values in different features. It is imperative to conduct this

step because those features with mean or variance that are

orders of magnitude larger than others are likely to dominate

succeeding computations. In anomaly detection applications,

we recommend the use of the Z-score normalization instead

of the min–max scaling considering the latter may suppress

the effect of abnormality which might deviate from our inten-

tion. The Z-score method normalizes the design matrix X to

a dimensionless matrix X
∗ with zero mean and unit variance.

The ith row of X
∗ can be calculated as follows:

x∗
i = xi − x

σ
, for all i ∈ {1, 2, . . . , m} (1)

where x is the columnwise mean vector of the design matrix

and σ is the columnwise standard deviation vector.

D. Derivation of Reference Sets

The implication of locality needs to be defined in local

outlier detection approaches, i.e., to determine the set of

reference points. In low-dimensional spaces, distance-based

measures are frequently used to explore the vicinity of a point.

However, as stated before, notions like proximity, distance,

or neighborhood become less meaningful in high-dimensional

spaces. To cope with this problem, an alternative series of

methods, which introduce a secondary measure based on

the rankings of data instances produced by a primary sim-

ilarity measure, were proposed. Among these methods, the

SNN approach is the most common one. The applicability of

SNN in high-dimensional spaces has been empirically justified

in [13] and it was adopted in several other related research

projects [21], [31].

The main idea of the SNN method is that two points gener-

ated by the same mechanism should have more overlap in their

nearest neighbor list, and vice versa. Specifically, SNN mea-

sures the similarity of two points as the number of common

nearest neighbors which are derived from a primary measure.

Prior to calculating the SNN similarity, a primary measure is

needed to specify the nearest neighbors for all the points. The

primary measure can be of any traditional similarity measure

(such as Lp norm or the cosine measure). Notably, the ranking

of data instances derived by the primary measure is typi-

cally still meaningful in high-dimensional spaces even though

the contrast of distance measure has deteriorated. Suppose

the k nearest neighbor set of point p is denoted as kNN(p).

Then, the SNN similarity between points p and q can be

represented as

SimSNN(p, q) = #{kNN(p) ∩ kNN(q)}. (2)

Here the sign # returns the cardinality of the intersection

between sets kNN(p) and kNN(q). Notably, the above equa-

tion only computes the similarity between pairwise points.

To derive a secondary nearest neighbor list SNN(p), we

need to sort all the SNN similarity values of point p with

respect to other remaining points in X in descending order.

The first s elements with largest SNN similarity values in the

set SNN(p), i.e., SNNs(p), constitute the reference set RP(p).

E. Selection of Relevant Subspaces

The general idea as to which dimensions should be retained

to constitute the anomaly-relevant subspaces is elaborated as

below. The example shown in Fig. 2 gives us an intuition

on selecting relevant subspaces. In a 2-D case as shown in

Fig. 2(a), the set RP(p) (enclosed by an ellipse) contains the

nearest neighbors of an outlier candidate p (black cross). In

Fig. 2(b), the geometrical center of RP(p) is calculated and

represented by the point q (red circle). Points p and q are

connected to form the line l (red solid line). In considering

which of the 2-D (x and y) p deviates significantly from its

reference points, we can evaluate the angle α between line

l and the x-axis, and β between line l and the y-axis (both

α and β are acute angle). Intuitively, the dimension which

has a fairly small angle with line l should be retained in

the relevant subspace. In this case, angle α is small indicat-

ing that line l is nearly parallel to the x-axis, whereas β is

markedly larger implying that line l is almost perpendicular

to the y-axis. Consequently, the dimension on the x-axis is

retained and the dimension on the y-axis is excluded. Now,

as shown in Fig. 2(c), we can project the original data points

onto the x-axis and compute the local outlier-ness of p in this

subspace.

Before generalizing the selection of relevant subspaces in

high-dimensional spaces, let us define some more notations.

Formally, let �µn(j), j ∈ N denote the jth axis-parallel unit

vector in a n-dimensional space. Concretely, �µn(j) is a n × 1

vector with the jth element one and others zero. Further, let

vp and vq be the vector representation of point p and q,

respectively, and vq is the mean of all the points in RP(p).

Correspondingly, the vector representation of line l can be

written as �l, and �l = vp − vq. Here we define the jth element

of vector �l as lj, i.e., �l = [l1, l2, . . . , ln]T .

An alternative way to measure the angle between two lines

is by the absolute value of the cosine between the two cor-

responding vectors. Let |cos(�l, �µn(j))| denote the absolute

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

ZHANG et al.: SLIDING WINDOW-BASED FAULT DETECTION FROM HIGH-DIMENSIONAL DATA STREAMS 5

Fig. 2. Intuition of finding relevant subspace and subspace projection. (a) Problem setting. (b) Finding relevant subspace. (c) Subspace projecion.

value of cosine between vector �l and the jth axis-parallel unit

vector �µn(j)

∣

∣

∣
cos

(

�l, �µn(j)
)
∣

∣

∣
=

∣

∣

∣
<�l, �µn(j)>

∣

∣

∣

∥

∥

∥

�l
∥

∥

∥
· ‖ �µn(j)‖

(3)

where |·| is the absolute value sign, <·, ·> represents inner

product, and ‖·‖ calculates the norm of the embedded vector.

The absolute value of a cosine lies in the range [0, 1]. Similar

to the intuitive example, if the metric is close to one, the jth

axis tends to be parallel to line l and hence should be retained

in the subspace. Contrarily, if the metric is approaching zero,

the jth axis is prone to be perpendicular to line l and instead

should be excluded.

Unfortunately, pairs of random vectors in high-dimensional

spaces are typically perpendicular to each other [32], [33].

Specifically, all the axis-parallel unit vectors tend to be

orthogonal to vector �l as dimensionality increases, i.e.,

limn→∞ cos(�l, �µn(j)) = 0 for all j ∈ N. Instead of measuring

the cosine value of two vectors directly in a n-dimensional

space, we can calculate the average absolute value of cosine

between vectors �l and �µn(j) in all possible combinations of

2-D spaces. Here the 2-D spaces comprise the jth dimension

and the j−th dimension (j− ∈ N\{ j}), which is selected from

all the remaining dimensions in N. Obviously, when examin-

ing the jth axis with line l, there are totally n − 1 pairs of 2-D

spaces (j, j−). Further, we define a metric PCos (let us call

it “pairwise cosine” in the sense that it is derived from 2-D

spaces) to measure the relationship between a line and an axis

in all possible 2-D spaces. To maintain a uniform notation,

let PCos(�l, �µn(j)) denote the pairwise cosine between vector
�l and the jth dimension

PCos
(

�l, �µn(j)
)

= 1

(n − 1)

∑

j−∈N\{ j}

∣

∣

∣

∣

<

[

l#j l#
j−

]T

, [1 0]T>

∣

∣

∣

∣

∥

∥

∥

∥

[

l#j l#
j−

]T
∥

∥

∥

∥

·
∥

∥[1 0]T
∥

∥

= 1

(n − 1)

∑

j−∈N\{ j}

∣

∣

∣
l#j

∣

∣

∣

√

l#j
2 + l#

j−
2
. (4)

In order to avoid a zero denominator, elements in �l that are

equal to zero should be substituted by a significantly small

positive quantity ε (e.g., 10−5), that is

l#j =
{

lj, if lj = 0

ε, otherwise
for all j ∈ N.

As with the metric defined in (3), the larger the metric PCos

is, the more we should include the corresponding dimension in

the subspace, and vice versa. Although this rarely happens in

high-dimensional spaces, an exceptional case arises when vec-

tor �l is a zero vector. This implies that point p is overlapping

with the geometric center of its adjacent points. Intuitively, it

should be considered normal in a local sense. Thus, its outlier

score can be simply set to zero.

Now we will discuss the expectation and variance of the

metric pairwise cosine. If PCos(�l, �µn(j)), j ∈ N is regarded

as a random variable, its expectation will be as follows

(derivation is provided in the Appendix):

E
[

PCos
(

�l, �µn(j)
)]

= 1

n · (n − 1)

∑

j, j−∈N

j− =j

∣

∣

∣
l#j

∣

∣

∣
+

∣

∣

∣
l#
j−

∣

∣

∣

√

l#j
2 + l#

j−
2
. (5)

Notice that PCos is basically the average absolute value of

cosine and it naturally lies in the range [0, 1]. Therefore, we

have the following proposition (proof can be referred to [30]).

Proposition: The expectation in (5) lies in the interval

(1/2,
√

2/2] and does not depend on the magnitude of dimen-

sionality.

Besides, the expectation and variance of PCos tend to be

asymptotically stable as dimensionality increases. As shown in

Fig. 3(a) and (b), the mean of PCos that is derived from a uni-

formly distributed dataset and a normally distributed dataset,

both with 105 samples, are plotted against increasing dimen-

sionalities and gradually converge to a value around 0.65 (not

exactly). Even though the variance of this metric is analyt-

ically intractable from our knowledge, as demonstrated in

Fig. 3(c) and (d), it again tends to level off and be rather

stable as dimensionality increases. Notably, the asymptotic

property of the expectation and variance of the metric PCos

holds even for samples with large order of magnitude based

on our experiments.

As elaborated before, the dimensions with large PCos values

should be incorporated into the subspace, whereas the dimen-

sions with small PCos values should be excluded. For each

data point in the dataset X, there exists one particular line l

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS

Fig. 3. Asymptotic property of expectation and variance of the metric PCos.
Asymptotic property of (a) expectation: uniform, (b) expectation: Gaussian,
(c) variance: uniform, and (d) variance: Gaussian.

and we can obtain n different values of PCos by applying (4)

iteratively. It has been justified that PCos is a relatively robust

metric, so for a specific data point, we can set a threshold G

to single out those large PCos values as

G = (1 + θ) · 1

n

∑

j∈N

PCos
(

�l, �µn(j)
)

. (6)

Here, θ is an input parameter lying in [0, 1), and n is the

number of dimensions of the feature space N. The right part of

the multiplier in (6) is essentially the average PCos over all the

dimensions. Those dimensions with a PCos value greater than

G are retained to constitute the relevant subspace for a specific

data point.

F. Computation to Local Outlier Scores

After going through the process of selecting relevant sub-

spaces, we might find some of the points do not have any

relevant attributes being retained as a part of the subspace.

This circumstance simply indicates that those points do not

significantly deviate from their neighbors in any subsets of all

the dimensions. For those points with no subspace to project

on, we simply set the outlier score to zero.

In the following, we describe how to measure the local

outlier-less of a data point in its subspace. Generally, some

state-of-the-art anomaly detection techniques (e.g., distance-

based, density-based, and statistical models) which perform

well in low-dimensional spaces can be employed here. For

example, in the SOD algorithm [21], Euclidean distance was

used to calculate the local outlier-ness of a point in its subspace

projection. However, in fault detection applications, different

dimensions tend to be correlated to each other due to the

interaction between subsystems and components. This cor-

relation may lead to a failure of some distance metrics in

defining the extent of outlier-ness. For this reason, we intro-

duce a normalized Mahalanobis distance to measure the LOS

of a specific data point. First, let x∗
i

′
be the projection of the ith

normalized point on the retained subspace, and RP(i)
′

denotes

the subspace projection of the original reference points RP(i).

Second, the mean vector of the reference point’s projection is

denoted as RP(i)
′
, and the inverse of the covariance matrix

of RP(i)
′

is �−1

RP(i)
′ . Further, let d(i) denote the number of

retained dimensions for the ith data point. Then the LOS for

the ith point LOS(i) is defined as follows:

LOS(i) = 1

d(i)
·
√

(

x∗
i

′ − RP(i)
′
)T

�
−1

RP(i)
′

(

x∗
i

′ − RP(i)
′
)

. (7)

In (7), the right side of the multiplier is basically the

Mahalanobis distance from the normalized point i to its refer-

ence points in the subspace projection. Essentially, the overall

LOS for the ith point LOS(i) is the Mahalanobis distance in

the retained subspace normalized by the number of retained

dimensions.

Notably, for the covariance matrix of the projected reference

points �
RP(i)

′ to be invertible, the covariance matrix should be

nonsingular. The nonsingularity of the covariance matrix relies

on the following three prerequisites.

1) In the data preparation step, feature selection has elim-

inated redundant attributes resulting in the retained

dimensions in the subspace not being highly correlated.

2) We assumed that the anomaly-relevant attributes are in

a minority of all the dimensions in Section II-A and

the process of selecting relevant subspaces described in

Section II-E should filter out large amount of irrelevant

attributes, and hence the number of retained dimensions

is small.

3) The choice of the number of reference points s (as will

be discussed in Section IV-B) should be set large

enough.

The above three conditions can basically suffice for the

nonsingularity of the covariance matrix.

G. Determination of the Control Limit for

Reporting Faults

In general, anomaly detection can be considered as a skewed

binary classification problem. Unfortunately, there is no

deterministically accurate criterion to convert the continuous

LOS to a binary label, namely normal or faulty. One way

is to set a control limit and those data points with an LOS

exceeding the control limit should be regarded as anomalies.

The objective of introducing one additional control limit is to

reduce the probability of committing both type I (FPR) and

type II (FNR) error.

For the purpose of fault detection, the control limit of LOSs

may vary among different applications. In case of no sufficient

labeled data, some probabilistic methods can be used to set the

control limit. To automate the process of setting control lim-

its, we regard LOS(i), i ∈ {1, 2, . . . , m} as the observations

of a random variable s and apply the KDE method to esti-

mate its probability density function f̂ (s), as has been done

in [17] and [18]. Then the control limit can be set according

to f̂ (s) and a confidence level (1 − γ) given by the user. In

our univariate case, the KDE method places a kernel at the

location of each observation from the sample set and sums up

these kernels to get the estimation of the probability density

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

ZHANG et al.: SLIDING WINDOW-BASED FAULT DETECTION FROM HIGH-DIMENSIONAL DATA STREAMS 7

Fig. 4. ABSAD algorithm in a batch mode.

function over the entire sample set. The kernel density esti-

mator of the function f̂ (s) is defined in (8), where s is the

concerned random variable, si is the value of the ith sample,

m is the sample size, h is the smoothing parameter named

the bandwidth, and K(·) is the kernel function, of which the

Gaussian kernel function is the most widely used one

f̂ (s) = 1

mh

m
∑

i=1

K

(

s − si

h

)

. (8)

As described previously, the LOS of those points with no

subspace to project on will be set to zero. A mass of these

LOSs at the location zero may dominate the probability density

of s. To reduce the bias in the estimation of the underlying

probability density function, we simply substitute these zero

values with the half of the minimum nonzero value prior to

the estimation of f̂ (s)

si =
{

LOS(i), if LOS(i) = 0

min
i∈{1,...,m}

{LOS(i)
∣

∣ LOS(i) = 0}/2, otherwise.

(9)

Now, given a finite set of LOSs and a predefined confi-

dence level, we should be able to determine a control limit

for deciding whether an observation is normal or anomalous.

H. Model Integration

In keeping with the computational procedure of the ABSAD

approach as described in Section II-B, we define an integrated

algorithm in Fig. 4. The algorithm takes in a finite number

of data points and some user-defined parameters, and outputs

a vector of LOSs and a control limit. In contrast to some

online fault detection algorithms where samples are evaluated

one at a time upon their arrival, the ABSAD algorithm shown

in Fig. 4 can be viewed as an algorithm running in a batch

mode.

The algorithm shown in Fig. 4 can be easily adapted to

an online mode to monitor system states. Let us call this

online mode of the ABSAD approach “primitive ABSAD.”

The primitive ABSAD approach first conducts offline training

on a finite size of normal data points (a fixed window) and

obtains the control limit. For any new observation from the

data stream, we calculate its LOS with respect to the origi-

nal training set following the same procedure listed in Fig. 1.

If the LOS exceeds the control limit, a fault is detected. The

crucial problem with the primitive ABSAD is that the con-

trol limit and the data points in the window are fixed. They

are not changing along with the system’s normal time-varying

behavior. Consequently, the type I error of the fault detec-

tion task may be high (as will be shown in Section IV-C). Of

course, the batch mode of ABSAD approach can also be run

regularly to absorb the normal change of the system. But it

requires intensive computation, which is unsuitable for online

fault detection that demands timely response.

III. SLIDING WINDOW ABSAD-BASED

FAULT DETECTION SCHEME

To deal with the above problems, we adapt the ABSAD

approach to another online mode based on the sliding window

strategy in this section. The sliding window strategy is fre-

quently used in data stream mining and it assumes that recent

data bear greater significance than historical data. It discards

old samples from the window, inserts new samples into the

window, and updates the parameters of the model iteratively.

Since the “sliding window ABSAD” algorithm is adaptive to

the dynamic change of the system, it can reduce the type I error

significantly compare to the primitive ABSAD algorithm (as

will be shown in Section IV-C). At the end of this section, we

analyze the computational complexity of the sliding window

ABSAD algorithm.

A. Structure of the Sliding Window

ABSAD Algorithm

The structure of the sliding window ABSAD algorithm is

shown in Fig. 5. It comprises two stages: 1) offline model train-

ing and 2) online fault detection. The first stage, offline model

training, is a one-off task followed by the online fault detection

routine. The second stage continuously processes each new

observation from the data stream upon its arrival. To enhance

the computational efficiency of the algorithm, the current win-

dow profile needs to be stored and maintained continuously.

The different stages of the algorithm are explained below.

1) Offline Model Training: The first stage basically follows

the same procedure of the ABSAD approach listed in Fig. 1.

Notably, it is worth meticulously selecting fault-free samples

to construct the training set since the existence of faulty sam-

ples in the training set may potentially reduce the LOS of

a new observation and augment the control limit, and hence

increase the risk of committing the type II error. After the

completion of the first stage, the output is used to initialize

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS

Fig. 5. Structure of the sliding window ABSAD algorithm.

the profile of the first window. Then, the algorithm is prepared

for the succeeding online fault detection routine.

2) Online Fault Detection: The second stage continuously

processes the data stream and monitors the states of the

system. In accordance with the flow chart of the online

fault detection stage shown in Fig. 5, the concrete steps are

explained as follows. First, the first two steps, sampling and

data preprocessing, collect the raw data and transform it into

a required form that is appropriate for mining. Specifically,

the sampling step acquires real-time measurements in a raw

format. Then the data preprocessing step transforms the raw

data into a suitable format which is in line with the output

format of the data preparation step in the first stage. Second,

the subsequent four steps calculate the local outlier-ness of

a new sample. They again align with the steps listed in Fig. 1.

The difference is that there is only one observation going

through these steps at a time in order to be processed. In

addition, the information stored in the current window profile

should be utilized in these two steps: 1) feature normaliza-

tion and 2) derivation of the reference set, as indicated by

the dashed arrow in Fig. 5. Concretely, according to (1), the

feature normalization step standardizes the new sample based

on the mean vector and the standard deviation vector stored

in the current window profile. In addition, the reference set of

the new sample originates from the most recent normal sam-

ples maintained in the current window profile. Calculating the

SNNs of a coming online sample with respect to all the sam-

ples in the current window profile yields its reference points.

According to (2), the KNN list in the window profile can

also speed up the derivation of the reference set of the new

sample. After going through the same process described in

Sections II-E and II-F, the LOS of the new sample can be

calculated. Lastly, we may regard the remaining parts of the

second stage as the post-processing steps. On the one hand, if

the obtained LOS exceeds the control limit in the current win-

dow profile, a possible fault is then detected and the process

starts over from the resampling step. Meanwhile, if several

consecutive faults are detected, an alarm should be triggered.

Fig. 6. Transition of the window profile.

In this case, the window profile should not be updated. On the

other hand, if the LOS is less or equal than the control limit,

the current window profile should be updated to incorporate

the normal change of the system and then the process goes

back to the resampling step.

In the above algorithm, the first stage learns the normal

behavior of the monitored system and stores the key infor-

mation into the first window. The second stage continuously

detects whether a new sample is normal or faulty based on

the information preserved in the current window profile. If

a new sample is judged to be normal, the information con-

tained in this sample will be absorbed into the new window.

Correspondingly, the information of the oldest sample will be

discarded. By doing so, the latest normal behavior of the sys-

tem can always be incorporated into the current window and

serves as the basis for dynamic fault detection. Among all

the steps in the sliding window ABSAD algorithm, updating

the window profile is the most critical and complex one. The

updating mechanism will be elaborated in the next section.

B. Update to the Current Window Profile

Through updating the current window profile regularly, the

sliding window strategy enables the online fault detection to

adapt to the time-varying behavior of the system. Based on

the requirements of the ABSAD approach, six items are iden-

tified to be preserved and maintained in the window profile,

i.e., samples, mean vector, standard deviation vector, KNN list,

k-distance vector, and the control limit, as shown in Fig. 6.

The following contents will mainly discuss how to update

these items.

Before looking at the details, let us make some more nota-

tions. We define W(i) as all the samples in the ith window

with a window size L. As shown in Fig. 6, W(i) is a L by

n matrix, in which each row represents one sample (e.g., xi

is the first sample in the ith window) and n is the number

of dimensions in the feature space. Notably, the window pro-

file is updated only under the condition that a new sample

is judged to be normal. Therefore, the samples preserved in

a window may not be consecutive in the time scale even though

the samples in a window are sequentially indexed. Further, let

x(i), σ (i), kNN-list(i), k-Dist(i), and CL(i) be the columnwise

mean vector, columnwise standard deviation vector, KNN list

(a set of sets, containing the k nearest neighbors of every sam-

ple in the ith window), k-distance vector, and the control limit

of the ith window correspondingly. The initialization to the

first window after the offline model training stage is rather

straightforward. Now we elaborate the updating mechanism

to the six items of the window profile from the ith window to

the (i + 1)th window as below.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

ZHANG et al.: SLIDING WINDOW-BASED FAULT DETECTION FROM HIGH-DIMENSIONAL DATA STREAMS 9

1) Update to the Samples: Obviously, in the case of updat-

ing samples from the ith window to the (i + 1)th window, xi

is the oldest sample, and xi+L is the latest normal sample that

should be absorbed into the new window. Hence, W(i + 1) is

simply obtained by deleting xi from W(i) and adding xi+L to

the end of W(i).
2) Update to the Mean Vector and the Standard Deviation

Vector: The mean vector x(i + 1) and the standard deviation

vector σ(i + 1) can be updated from the previous window

profile by applying (10) and (11). Notably, all of the operations

in these two equations should be conducted in an elementwise

manner

x(i + 1) = x(i) + 1

L
· (xi+L − xi) (10)

σ(i + 1) =
[

σ 2(i) − L + 1

L · (L − 1)
· x2

i + 1

L
· x2

i+L + 2

L − 1

·
(

xi · x(i) − xi+L · x(i) + 1

L
· xi+L · xi

)]1/2

.

(11)

3) Update to the KNN List and the k-Distance Vector:

The set kNN-list(i) records the k nearest neighbors of every

sample in the ith window. As mentioned in Section III-A, it

is used when deriving the SNNs of the new sample, i.e., the

reference set. In the ith window, the vector k-Dist(i) stores the

k-distance of each sample, i.e., the distance to the kth nearest

neighbor from each sample. Even though k-Dist(i) does not

directly contribute to the calculation of the new sample’s LOS,

it facilitates the updating to the KNN list.

For a sample in the ith window with the index j, where

j ∈ {i+1, i+2, . . . i+L−1}, we define kNN-list(i)j to be the

k nearest neighbor list of this sample xj. Correspondingly, let

k-Dist(i)j be the distance to the kth nearest neighbor from xj

in the ith window. Note that, kNN-list(i)j is a set containing

the index of k samples that originates from the ith window

and k-Dist(i)j is a scalar.

Moving from the ith window to the (i + 1)th window,

the whole neighborhood relationship is updated by remov-

ing the information about xi away and adding the information

about xi+L. In the following, we consider these two steps

sequentially.

1) Remove the Information of the Oldest Sample: If the

first sample xi is among the k nearest neighbor list of xj,

we should remove it and then add the (k + 1)th nearest

neighbor to its k nearest neighbor list. Correspondingly,

the k-distance should be updated with the distance to the

(k+1)th nearest neighbor from sample xj. Formally, the

KNN list and the k-distance vector of the ith window

should be updated as follows:

kNN-list(i)j =
(

kNN-list(i)j\{xi}
)

∪
{

xj(k+1)

}

if xi ∈ kNN-list(i)j

and j ∈ {i + 1, i + 2, . . . , i + L − 1}
(12)

k-Dist(i)j = (k + 1)-Dist(i)j

if xi ∈ kNN-list(i)j

and j ∈ {i + 1, i + 2, . . . , i + L − 1}
(13)

where xj(k+1) represents the (k + 1)th nearest neighbor

of the sample xj in the ith window, and (k + 1)-Dist(i)j

denotes the distance to the (k + 1)th nearest neighbor

from sample xj in the ith window.

2) Add the Information of the New Sample: In this step,

the distance from the new sample xi+L to the sam-

ples in the ith window (except for the first sample)

should be evaluated first. We define dist(xi+L, xj), where

j ∈ {i + 1, i + 2, . . . , i + L − 1}, as the distance from the

new sample xi+L to the sample xj. By sorting these dis-

tances in ascending order, we get the k nearest neighbor

list and the k-distance of the new sample in the next

window, i.e., kNN-list(i + 1)i+L and k-Dist(i + 1)i+L.

Intuitively, if the k-distance of the sample xj is greater

than the distance from xj to xi+L, the k nearest neighbor

list and the k-distance of xj should be updated. Formally,

we update the KNN list and the k-distance vector

as follows:

kNN-list(i)j =
(

kNN-list(i)j\
{

xjk

})

∪ {xi+L}
If dist

(

xi+L, xj

)

< k-Dist(i)j

and j ∈ {i + 1, i + 2, . . . , i + L − 1}
(14)

k-Dist(i)j = max
{

(k − 1)-Dist(i)j, dist
(

xi+L, xj

)}

If dist
(

xi+L, xj

)

< k-Dist(i)j

and j ∈ {i + 1, i + 2, . . . , i + L − 1}
(15)

where xjk represents the kth nearest neighbor of xj in the

ith window and (k − 1)-Dist(i)j denotes the distance to

the (k − 1)th nearest neighbor from sample xj in the ith

window.

Finally, the KNN list and the k-distance vector of the

(i + 1)th window can be obtained by removing the first ele-

ment and adding the corresponding element of the new sample

xi+L to the end of kNN-list(i) and k-Dist(i). For example, the

KNN list of the (i + 1)th window can be set as follows:

kNN-list(i + 1) =
(

kNN-list(i)\
{

kNN-list(i)j

})

∪
{

kNN-list(i + 1)i+L

}

.

4) Update to the Control Limit: The control limit is used

for judging whether a new sample is faulty or normal. When

a normal sample with a high LOS is absorbed into the new

window, the tolerance of the new window to a high LOS on

the same level should be augmented slightly, and vice versa.

Hence, the control limit should also be renewed each time after

a normal sample is added to the current window. The con-

trol limit can be reset based on (8) and (9) together with the

confidence level as described in Section II-G. To ensure com-

putational efficiency, we only update the control limit when

the LOS is greater than zero.

C. Computational Complexity Analysis

Computational complexity is one key factor in assessing the

merit of an algorithm for data stream mining. In addition, it

is crucial in fault detection applications which require timely

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

10 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS

response from the monitoring algorithm to ensure system

safety. In the following, we discuss the time complexity and

space complexity of the sliding window ABSAD algorithm.

For the first stage of the sliding window ABSAD algo-

rithm (the batch mode of the ABSAD approach), the time

complexity and space complexity are O(L2 · max(n, k)) and

O(L ·max(n, k)), respectively, considering L is typically much

larger than n and k. If some indexing structures like k-d tree

or R* tree are employed here, the algorithm’s time complexity

can be reduced to O(Llog L ·max(n, k)). Given such demand-

ing computations, it is unadvisable to repeatedly run the batch

mode of the ABSAD approach to absorb information from

the latest normal sample in online fault detection applica-

tions. This is precisely the reason why we extend the original

ABSAD approach to the sliding window-based ABSAD.

The second stage of the sliding window ABSAD algo-

rithm continuously processes new samples upon their arrival.

The computational complexity of this stage is more impor-

tant in the sense that it decides whether the algorithm can

isochronously monitor the state of the system. By analyzing

each step of the second stage, the time complexity of this stage

for processing a single sample is O(L·max(n, k)) and the space

complexity is O(L ·max(n, k)). Although the above time com-

plexity is not linear, it is still rather attractive in the context of

dealing with high-dimensional data streams. Notably, to accel-

erate the processing speed of online fault detection, the sliding

window ABSAD algorithm designates a space for storing the

window profile and continuously maintains it. The window

profile does not only contain the critical parameters for cal-

culating the LOS of a new sample and detecting whether it

is faulty or not (such as the mean vector), but also includes

those parameters for maintaining the window profile itself

(such as the k-distance vector). This is where the concept of

trading space for time applies.

IV. NUMERICAL ILLUSTRATION

This section validates the efficacy of the above-described

sliding window ABSAD algorithm on synthetic datasets. To

do so, we contrast it with the primitive ABSAD, “primi-

tive LOF,” and “sliding window LOF” algorithms. Here the

LOF-based algorithms are selected for comparison for the rea-

son that the LOF approach is one of the most well-known

density-based unsupervised anomaly detection techniques. The

LOF approach computes the average ratio of the local reach-

ability density of a point and those of the point’s nearest

neighbors [34]. In the literature, several studies have also cho-

sen the LOF approach as an alternative to compare with

their methods. Some of these examples can be referred

to [19] and [21]. Similar to the primitive ABSAD, the prim-

itive LOF approach applies the original LOF algorithm to

calculate the local outlier-ness of a new sample over a fixed

set of samples. By adopting the sliding window strategy, the

sliding window LOF approach with a dynamically updated

window was proposed and applied in process fault detec-

tion applications [19]. The sliding window LOF approach

was reported to exhibit a superior accuracy compared to

PCA-based models and can be adaptive to the time-varying

characteristics of the monitored system. It does, however,

suffer from the curse of dimensionality which leads to the

degradation of its accuracy as dimensionality increases, as will

be shown in Section IV-C.

A. Data Generation

Consider the following system which is modeled on an

input-output form, similar to the example used in [19]:

O(t) = A · I(t) + E(t)

=

⎡

⎢

⎢

⎢

⎣

0.86 0.79 0.67 0.81

−0.55 0.65 0.46 0.51

0.17 0.32 −0.28 0.13

−0.33 0.12 0.27 0.16

0.89 −0.97 −0.74 0.82

⎤

⎥

⎥

⎥

⎦

·

⎡

⎢

⎢

⎣

I1(t)

I2(t)

I3(t)

I4(t)

⎤

⎥

⎥

⎦

+

⎡

⎢

⎢

⎢

⎣

e1(t)

e2(t)

e3(t)

e4(t)

e5(t)

⎤

⎥

⎥

⎥

⎦

(16)

where t is the temporally ordered sampling index and t ∈
{1, 2, . . . 2000}, I(t)ǫR4×2000 is the input matrix which consists

of four input variables I1(t), I2(t), I3(t), I4(t), O(t) ∈ R5×2000

is the output matrix that comprises five monitored variables

O1(t), O2(t), O3(t), O4(t), O5(t), A is the parameter matrix

with appropriate dimensions, and E(t) ∈ R5×2000 encom-

passes five random noise variables, each of which is normally

distributed with a zero mean and a variance equal to 0.02.

Further, the data of the four input variables are generated

as follows:

I1(t) = 2 · cos(0.08t) · sin(0.006t) (17)

I2(t) = sign[sin(0.03t) + 9 · cos(0.01t)] (18)

I3(t) ∼ U(−1, 1) (19)

I4(t) ∼ N(2, 0.1). (20)

Based on the above data generating mechanism, we con-

struct four datasets (2000 samples and five dimensions in each)

with different types of faults all induced starting from the

1501st sample. The faults are as follows.

1) Scenario 1 (Fault 1): An abrupt drift is placed on the

fifth output variable O5(t) with a magnitude of 5.

2) Scenario 2 (Fault 2): An abrupt drift is injected into the

fourth input variable I4(t) with a magnitude of −5.

3) Scenario 3 (Fault 3): An abrupt drift is injected into the

second input variable I2(t) with a magnitude of −3.

4) Scenario 4 (Fault 4): A ramp change −0.1 × (t − 1500)

is added to the first input variable I1(t).

To simulate the time-varying behavior of the system, we

add a gradually slow drift 0.003(t − 1000) to two entries

of the parameter matrix A(1, 2) and A(2, 2) starting from

the 1001st sample. In the end, we append another 95 fault-

irrelevant dimensions to each of these four datasets to create

a high-dimensional setting. All the fault-irrelevant dimensions

are distributed uniformly on [0, 1].

Finally, four datasets with 2000 samples and 100-D in each

are constructed. For all of these datasets, the first 1500 samples

are normal and the last 500 samples are faulty. Among these

normal samples, a slight change has been gradually placed

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

ZHANG et al.: SLIDING WINDOW-BASED FAULT DETECTION FROM HIGH-DIMENSIONAL DATA STREAMS 11

on the ones with sample index from 1001 to 1500. A decent

online fault detection algorithm should not only be able to

detect the faulty samples but also be adaptive to the time-

varying behavior of the system. In other words, the algorithm

should reduce both type I error and type II error as much as

possible.

B. Parameter Analysis and Tuning

In sliding window-based algorithms, it is crucial to choose

an appropriate window size L. A large window size may endow

high model accuracy but result in intensively computational

load. By contrast, a small window size indicates low complex-

ity in computation but may lead to low model accuracy. An

exploratory test was performed to probe the effect of different

window sizes on the two types of error of the sliding window

ABSAD algorithm, and the results are shown in Fig. 7(a). In

this test, the dataset associated with the second fault was used.

Additionally, parameter k and s for deriving the reference set

were set to be one fourth of the window size, i.e., k = s = L/4,

for simplicity. Parameter θ for selecting relevant subspace was

set at 0.4 and the confidence level 1−γ for deciding the con-

trol limit was set at 99%. From the results shown in Fig. 7(a),

the window size primarily affects the type I error in this exam-

ple. Further, a small window size may lead to a higher type I

error, which is mainly because of the lack of representative

neighboring points in the window to support the normality of

a normal sample. On the other hand, the type I error tends to

increase slightly as the window size goes above 900, and that

may be caused by the inadequacy of the model to adapt to

the time-varying characteristics of the system. Thus, an ideal

range of the window size for this case may be chosen from

600 to 900.

Similarly, parameters k and s also matter to the model accu-

racy and the computational burden. First, parameter k specifies

the number of nearest neighbors for computing SNN similar-

ity. As with some other algorithms related to the SNN method,

k should be set large enough so as to capture sufficient points

from the same generating mechanism. As reported in [13], if k

is chosen roughly in the range of cluster size then a consider-

ably satisfactory performance in terms of defining the notion of

locality can be achieved. Second, parameter s defines the size

of the reference sets. For the same reason, it should be cho-

sen large enough but not greater than k. In [13], it was shown

that the performance of the SNN method does not degrade

until the size of reference points approaches the full dataset

size. To investigate the effect of these two parameters on the

two types of errors, a similar test on the dataset containing

the second fault was conducted and the results are shown in

Fig. 7(b). Again in this test, for simplicity, parameters k and

s were set to be equal. Other parameters were set as follows:

L = 750, θ = 0.4, and 1 − γ = 99%. As shown in Fig. 7(b),

parameters k and s primarily affect the type II error in this

case. A small value of k and s may lead to a high type II error

which is mainly because of insufficient neighboring points in

the window to discriminate a faulty sample from normal ones.

In accordance with the above analysis to parameter k and s,

Fig. 7(b) indicates that satisfactory model accuracy can be

obtained as long as k and s are set large enough. From the

Fig. 7. Effect of different parameters on the two types of error. Effect
of (a) window size on the two types of error, (b) number of reference points
on the two types of error, and (c) theta on the two types of error.

perspective of model accuracy, k and s should be larger than

40 based on the results shown in Fig. 7(b). However, k and

s should not be set too large to lose the meaning of defining

the notion of locality. In addition, they should not be set too

large in considering the computational efficiency.

The last parameter θ decides which dimensions should be

kept as a part of the relevant subspace. It may have a great

influence on selecting relevant subspace and hence affect the

subsequent calculation of the LOS. Generally, the lower the

value θ , the more dimensions will be included in the subspace,

and vice versa. As with the above two tests, the dataset con-

taining the second fault was selected to explore the effect of θ

on the two types of error and the results are shown in Fig. 7(c).

Other parameters were set as follows: L = 750, k = s = 100,

and 1 − γ = 99%. As demonstrated by Fig. 7(c), parameter θ

primarily affects the type II error in this example. If θ is set

too small, a large share of dimensions which have less sig-

nificance in defining the local outlier-ness of a point will be

retained, hence reduce the LOS of a faulty sample. Conversely,

if θ is set too large, the algorithm can capture very few fault-

relevant dimensions or even no dimensions to construct the

subspace, and hence malfunction in detecting faulty samples.

According to the results shown in Fig. 7(c), the acceptable

range of parameter θ is from 0.36 to 0.42.

Based on the above three tests regarding tuning parame-

ters and the tradeoff between complexity of computation and

model accuracy, the window size is set at 750, k and s are

set at 100, and θ is chosen to be 0.4 for the sliding window

ABSAD algorithm in the following simulation. Moreover, the

parameters of the algorithm primitive LOF and sliding window

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

12 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS

Fig. 8. Fault detection results of (a) primitive LOF, (b) sliding window LOF, (c) primitive ABSAD, and (d) sliding window ABSAD in scenario 2 of the
numerical example.

TABLE I
FAULT DETECTION RESULTS OF THE NUMERICAL EXAMPLE

LOF for comparison are set exactly the same as the settings

in [19], i.e., L = 750 and k = 30. For all of these methods,

the confidence level 1 − γ will be 99%.

C. Results and Discussions

The results of the four fault detection algorithms on the four

datasets (associated with the four different faults) are summa-

rized in Table I. Although the type I errors of LOF-related

algorithms are rather low in all of the four scenarios, this

is mainly caused by the insensitivity of LOF to faults that

exist only in small subsets of high-dimensional spaces. As

a result of this, the type II errors of LOF-related algorithms

are significantly high in the first two scenarios. A further expla-

nation is that LOF-related algorithms are implemented in full-

dimensional spaces and those signals relevant to the faults can

be easily concealed by the massive fault-irrelevant dimensions

(the 95 uniformly distributed dimensions in this example).

Fig. 8(a) and (b) gives a graphical description of the above

result. To alleviate the impact exerted by irrelevant dimensions,

the proposed ABSAD approach finds fault-relevant dimensions

first and then measures the local outlier-ness of a point in its

retained subspace. By doing so, the power of discriminating

low-dimensional subspace faults from normal samples in high-

dimensional spaces can be greatly enhanced. Consequently,

the type II errors produced by ABSAD-related algorithms are

relatively low as shown in Table I.

The results in Table I also indicate that the primitive

ABSAD has a higher level of type I errors in contrast to the

sliding window ABSAD. As shown in the partially enlarged

inset of Fig. 8(c), we can precisely locate the position of

false alarms, where the blue line (LOS) exceeds the black

dashed line (control limit). The reason for these false alarms

is that the primitive ABSAD always holds the same window

after the offline model training stage. The parameters of the

model are invariant and thus cannot be adaptive to the time-

varying behavior of the system. Instead of keeping a constantly

unchanged window, the sliding window ABSAD absorbs new

samples and discards old samples regularly and changes the

window profile dynamically. As demonstrated by the partially

enlarged inset in Fig. 8(d), the sliding window ABSAD algo-

rithm adapts to the time-varying behavior of the system very

well and very few false alarms are generated on the samples

where the slow drift was added.

In the dataset containing fault 4, the degree of deviation

of the fault from normal behavior of the system is remark-

ably higher than the other three faults. Therefore, LOF-related

algorithms can still produce a desirable accuracy in terms

of low type I and type II errors, as shown in Table I and

Fig. 9. It is worthy to note that, according to Fig. 9, there

is a huge difference between the scale of the values of LOS

and LOF. Specifically, the LOS values are orders of magnitude

higher than the LOF values. This difference can also be found

in other scenarios. The leading cause of this phenomenon lies

in the fact that the deviation on fault-relevant dimensions was

considerably compensated by the normal behavior on massive

fault-irrelevant dimensions. As a consequence, the obtained

LOF values are vastly reduced even in the case of the faults

being very evident, such as in scenario 4 as shown in Fig. 9.

To further evaluate the proposed approach, we compare

the four algorithms under different scenarios using the ROC

curve. The ROC curve is a well-established graphical plot

that displays the accuracy of a binary classifier. It plots the

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

ZHANG et al.: SLIDING WINDOW-BASED FAULT DETECTION FROM HIGH-DIMENSIONAL DATA STREAMS 13

Fig. 9. Fault detection results of (a) primitive LOF, (b) sliding window LOF, (c) primitive ABSAD, and (d) sliding window ABSAD in scenario 4 of the
numerical example.

Fig. 10. ROC curve of the four algorithms under different faulty scenarios.
(a) Scenario 1. (b) Scenario 2. (c) Scenario 3. (d) Scenario 4.

TPR against the FPR at various threshold settings, i.e., thresh-

old independent. The larger the AUC, the better accuracy

a binary classifier can achieve. As expected, the results shown

in Fig. 10 again demonstrate the superior accuracy of ABSAD-

related algorithms over LOF-related algorithms. Notably, it is

difficult to tell the difference between the ROC curve of the

sliding window ABSAD and the primitive ABSAD in these

plots. We would consider this as another evidence to show the

necessity of introducing the updating mechanism to the control

limit as suggested in the sliding window ABSAD algorithm.

The presence of measurement noises or disturbances may

lead to either false alarms or missed detections. As dis-

cussed in [4], a reasonable fault detection algorithm should

be sensitive to faults, as well as robust against measure-

ment noises or disturbances. The proposed ABSAD approach

defines a threshold using (6) to single out those dimensions

in which faulty signals may exist. On the other hand, it fil-

ters those dimensions that are less likely to be faulty, and

thereby dimension-wisely attenuating the effect of measure-

ment noises and of the disturbances. Moreover, the control

limit defined in the sliding window ABSAD algorithm serves

as a way to sample-wisely attenuate disturbance and noise

signals. By adaptively updating the control limit, the online

algorithm provides a better noise and disturbance attenuation

ability over nonstationary systems.

The accuracy of those algorithms implemented on full-

dimensional spaces, such as LOF, degrades significantly as

dimensionality increases. To mitigate the influence exerted

by irrelevant dimensions, the ABSAD approach computes the

degree of deviation of a data point on its derived subspace

projection. As we claimed in Section II, the retained subspace

should be meaningful in the sense that it should be able to

capture most of the information with regard to the discordance

of an object to its adjacent data instances. By examining the

retained subspace of the faults in all the four scenarios, we

found that the dimensions in the subspace are exactly the same

position where the faults were induced on.

Execution speed is another significant performance indicator

of an algorithm, especially to those online algorithms dealing

with high-speed data streams. Although the sliding win-

dow ABSAD algorithm is more computationally demanding

than the LOF-based algorithms as shown by our experi-

ments, it is still attractive in the context of high-dimensional

data streams based on our computational complexity analy-

sis in Section III-C. As mentioned earlier, trading space for

time is one strategy for our online algorithm to speed up the

computation and the other one is the use of some indexing

structures. Notably, the computation of the ABSAD approach

within each step does not need to be sequentially executed. For

example, when deriving the reference set of a new sample, the

distance from this sample to other samples in the current win-

dow profile can be calculated concurrently. This gives us the

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

14 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS

possibility of utilizing parallel computing techniques to further

improve the real-time performance.

V. CONCLUSION

The curse of dimensionality may lead to the deteriora-

tion of many fault detection techniques. Concept drifting in

a data stream may further complicate online fault detection

tasks because it requires the algorithm to be adaptive to the

time-varying characteristics of the system. To simultaneously

address these problems associated with high dimensional-

ity and data streams, this paper proposes an unsupervised,

online subspace learning approach to fault detection from

non-stationary high-dimensional data streams. In considering

the high-dimensional challenges in fault detection tasks, an

ABSAD approach is proposed. Aiming to detect faults from

data streams with time-varying characteristics, the ABSAD

approach is extended to an online mode based on the sliding

window strategy.

Based on the analytical study and numerical illustration, we

can conclude that the proposed sliding window ABSAD algo-

rithm can simultaneously tackle challenges associated with

high dimensionality and data streams in fault detection tasks.

1) In the ABSAD approach, the proposed criterion pair-

wise cosine for measuring vectorial angles in high-

dimensional spaces is a bounded metric and it becomes

asymptotically stable as dimensionality increases.

2) The experiments on synthetic datasets indicate that the

ABSAD approach has the ability to discriminate low-

dimensional subspace faults from normal samples in

high-dimensional spaces. Moreover, it outperforms the

LOF approach in the context of high-dimensional fault

detection.

3) The experiments on synthetic datasets further demon-

strate that the sliding window ABSAD algorithm can be

adaptive to the time-varying behavior of the monitored

system and produce better accuracy than the primitive

ABSAD algorithm even when the monitored system has

time-varying characteristics.

4) By applying the concept of trading space for time,

the sliding window ABSAD algorithm can perform an

isochronously online fault detection.

High-dimensional data streams with time-varying charac-

teristics are now emerging in various fields, such as cyber

intrusion detection, financial fraud detection, etc. Since the

fundamental assumption of this paper applies in many cases

within these fields, we can expand the application of the pro-

posed sliding window ABSAD algorithm to other anomaly

detection problems.

APPENDIX

This section presents the proof to (5). It is to derive the

expectation of the metric PCos(�l, �µn(j)), j ∈ N and N =
{1, 2, . . . , n}, that is

E
[

PCos
(

�l, �µn(j)
)]

= 1

n · (n − 1)

∑

j,j−∈N

j− =j

∣

∣

∣
l#j

∣

∣

∣
+

∣

∣

∣
l#
j−

∣

∣

∣

√

l#j
2 + l#

j−
2
.

Proof: It is straightforward to prove the validity of the above

equation when n = 2. For clarity reason, here in the following

we assume n ≥ 3. Let us substitute j = 1, j = 2, . . . , j = n

sequentially into the metric PCos, that is

PCos
(

�l, �µn(j)
)

= 1

(n − 1)

∑

j−∈N\{ j}

∣

∣

∣
l#j

∣

∣

∣

√

l#j
2 + l#

j−
2
.

We then have the following set of equations:

PCos
(

�l, �µn(1)

)

= 1

n − 1

⎛

⎝

∣

∣l#1

∣

∣

√

l#1
2 + l#2

2
+

∣

∣l#1

∣

∣

√

l#1
2 + l#3

2
+ · · · +

∣

∣l#1

∣

∣

√

l#1
2 + l#n

2

⎞

⎠

PCos
(

�l, �µn(2)

)

= 1

n − 1

⎛

⎝

∣

∣l#2

∣

∣

√

l#2
2 + l#1

2
+

∣

∣l#2

∣

∣

√

l#2
2 + l#3

2
+ · · · +

∣

∣l#2

∣

∣

√

l#2
2 + l#n

2

⎞

⎠

...
...

...

PCos
(

�l, �µn(n)

)

= 1

n − 1

⎛

⎝

∣

∣l#n

∣

∣

√

l#n
2 + l#1

2
+

∣

∣l#n

∣

∣

√

l#n
2 + l#2

2
+ · · · +

∣

∣l#n

∣

∣

√

l#n
2 + l#n−1

2

⎞

⎠.

Summing up both sides of the above equations yields

n
∑

j=1

PCos
(

�l, �µn(j)
)

= 1

n − 1

∑

j,j−∈N

j− =j

∣

∣

∣
l#j

∣

∣

∣
+

∣

∣

∣
l#
j−

∣

∣

∣

√

l#j
2 + l#

j−
2
.

Notably, the establishment of the above equation lies in the

following fact: for any item (|l#j |/
√

l#j
2 + l#

j−
2
) in the right side

of the previous set of equations, there exists another corre-

sponding item (|l#
j− |/

√

l#
j−

2 + l#j
2
) (where j, j− ∈ N and j− = j)

that is additive to the former one. Hence

E
[

PCos
(

�l, �µn(j)
)]

= 1

n

n
∑

j=1

PCos
(

�l, �µn(j)
)

= 1

n · (n − 1)

∑

j,j−∈N

j− =j

∣

∣

∣
l#j

∣

∣

∣
+

∣

∣

∣
l#
j−

∣

∣

∣

√

l#j
2 + l#

j−
2
.

The proof is complete.

ACKNOWLEDGMENT

The authors would like to thank the editor, the Associate

Editors, and the referees for their constructive comments and

suggestions that greatly improved the content of this paper.

REFERENCES

[1] R. Kothamasu, S. H. Huang, and W. H. VerDuin, “System health mon-
itoring and prognostics—A review of current paradigms and practices,”
in Handbook of Maintenance Management and Engineering. London,
U.K.: Springer, 2009, pp. 337–362.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

ZHANG et al.: SLIDING WINDOW-BASED FAULT DETECTION FROM HIGH-DIMENSIONAL DATA STREAMS 15

[2] S. Zhong, H. Langseth, and T. D. Nielsen, “A classification-based
approach to monitoring the safety of dynamic systems,” Rel. Eng. Syst.

Safety, vol. 121, pp. 61–71, Jan. 2014.
[3] X. Dai and Z. Gao, “From model, signal to knowledge: A data-driven

perspective of fault detection and diagnosis,” IEEE Trans. Ind. Inform.,
vol. 9, no. 4, pp. 2226–2238, Nov. 2013.

[4] Z. Gao, C. Cecati, and S. X. Ding, “A survey of fault diagnosis and
fault-tolerant techniques—Part I: Fault diagnosis with model-based and
signal-based approaches,” IEEE Trans. Ind. Electron., vol. 62, no. 6,
pp. 3757–3767, Jun. 2015.

[5] Z. Gao, C. Cecati, and S. X. Ding, “A survey of fault diagnosis and fault-
tolerant techniques—Part II: Fault diagnosis with knowledge-based and
hybrid/active approaches,” IEEE Trans. Ind. Electron., vol. 62, no. 6,
pp. 3768–3774, Jun. 2015.

[6] S. Yin, S. X. Ding, X. Xie, and H. Luo, “A review on basic data-
driven approaches for industrial process monitoring,” IEEE Trans. Ind.

Electron., vol. 61, no. 11, pp. 6418–6428, Nov. 2014.
[7] C. Alippi, D. Liu, D. Zhao, and L. Bu, “Detecting and reacting to

changes in sensing units: The active classifier case,” IEEE Trans. Syst.,

Man, Cybern., Syst., vol. 44, no. 3, pp. 353–362, Mar. 2014.
[8] Q. Zhao and Z. Xu, “Design of a novel knowledge-based fault detection

and isolation scheme,” IEEE Trans. Syst., Man, Cybern. B, Cybern.,
vol. 34, no. 2, pp. 1089–1095, Apr. 2004.

[9] P. Domingos, “A few useful things to know about machine learning,”
Commun. ACM, vol. 55, no. 10, pp. 78–87, Oct. 2012.

[10] W. Q. Meeker and Y. Hong, “Reliability meets big data: Opportunities
and challenges,” Qual. Eng., vol. 26, no. 1, pp. 102–116, 2014.

[11] V. T. Sribar, D. Feinberg, N. Gall, A. Lapkin, and M. A. Beyer,
‘Big Data’ is Only the Beginning of Extreme Information Management,
Gartner, Stamford, CT, USA, 2011.

[12] Y. Zhai, Y.-S. Ong, and I. W. Tsang, “The emerging ‘big dimensional-
ity,”’ IEEE Comput. Intell. Mag., vol. 9, no. 3, pp. 14–26, Aug. 2014.

[13] M. E. Houle, H.-P. Kriegel, P. Kröger, E. Schubert, and A. Zimek,
“Can shared-neighbor distances defeat the curse of dimensionality?”
in Scientific and Statistical Database Management. Berlin Heidelberg,
Germany: Springer, 2010, pp. 482–500.

[14] A. Zimek, E. Schubert, and H.-P. Kriegel, “A survey on unsuper-
vised outlier detection in high-dimensional numerical data,” Stat. Anal.

Data Min. ASA Data Sci. J., vol. 5, no. 5, pp. 363–387, 2012.
[15] K. Beyer, J. Goldstein, R. Ramakrishnan, and U. Shaft, “When

is ‘nearest neighbor’ meaningful?” in Database Theory—ICDT’99.
Berlin Heidelberg, Germany: Springer, 1999, pp. 217–235.

[16] G.-J. Chen, J. Liang, and J.-X. Qian, “Process monitoring and fault
detection based on multivariate statistical projection analysis,” in Proc.

IEEE Int. Conf. Syst. Man Cybern., vol. 3. The Hague, The Netherlands,
2004, pp. 2719–2723.

[17] Z. Ge and Z. Song, “Process monitoring based on independent compo-
nent analysis-principal component analysis (ICA–PCA) and similarity
factors,” Ind. Eng. Chem. Res., vol. 46, no. 7, pp. 2054–2063, 2007.

[18] J. Lee, B. Kang, and S.-H. Kang, “Integrating independent component
analysis and local outlier factor for plant-wide process monitoring,”
J. Process. Control, vol. 21, no. 7, pp. 1011–1021, Aug. 2011.

[19] Y. Ma, H. Shi, H. Ma, and M. Wang, “Dynamic process monitoring using
adaptive local outlier factor,” Chemometr. Intell. Lab. Syst., vol. 127,
pp. 89–101, Aug. 2013.

[20] C. C. Aggarwal and P. S. Yu, “Outlier detection for high dimensional
data,” ACM SIGMOD Rec., vol. 30, no. 2, pp. 37–46, Jun. 2001.

[21] H.-P. Kriegel, P. Kröger, E. Schubert, and A. Zimek, “Outlier detection
in axis-parallel subspaces of high dimensional data,” in Advances in

Knowledge Discovery and Data Mining. Berlin Heidelberg, Germany:
Springer, 2009, pp. 831–838.

[22] B. Krawczyk, J. Stefanowski, and M. Wozniak, “Data stream classifi-
cation and big data analytics,” Neurocomputing, vol. 150, pp. 238–239,
May 2013.

[23] F. Olken and L. Gruenwald, “Data stream management: Aggregation,
classification, modeling, and operator placement,” IEEE Internet

Comput., vol. 12, no. 6, pp. 9–12, Nov. 2008.
[24] X. Zhu, P. Zhang, X. Lin, and Y. Shi, “Active learning from stream

data using optimal weight classifier ensemble,” IEEE Trans. Syst., Man,

Cybern. B, Cybern., vol. 40, no. 6, pp. 1607–1621, Dec. 2010.
[25] J. Gao, B. Ding, W. Fan, J. Han, and P. S. Yu, “Classifying data streams

with skewed class distributions and concept drifts,” IEEE Internet

Comput., vol. 12, no. 6, pp. 37–49, Nov./Dec. 2008.
[26] G. A. Cherry and S. J. Qin, “Multiblock principal component analy-

sis based on a combined index for semiconductor fault detection and
diagnosis,” IEEE Trans. Semicond. Manuf., vol. 19, no. 2, pp. 159–172,
May 2006.

[27] H. Chen, G. Jiang, C. Ungureanu, and K. Yoshihira, “Online track-
ing of component interactions for failure detection and localization in
distributed systems,” IEEE Trans. Syst., Man, Cybern. C, Appl. Rev.,
vol. 37, no. 4, pp. 644–651, Jul. 2007.

[28] J.-C. Jeng, “Adaptive process monitoring using efficient recursive PCA
and moving window PCA algorithms,” J. Taiwan Inst. Chem. Eng.,
vol. 41, no. 4, pp. 475–481, 2010.

[29] A. Alzghoul and M. Löfstrand, “Increasing availability of industrial sys-
tems through data stream mining,” Comput. Ind. Eng., vol. 60, no. 2,
pp. 195–205, 2011.

[30] L. Zhang, J. Lin, and R. Karim, “An angle-based subspace anomaly
detection approach to high-dimensional data: With an application to
industrial fault detection,” Rel. Eng. Syst. Safety, vol. 142, pp. 482–497,
Oct. 2015.

[31] L. Ertöz, M. Steinbach, and V. Kumar, “Finding clusters of different
sizes, shapes, and densities in noisy, high dimensional data,” in Proc.

SDM, San Francisco, CA, USA, 2003, pp. 47–58.
[32] L. O. Jimenez and D. A. Landgrebe, “Supervised classification in high-

dimensional space: Geometrical, statistical, and asymptotical properties
of multivariate data,” IEEE Trans. Syst., Man, Cybern. C, Appl. Rev.,
vol. 28, no. 1, pp. 39–54, Feb. 1998.

[33] T. Cai, J. Fan, and T. Jiang, “Distributions of angles in random packing
on spheres,” J. Mach. Learn. Res., vol. 14, no. 1, pp. 1837–1864, 2013.

[34] M. M. Breunig, H.-P. Kriegel, R. T. Ng, and J. Sander, “LOF: Identifying
density-based local outliers,” ACM SIGMOD Rec., vol. 29, no. 2,
pp. 93–104, Jun. 2000.

Liangwei Zhang received the M.S. degree in man-
agement science and engineering from the Nanjing
University of Science and Technology, Nanjing,
China, in 2009. He is currently pursuing the Ph.D.
degree in operation and maintenance engineering
with the Luleå University of Technology, Luleå,
Sweden.

From 2009 to 2013, he was a Consultant
of Reliability Engineering with SKF, Beijing,
China. His current research interests include
machine learning, fault detection, eMaintenance, and
big data analytics.

Jing Lin (M’15) received the Ph.D. degree in man-
agement science and engineering from the Nanjing
University of Science and Technology, Nanjing,
China, in 2008.

She is an Associate Professor with the Division
of Operation and Maintenance Engineering, Luleå
University of Technology, Luleå, Sweden. She has
authored above 60 peer-reviewed journal and confer-
ence papers, and one monograph in related topics.
Her current research interests include reliability
and maintenance engineering, big data analytics,
eMaintenance, and asset management.

Ramin Karim received the Ph.D. degree in oper-
ation and maintenance engineering from the Luleå
University of Technology, Luleå, Sweden, in 2008.

He researched in the area of information and com-
munications technology for over 20 years, as an
Architect, a Project Manager, a Software Designer,
a Product Owner, and a Developer. He is currently
a Professor, responsible for the research area of
eMaintenance, with the Division of Operation
and Maintenance Engineering, Luleå University of
Technology. He has published over 100 refereed

journal and conference papers. His current research interests include robotics,
feedback control systems, and control theory.

