
Sliding-Window Compression on the Hypercube�

Charalampos Konstantopoulos, Andreas Svolos, and Christos Kaklamanis

Computer Engineering and Informatics Department, University of Patras and
Computer Technology Institute, 11 Aktaiou and Poulopoulou, GR 118 51, Athens,

Greece
{konstant,svolos,kakl}@cti.gr

Abstract. Dictionary compression belongs to the class of lossless com-
pression methods and is mainly used for compressing text files [1, 2, 3].
In this paper, we present a parallel algorithm for one of these coding
methods, namely the LZ77 coding algorithm also known as a sliding-
window coding algorithm. Although there exist PRAM algorithms [4, 5]
for various dictionary compression methods, their rather irregular struc-
ture has discouraged their implementation on practical interconnection
networks such as the mesh and hypercube. However in the case of LZ77
coding, we show how to exploit the specific properties of the algorithm
in order to achieve an efficient implementation on the hypercube.

1 Introduction

The main idea of the LZ77 algorithm [6] is that strings in the text are replaced
with pointers to a previous occurrences of these strings in the text. Specifically,
let x[0 · · ·N −1] be the input string. Assume also the prefix x[0 · · · i−1] has been
compressed so far. The dictionary at this moment consists of all the substrings
x[i − j · · · k] where j ∈ [1, · · · , M ], k ∈ [i − j, · · · , i − j + F − 1] and M , F are
two parameters of the algorithm. The next step is to find the longest prefix of
x[i · · ·N ] which matches an entry of this dictionary. If this prefix is of length r
and x[i−q · · · i−q+r−1] is the matching string in the dictionary (q ∈ [1 · · ·M ]),
then we replace the prefix x[i · · · i+ r−1] with the pointer (q, r) and we proceed
to the position i + r of the input string. The string up to the position i + r − 1
has now been compressed. Notice that if the character xi does not occur within
the last M preceding characters, then we cannot find any matching prefix at
position i. In this case, we replace the character xi with the pointer (xi, 1) [7].

In this paper, we present an efficient implementation of the LZ77 (sliding
window coding) algorithm on the hypercube network. A basic assumption of
our implementation is that the employed multiprocessor is fine grained with
only limited local memory per processing element (PE). Taking advantage of
the properties of sliding-window coding algorithms we show that this kind of
algorithms can be efficiently implemented on the hypercube network by using
only a small number of fast communication primitives.
� Work is supported in part by the General Secretariat of Research and Technology of
Greece under Project ΠENE∆ 95 E∆ 1623.

A. Bode et al. (Eds.): Euro-Par 2000, LNCS 1900, pp. 835–838, 2000.
c© Springer-Verlag Berlin Heidelberg 2000



836 Charalampos Konstantopoulos, Andreas Svolos, and Christos Kaklamanis

2 LZ77 Coding on the Hypercube

In the following, we present our parallel algorithm for sliding-window compres-
sion on a hypercube-based multiprocessor. The input string x[0 · · ·N − 1] is dis-
tributed one character per PE, i.e character xi is initially stored in PE i where
i = 0, · · · , N −1. Our basic goal is to present an efficient parallel algorithm using
the least amount of memory at each PE. For convenience, we also assume that
N = 2n.

In LZ77 coding algorithms the size M of the sliding window is finite and usu-
ally much smaller than the total length of the input string. In practice, a window
of moderate size, typically M ≤ 8192, can work well for a variety of texts [1].
Due to this small value, we can perform the required string matching opera-
tions using only simple search techniques without increasing the computational
overhead unduly.

The parallel algorithm consists of two phases.

First phase. In this phase, for each position of the input string we find the longest
substring starting at this position which also matches an entry in the adaptive
dictionary. Specifically, for each position i of the input string we determine the
longest common prefix of string x[i · · · i+F − 1] with the strings x[i−mi · · · i−
mi + F − 1] where mi ∈ [1, · · ·M ]. This can be carried out in O(M logN) time
by executing a series of M shift and prefix sum operations [8, 9]. If each PE can
communicate with all its neighbors at the same time (all-port capability), the
above complexity can be reduced to O(M +logN) time. This can be achieved by
overlapping in time the execution of successive shift and prefix sum operations.

Second phase. It can be easily seen that the sequence of pointers obtained from
the sequential LZ77 coding algorithm is a subset of the pointers derived from the
first phase of the parallel algorithm. The goal in the second phase is to determine
which of these pointers will be finally included in the compressed file.

This can be easily done in two stages by using the following simple technique.
Let the pointer (mi, li) of PE i point to the character i + li of the input string,
that is the first character after the longest common prefix at position i. The first
pointer in the compressed file is definitely that of position 0, namely (m0, l0).
The second pointer is that of position l0, (ml0 , ll0). The third pointer is that
of position l0 + ll0 and so on. Clearly, if we start from position 0 and follow
the pointers defined above, we will eventually visit all the breakpoints1defined
by the sequential LZ77 parsing. This sequential traversal of pointers can be
performed in parallel in O(logN) steps by using the well-known pointer jumping
technique [10].

As this is important, each PE saves the addresses of PEs it visits at each
pointer jumping step. However, only O(logN) local memory at each PE is needed
for this information, since each PE visits at most �logN� PEs during these steps.

We prove the following lemma:
1 Breakpoints are the positions in the input text at which the parsing process splits
the text.



Sliding-Window Compression on the Hypercube 837

Lemma 1. If pi, pj are the pointers of PEs i, j respectively at a pointer jumping
step , then ∀ i,j i ≤ j ⇒ pi ≤ pj.

Proof. We prove the lemma by induction on the number of elapsing pointer
jumping steps. In the first step, pointer pi is equal to i+li and thus the inequality
pi ≤ pj can be written as i + li ≤ j + lj .

We distinguish two cases. If i+ li ≤ j, it is obvious that the above inequality
holds. Now consider the case i ≤ j < i + li. Clearly, character xj belongs to
the longest common prefix of position i and thus the longest common prefix at
position j cannot be smaller than i + li − j characters, that is lj ≥ i + li − j ⇒
i + li ≤ j + lj. Thus we have proved the lemma for the first step.

Assume now that the statement ∀ i,j i ≤ j ⇒ pi ≤ pj holds for all the
elapsing pointer jumping steps up to the step k. We will prove that it also holds
for the step k + 1. Suppose that at step k position i points to position ai and
position ai in turn points to position bi. After step k + 1, position i will point
to position bi. We can prove that ∀ i,j i ≤ j ⇒ bi ≤ bj . If j ≥ bi, the proof is
obvious. Consider now the case i ≤ j < bi. From the induction hypothesis, it
follows that ai ≤ aj . If bi > bj then the statement ai ≤ aj ⇒ bi ≤ bj does not
hold, thereby contradicting the induction hypothesis. Thus the lemma is true
for the step k + 1 as well. 
�

Now it is clear that each pointer jumping step can be performed using mono-
tone routing [8, 9] in place of expensive sorting steps. Each step takes O(logN)
time and thus the O(logN) pointer jumping steps of the first stage can be per-
formed in O(log2 N) time overall.

After the above pointer jumping steps, the next stage is to “mark” the po-
sitions of the input string that are breakpoints in the sequential LZ77 parsing.
PE 0 knows that its position, position 0, is a breakpoint. It also knows O(logN)
positions which are certainly breakpoints as well. These positions correspond to
the PEs which it visited during the pointer jumping steps. Let i1, i2, · · · , iO(log N)

be the addresses of these processors. PE 0 should notify them that hold break-
points. After a PE, say PE ik, receives the notification, it should in turn notify
those PEs in the interval [ik+1 · · · ik+1−1] which it has visited during the pointer
jumping steps. This process proceeds recursively and finally all the breakpoints
of the sequential LZ77 parsing are marked. It can be easily seen that this re-
cursive marking can be carried out by reversing the steps of the first stage. At
each step, each PE that has already received a notification packet sends such a
packet to the PE that it had visited at the corresponding pointer jumping step
of the first stage. The communication complexity of each step is only O(logN)
since we can use monotone routing again.

We have described the second phase of the parallel LZ77 coding algorithm.
The complexity O(log2 N) of this phase is mainly due to the fact that pointer
jumping steps are performed along a string of length N . However, it is possible to
limit pointer jumping steps along shorter segments of the input string, thereby
largely decreasing the complexity of the second phase. Let us see how this can
be done. After the end of the first phase, each PE i holds the pointer (mi, li) in



838 Charalampos Konstantopoulos, Andreas Svolos, and Christos Kaklamanis

its local memory. Then, using a prefix sum operation, each PE i estimates the
expression maxi = max(e0, e1, · · · , ei−1)2 where ei = li + i (O(logN) delay).
One can easily notice that if i ≥ maxi, pointer (mi, li) is definitely included in
the compressed file. The corresponding position i is called cut-point; cut-point is
a position in the input string for which we are certain in advance that it is one of
the breakpoints of the LZ77 parsing [1]. Clearly, cut-points split the input string
into non-overlapping substrings and thus we can execute the second phase of
the parallel LZ77 coding algorithm independently for each substring. Due to the
shorter length of these substrings, the complexity of the second phase is largely
decreased. Specifically, if L is the length of the longest substring between two
successive cut-points, the second phase can be executed now in O(�logL�· logN)
time. In practice, L � 100 since cut-points almost always occur well under 100
characters apart [1].

3 Conclusions

We presented an efficient parallel algorithm for LZ77 coding on the hypercube
network. General simulations of PRAM dictionary compression algorithms on
the hypercube surely leads to solutions with high communication overhead. How-
ever, by carefully examining the way LZ77 parsing splits the text into phrases, we
managed to considerably lower the communication overhead. In doing so, we used
only a small set of communication primitives which can be efficiently executed
on the hypercube network. In addition, we further enhanced the performance by
exploiting known facts from the text compression (frequent cut-points).

References

[1] T. C. Bell, J. G. Cleary, I. H. Witten, Text Compression Prentice Hall Advanced
Reference Series Computer Science, (1990).

[2] K. Sayood, Introduction to Data Compression Morgan Kaufmann Publishers Inc.
(1996).

[3] J. A. Storer, Data Compression Methods and Theory, Computer Science Press,
Rockville, MD (1988).

[4] L. M. Stauffer, D. S. Hirschberg, Dictionary Compression on the PRAM, Parallel
Processing Letters 7 (3) 1997 297–308.

[5] M. Farach, S. Muthukrishnan, Optimal Parallel Dictionary Matching and Com-
pression (Extended Abstract), in Proc. SPAA 1995, 244–253.

[6] J. Ziv, A. Lempel, A Universal Algorithm for Sequential Data Compression, IEEE
Trans. Inf. Theory 23 (3) 1977 337–343.

[7] T. C. Bell, Better OPM/L Text Compression, IEEE Trans. Communications COM-
34 (12) 1986 1176–1182.

[8] S. Ranka, S. Sahni, Hypercube Algorithms with Applications to Image Processing
and Pattern Recognition, Springer Verlag (1990).

[9] T. F. Leighton, Introduction to Parallel Algorithms and Architectures: Arrays,
Trees, Hypercubes, Morgan Kaufmann Publishers, San Mateo, CA (1992).

[10] J. Jàjà, An Introduction to Parallel Algorithms, Addison-Wesley (1992).

2 We assume max0 = 0.


	Introduction
	LZ77 Coding on the Hypercube
	Conclusions

