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Abstract: - The famous method Principal Components Analysis (PCA) is the basic approach for decomposition 
of 3D tensor images (for example, multi- and hyper-spectral, multi-view, computer tomography, video, etc.). 
As a result of the processing, their information redundancy is significantly reduced. This is of high importance 
for the efficient compression and for the reduction of the features space needed, when object recognition or 
search is performed. The basic obstacle for the wide application of PCA is the high computational complexity. 
One of the approaches to overcome the problem is to use algorithms, based on the recursive PCA. The well-
known methods for recursive PCA are aimed at the processing of sequences of images, represented as non-
overlapping groups of vectors. In this work is proposed new method, called Sliding Recursive Hierarchical 
Adaptive PCA, based on image sequence processing in a sliding window. The new method decreases the 
number of calculations needed, and permits parallel implementation. The results obtained from the algorithm 
simulation, confirm its efficiency. The lower computational complexity of the new method facilitates its 
application in the real-time processing of 3D tensor images. 
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1 Introduction 
The 3D image processing attracts recently 
significant attention because of its wide use in 
various areas: medical diagnostics, analysis of 
satellite and aero-photo images, compression of 
video sequences, multi-view images, etc. Each 3D 
image is mathematically represented as a third-order 
tensor. In accordance to [1], the tensor image could 
be transformed into a group of vectors positioned in 
three different ways: (Mode-1 (columns), Mode-2 
(rows), and Mode-3 (fibres). Mode-3 which ensures 
strongest correlation between the neighbour vectors 
in the group, is used in this work. The main feature 
of the 3D images is the very high information 
redundancy, due to the strong correlation between 
the neighbor elements in the group. The method 
Principal Components Analysis (PCA) also known 
as Karhunen-Loève Transform (KLT), is usually 
used to achieve optimum orthogonal transform of 
data, signals and images and to reduce the 
information redundancy with minimum mean-
square error [2-7]. The PCA method is very efficient 
for processing of sequences of correlated images, 
represented as a 3D tensor. In accordance with [2], 
the main problems which impede the wide use of 
PCA for 3D image processing, are the high 

computational complexity and the absence of "fast" 
computational algorithm (such algorithm exists only 
for the class of images, which could be represented 
as first-order Markov process). To overcome the 
mentioned problems, new approaches were 
developed [8-10], related to the Hierarchical PCA 
(HPCA). In [3] is introduced hierarchical recursive 
block processing of matrices. In [9] was used the 
“divide-and-conquer” strategy, in accordance to 
which the n-dimensional vectors in the first level of 
HPCA are divided into groups of vectors of small 
number of components, and for them are calculated 
local PCAs of low computational complexity. In the 
next (second) level, the transformed vectors are 
arranged in clusters, after which they are processed 
with PCA, and divided into new groups, where the 
vectors have lower number of components, etc. 
Disadvantage of the method is, that for the first 
component is got full mutual decorrelation, while 
for the next components the mutual decorrelation is 
only partial. The main advantage of the Hierarchical 
Adaptive PCA (HAPCA) [10] is, that it gives full 
mutual decorrelation for the output components in 
each level, which is a result of the full transform in 
all decomposition levels and of the adaptation 
towards the local statistics of the groups of vectors 
with 2 or 3 components only. Besides, the above-
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mentioned HPCA methods are not aimed at 
recursive calculations.  

In the last years, the interest towards the 
recursive PCA for 3D tensor images executed in a 
sliding temporal window, was noticeably increased. 
In significant number of publications [11-13] were 
introduced methods and algorithms for recursive 
PCA calculation for the cases, when non-
overlapping groups of vectors were used to 
represent the tensors. In many PCA applications (for 
example, tensor deconvolution, etc.), special interest 
attracts the 3D image transform using a sliding 
window, whose components overlap only in part. In 
[14] is presented an algorithm for 2D matrix 
sketching with time-based and sequence-based 
sliding windows. For the decomposition of time-
dynamic 3D data in [15] is offered online tensor 
decomposition, based on a modification of the 
famous CANDECOMP/PARAFAC (CP) algorithm. 
As a result, the CP algorithm is accelerated because 
the „new“ loading matrices are calculated by using 
the „old“ matrices (got in earlier time moments), in 
accordance to the criterion for minimum 
approximation error. 
    This work presents new method for recursive 
transform of 3D tensor images, based on the 
HAPCA algorithm, developed earlier by the authors. 
The investigated images represented as 3rd-order 
tensor, are treated as a group of parallel fibres 
(vectors). The basic objective of the new method is 
to achieve lower computational complexity than that 
of the basic algorithm, HAPCA. As it was proved in 
[10], HAPCA has lower computational complexity 
than the "classic" PCA and is better adapted for 
parallel processing. 
 
 
2 Method for Sliding Recursive 
Hierarchical Adaptive PCA  
In accordance to Gonzales and Woods [4], the 
transformation of a group of vectors through 
"classic" PCA needs the following calculations: 1) 
vectors' covariance matrix; 2) eigen values and 
eigen vectors of the covariance matrix; 3) transform 
matrix, whose rows are composed by the eigen 
vectors; 4) direct PCA for each vector. 
    In this work is investigated a PCA-based 
decomposition for a group of correlated images. The 
decomposition is executed for the group of images 
(P), framed at same moment by a sliding window 
which moves over the processed group of images. In 
each consecutive position, one image (a matrix of 
size M×N) drops out of the window, and one new is 
involved. To simplify the execution of PCA for the 

group of vectors, which represent the images in the 
window, it is calculated recursively, using the 
transform result for the previous position. Besides, 
to reduce additionally the computational 
complexity, here is used hierarchical adaptive PCA, 
related to the fixed window position.  
    When video sequences are processed, the 
movement of the sliding window is time-related, 
while for a group of multispectral images (MSI) the 
spectral bands are used instead of the time positions. 
As a 3D-tensor image example, on Fig. 1 is shown a 
group of multispectral images (MSI), corresponding 
to four neighbour spectral bands. 

Fig. 1. A group of MSI images of size N×N each, 
which represents 3D tensor image of size N×N×4. 

     The main stages of the method Sliding Recursive 
Hierarchical Adaptive PCA (SR-HAPCA), offered 
here, are given below. These stages comprise 
recursive calculation of: 1) the Covariance matrix of 
the 3D images; 2) the Eigen vectors of the 
covariance matrix; 3) the Adaptive PCA for two-
component vectors; 4) the Sliding L-levels HAPCA. 
After that follows the description of the algorithm. 
 
 
2.1 Recursive Calculation of the Covariance 
Matrix of 3D Images 
The recursive calculation of the covariance matrix 
of 3D images, represented as a group of vectors in a 
sliding temporal window of length Р is explained 
here first for P=4, and after that - generalized for 
P=2L. The image sequence in the window is treated 
as a group of P-dimensional vectors, whose 
components are the pixels with same spatial position 
in the matrix of each image - the frontal cut of the 
corresponding third-order tensor. 
    As an example on Fig. 2 are shown several four-
dimensional vectors s,1t−X



 and s,tX


, which 
represent the groups of matrix images 1-4 and 2-5, 
framed by the sliding window of length P=4 at 
discrete moments (t-1), and (t). In this case, vectors 

Spectral Band 1

Spectral Band 2

Spectral Band 3

Spectral Band 4
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components are defined by the pixels of same 
spatial position in all four consecutive images.  
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Fig. 2. Representation of 3D tensor recursive 

transform, based on APCA2×2. 
Each image is a matrix of size N×N and comprises 
N2 pixels, shown as black circles. In the example, 
vectors s,1t−X



 and s,tX


 overlap, and the first 

component of s,tX


 coincides to the second 

component of s,1t−X


, etc.  
In correspondence with [10], where the method 
НАРСА was introduced, each of these vectors is 
substituted by R=P/2=2 two-component vectors, 
where s,1t−X



 is replaced by the couple ),1(s,1t−X


),2(s,1t −X


 and s,tX


 - by the couple ),1(s,tX


)2(s,tX


, 
when s=1,2,..,N2. For each two-component vector 
from the first and second group, is calculated 
Adaptive PCA with transform matrix of size 2×2 

(APCA2×2). The covariance matrices Kt-1(1), Kt-1(2) 
of the vectors in groups 1 and 2 at the moment (t-1), 
and of the covariance matrices Kt(1), Kt(2) of the 
vectors in groups 1 and 2 at the moment (t), have to 
be calculated in advance. 
Here, the following notations are introduced: 

∑
=

==
2N

1s
s

2
s x)N1(}x{Ex  - operation for „averaging“ 

the variable xs for s = 1, 2,..,N2, where N2 is the 
number of vectors; 

T
s,4s,3s,1t

T
s,2s,1s,1t )]2(x),2(x[)2(;)]1(x),1(x[)1( == −− X  X



   
   - vectors from group 1 and 2 at the moment (t-1);  

T
s,5s,4s,t

T
s,3s,2s,t )]2(x),2(x[)2(;)]1(x),1(x[)1( == X  X



    
   - vectors from group 1 and 2 at the moment (t).  
The mean vectors from groups 1 and 2 at time 
moments (t-1) and (t) are:    
   μ ;)]1(x),1(x[])}1(x{E)},1(x{E[)1( T

21
T

s,2s,11t ==−
  

  ;)]2(x),2(x[])}2(x{E)},2(x{E[)2( T
43

T
s,4s,31t ==−μ  

  ;)]1(x),1(x[])}1(x{E)},1(x{E[)1( T
32

T
s,3s,2t ==μ  

  .)]2(x),2(x[])}2(x{E)},2(x{E[)2( T
54

T
s,5s,4t ==μ  

     The covariance matrices of the vectors from 
groups 1 and 2 at time moments (t-1) and (t) are: 
      ),1()1(})1()1({E)1( T

1t,11t,1
T

s,1ts,1t1t −−−−− −= μμXXK 



    (1)   

      ,)2().2(})2().2({E)2( T
1t,21t,2

T
s,1ts,1t1t −−−−− −= μμXXK 



    (2) 

      ,)1().1(})1().1({E)1( T
t,1t,1

T
s,ts,tt μμXXK 



−=           (3) 

      .)2().2(})2().2({E)2( T
t,1t,1

T
s,ts,tt μμXXK 



−=            (4) 
The difference covariance matrices for both groups 
of vectors at the time moment (t) are: 
      ),1()1()1( 1ttt −−=∆ KKK  ).2()2()2( 1ttt −−=∆ KKK      (5)                                     
The covariance matrix for each group of vectors 
could be recursively calculated as given below:  
   )2(Δ)]2()2( ,)1(Δ)]1()1( t1ttt1tt KKKKKK +=+= −−  (6) 
    for t=1,2,.., where: 
   ),1()1()1( ttt μRK ∆−∆=∆ ).2()2()2( ttt μRK ∆−∆=∆    (7) 
Here )1(tR∆  and )2(tR∆  are the difference 
covariance matrices of the vectors from groups 1 
and 2. For the moment (t) these matrices could be 
represented in the following way: 

     K 







∆∆
∆∆

=∆
)1(k)1(k
)1(k)1(k

)1(
t,2t,3

t,3t,1
t  for                         (8) 

    )];1(x)1(x[])1(x)1(x[)1(k 2
1

2
2

2
1

2
2t,1 −−−=∆   

    )];1(x)1(x[])1(x)1(x[)1(k 2
2

2
3

2
2

2
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    ].)1(x)1(x)[1(x])1(x)1(x)[1(x)1(k 132132t,3 −−−=∆  

     







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∆∆
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)2(k)2(k
)2(k)2(k

)2(
t,2t,3

t,3t,1
tK   for                         (9)   

     )];2(x)2(x[])2(x)2(x[)2(k 2
3

2
4

2
3

2
4t,1 −−−=∆   

     )];2(x)2(x[])2(x)2(x[)2(k 2
4

2
54

2
5t,2 −−−=∆  

     ].)2(x)2(x)[2(x])2(x)2(x)[2(x)2(k 354354t,3 −−−=∆  
In accordance with [16], these matrices are 
symmetric in respect to their main diagonal and 
from this it follows that their eigen values are 
positive numbers. In particular, for

.0)2()1()2()1( tt1t1t ==== −− μμμμ 

 Then: 

    ,RK











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2
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2
1
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  ,
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2
443
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2
3
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










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   ,
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2
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2
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

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In accordance with [12], in case, that vectors do not 
overlap at the time moments (t) and (t-1), the 
correlation matrix tR  for (t) is calculated 
recursively:  

   ,.
t
1

t
1t.

t
1 T

tt1t

t

1s

T
sst XXRXXR



+
−

== −
=
∑            (16) 

where t is the index, which defines the number of 
the current vector tX



 from the sequence of vectors 
for t=1,2,..,N2. Obviously, this approach for 
recursive calculation of covariance matrices ),1(tR  
and ),2(tR  is not applicable for the overlapping 
vectors, defined by the sliding window at the time 
moments (t) and (t-1). 
 
 
2.2 Recursive Calculation of the Eigen 
Vectors of the Covariance Matrix 
The eigen vectors t,kΦ



 of the matrix tK for the 
moment (t), are defined by the system of equations: 
     ,t,kt,kt,kt ΦΦK



λ=  1t,k
T

t,k =ΦΦ


  1,2,kfor =   (17) 
where t,kλ  are the eigen values of the matrix tK .  

     The eigen vectors t,kΦ


∆  of the difference matrix 

tK∆  are defined in similar way: 

      t,kt,kt,kt ΦΦK


∆λ∆=∆∆ ,                              (18) 

     .1t,kt,kt,k −−=∆ ΦΦΦ


                                        (19) 
Hence, the recursive calculation of the eigen vectors 
is defined by the relation: 
      t,k1t,kt,k ΦΦΦ



∆+= −   .2,1for k =                      (20) 
 
 
2.3 Recursive APCA Calculation for Two-
Component Vectors 
The direct APCA2×2 for the two-component vectors 

t,sX


 with zero mean vector )0( t =μ  is defined by 
the relation: 

,,...2,1 and t,..,N2,1for s 2
t,st,s ===  XΦY t



     (21) 

where ][ t,2t,1 Φ,ΦΦT
t



=  is the APCA2×2 transform 

matrix at the time moment (t), and t,sY


 - the 
transformed two-component vector. The above-

given transform could be represented also as 
follows: 

     ,1t,s1t,st,sT
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T
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T
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T
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2.4 Recursive Calculation of the Sliding L-
levels HAPCA 
To apply НAPCA of L levels (for L=log2P) on N2 
vectors of Р components, each vector is replaced by 
R=P/2 two-component vectors. In each level, on the 
two-component vector )r(t,sX



 from the group r, 
which has zero mean vector, is executed the 
transform: 

)r()r()r(
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 (24)            

for 1,2,..R,r =  where: 
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The solutions of the system of equations (17) and 
(18) used to define matrices )r(1t −Φ  and )r(tΦ∆ , 
are similar to these for the non-recursive НAPCA 
[10]. They are defined by the relations below: 

   


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
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and correspondingly: 
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for r=1,2,..,R,  (29) 
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Hence, the transform matrix for the vectors in the 
group r (for r=1,2,...,R) at the time moment (t) is: 
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   ).r()r()r( t1tt θ∆+θ=θ −                                      (33) 

   If ,0)r(t ≈θ∆  then )r()r( 1tt −θ≈θ  and we get 

1t,st,s −=YY


. In this case the mutual correlation 
between two sequential images from the sequence is 
close to 100 %, which permits the calculations 
needed for the corresponding APCA2×2 for the 
vectors from the group r to be reduced N2 times. For 
this, it is enough the condition for approximately 
zero value of the difference ),r(tθ∆  defined by Eq. 
(30), to be satisfied.  
The direct SR-APCA2×2 for the vectors from the 
group r, which have zero mean vector, is defined by 
the relation: 
     ),r()r()r( t,stt,s XΦY



=                                    (34) 
 where                 
     ),r()r()r( t1tt ΦΦΦ ∆+= −                               (35) 
Taking into account Eqs. (31) and (32), is obtained: 









θ∆+θθ∆+θ−
θ∆+θθ∆+θ

=
−−

−−

)]r()r(cos[)]}r()r({sin[
)]r()r(sin[)]r()r(cos[

)r(
t1tt1t

t1tt1t
tΦ  (36) 

Let us assume:  
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and     
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Then   
( ),arctg)r( r,1t1t −− α=θ  ( ),arctg)r( r,tt β=θ∆          (41)                                                                                    
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    As a result, for the matrix for the SR-APCA2×2 at 
the time moment (t) we get: 
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 If ,0)r(t ≈θ∆  then .0r,t ≈β  In this case, the matrix 
for SR-APCA2×2 is simpler: 
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where:  
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In case, that for the components of vectors 
T

s,3s,2s,t ])r(x),r(x[)r( =X


 for s =1, 2,.., N2 is satisfied 
the condition: 

   ,0)r(x)r(x 2
3

2
2 =−                                                 (48) 

and if the difference between the averaged squares 
of the pixels in two consecutive images in the group 
P is equal to zero, then from Eq. (47) is got 

.1r,1t =α −  In this case, the matrix for SR-APCA2×2 
at the time moments (t-1) and (t) becomes: 

    .
11
11

2
1)r()r( t1t 








−

==− ΦΦ                      (49) 

In this particular case, it turns into a Hadamard 
matrix of size 2×2 [4]. As a result of the execution 
of the SR-APCA2×2, at the time moments (t-1) and 
(t) the coordinate system of vectors )r(s,tX



 rotates 
on same angle, 4/)r()r( t1t π=θ=θ − , for r=1,2,..,R.  
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2.5 Algorithm for Sliding Recursive HAPCA 
On the basis of the relations given above, here is 
generated the global algorithm for recursive 
calculation of the Sliding Recursive НAPCA (SR-
HAPCA) of L levels, when L=log2P. As an input 
data is used a sequence of correlated halftone 
images of size N×N. In particular, this could be a 
video sequence, or a group of multispectral images. 
When multispectral images are concerned, the time 
sequence is replaced by the band sequence, because 
their mutual correlation is highly related to the 
frequency band. The selection of the initial band 
depends on the correlation between participating 
images - the image with highest correlation to all 
others, is treated as the leading (initial) one.  
The basic steps of the SR-HAPCA algorithm follow 
below: 

Step 1. Initialization: at the initial moment/band 
t=0, the HAPCA algorithm is executed for the first Р 
images (sections of the 3D tensor), represented by 
N2 vectors of Р components each, when P=2L (L - 
the number of hierarchical HAPCA levels). In the 
frame of the sliding window, which envelopes these 
images, they are divided into R=P/2 couples. In the 
consecutive HAPCA levels each couple is 
transformed by using APCA2×2 with transform 
matrix ),r(0Φ  as defined in Eq. (46). The images, 
obtained after the transform, are rearranged into new 
groups with similar energy, and then - divided into 
couples again. For each couple is once more 
calculated the APCA2×2, etc., until the last 
decomposition level of HAPCA is calculated; 

Step 2. At the moment t=t+1, the algorithm 
HAPCA is executed for the next Р images from the 
sections of the 3D tensor, framed by the sliding 
window, which moved meanwhile one position 
ahead. Besides, the first image from the group, 
processed at the moment t=0, is already out of the 
current window. Instead, new image with sequential 
number (P+1) is included in the frame;  

Step 3. In the first hierarchical level of SR-
НAPCA, for each group of vectors r=1,2,..,R 
(respectively, a couple of images) is checked the 
condition:  
     ,0arctg)r( r,tt ≈β=θ∆                                     (50) 
which is satisfied for .0r,t ≈β  The calculation of Eq. 
(50) is easier, if the relation below is used: 
     .0])r(x)r(x)[r(x)r(k 132t,3 ≈−=∆                      (51) 
If the threshold δ<<1 is chosen, Eq. (51) could be 
represented as follows: 
    δ≤− ||)]r(x)r(x)[r(x| 132   for  r=1,2,..,R.        (52) 
In case, that the condition from Eq. (52) is not 
satisfied, for the corresponding group (r) is used SR-

APCA2×2 with transform matrix )r(tΦ , as defined 
by Eq. (45). For the remaining couples the 
transformed images are defined by the values, 
calculated in the preceding position of the sliding 
window at the time moment (t-1). These values are 
stored in a special buffer memory;  

Step 4. The transformed groups of vectors are 
calculated, and their corresponding images are 
rearranged into new groups in accordance to their 
energy. After that they are sequentially arranged in 
couples again; 

Step 5. In the next (second) hierarchical level of 
SR-НAPCA, the operations performed for the 
groups of two-component vectors are executed in a 
way, similar to that in the first level; 

Step 6. At the highest level (L) of SR-НAPCA 
and after the last rearrangement, are calculated the 
images which are the main components of the input 
images (tensor sections), enveloped by the window 
at the moment (t); 

Step 7. The processing continues with the next 
images. For this, the processing goes back to Step 2 
and then steps 3-7 are executed, until all input 
images from the sequence are processed. As a result 
of the L-level HAPCA are obtained P mutually 
uncorrelated eigen images. The first one is the 
principle component, whose energy is maximum, 
compared to that of the next output components 

As an illustration, on Fig. 3 is shown the three-
level algorithm SR-НAPCA (L=3), used to 
transform a sequence of images (tensor sections) 
with fixed rearrangement in a window of length 
P=8. In each hierarchical level the transformed 
images, which correspond to the first (highest-
energy) component of SR-APCA2×2, are coloured in 
yellow, and the images, which correspond to the 
second (lower-energy) component - in blue. The 
output images are the principle components, 
arranged in accordance to the lessening of their 
energies (the first main component of maximum 
energy E1 is coloured in orange, and the last E8 - in 
dark blue). In each hierarchical level the numbers of 
the components got after the transform, are retained 
after the rearrangement. In case, that in some 
hierarchical level for a given couple of images r and 
at the time moment t is got δ≤∆ |)r(k| t,3  , then SR-
APCA2×2 is not calculated. In the next level, the 
transformed images for these couples are calculated 
recursively using the already calculated data in the 
preceding discrete moment, (t-1). As a result, 
significant reduction of the needed computations is 
achieved, compared to the full recursive calculation 
of the input image sequence, as shown on Fig. 3. 
Besides, the used memory should be enlarged, 
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because all results calculated for the SR-APCA2×2 at 
the moment (t-1) for all decomposition levels should 
be stored there. 
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Fig. 3. The SR-НAPCA algorithm for full recursive 

transform of the image sequence of  8 images  
Here should be also noted, that if the calculation 

SR-APCA2×2 for only one couple of images is 
missed, this results in N2 times reduction of the 
number of vectors transforms in the corresponding 
group. In case, that the missed transform is in the 
first level, the transforms of the images in the next 
levels, which are related to the missed couple, will 
disappear also. In this way, the offered algorithm 
SR-НAPCA  for a sequence of input images (tensor 
sections) is adapted in respect of their contents 
(mutual correlation), in result of which the needed 
computational operations are reduced even more, 
compared to these of the basic НAPCA algorithm. 
 
 
3 Results 
3.1 Evaluation of Computational Complexity 
In this work, the computational complexity is 
evaluated on the basis of the needed mathematical 
operations. The execution time is not compared, 

because for this the evaluated algorithms should be 
represented in similar way, run on same computer, 
etc. Such comparison is not quite accurate, if all 
conditions are not same.   
    The basic algorithm used for the comparison, is 
HAPCA. Its computational complexity [17] can be 
calculated and compared with this of the regular 
PCA transform for P×P covariance matrix i.e. for 
P=2L input images, L=log2P hierarchical levels and 
R=P/2 groups of APCA2×2. For the classic PCA, 
L=R=1 because there are no hierarchical levels or 
sub-groups. In accordance with [18], both 
algorithms are compared regarding the number of 
operations O (additions and multiplications), needed 
for the calculation of the following components: 

• Covariance matrices KC of size P×P for the 
classic PCA algorithm and size 2×2 for the APCA: 
      )]2P(2)1P(P)[1P(P)2/1()P(Ocov ++−+= ,     (53) 

for the classic PCA  
      30)P(O 2cov = , for APCA2×2 and P=2.          (54) 

• Calculation of the eigen values of the 
corresponding KC covariance matrix when the QR 
decomposition and the Householder transform of (P-
1) steps are used for the classic PCA [16]:  

   )7P
6

17P
3
4)(1P()P(O 2

val ++−=  for the classic PCA  (55) 

   16)P(O 2val =  for APCA2×2  and P=2.                (56)  
• Calculation of the eigen vectors of the 

covariance matrix KC in case that iterative algorithm 
of four iterations is used for the classic PCA [16]: 
    ]1)5P4(P2[P)P(Ovec −+=  for the classic PCA (57) 
    72)P(O 2vec =  for APCA2×2  and P=2.             (58) 

• Transformations of eigen images, each of S=N2 

pixels: 
    )1P2(SP)S,P(Oimg −=  for the classic PCA  (59) 

    S6)S,2(Oimg =  for APCA2×2 and P=2.            (60) 
• The total number of operations needed for the 

execution of both algorithms (the classic PCA and 
the Hierarchical PCA, based on APCA2×2) is 
correspondingly: 

)61(.ACclassic P- for the )1P2(SP]1)5P4(P2[P

)7P
6

17P
3
4)(1P()]2P(2)1P(P)[1P(P)2/1()S,P(O 2

       

 

−+−++

+++−+++−+=

 

.2=and Pfor APCA)S6118(LR)S(O 2 22   - ×+=      )62(  

Having got the total number of operations, we can 
compare the computational complexity of both: the 
classic PCA and the proposed algorithm. The 
reduction of the number of needed operations can be 
represented by the parameter η:                           
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[ ])1P4P4(P4)42P17P8()1P)(3/1()4PP)(1P(P

)63()S6118(LP)S,P(O/)S,P(O)S,P(
222

1
2

−−+++−++++

×+==η −                         
    

Since we work with images whose number of pixels 
vary, then we can evaluate the computational 
complexity on the basis of the parameter 

)S,P(S ∞→η  which covers all cases and gives 
minimum computational reduction:  

   .Plog3/P2L3/)1P2()S,P(lim 2S ≈−→η ∞→     (64) 
Hence, the reduction of the computational 
complexity of HAРСА compared to РСА, is 
appropximately 2P/3log2P (for example, for P=8 the 
reduction is 1.77 times). As it was mentioned above, 
in case, that at given moment and in given 
hierarchical level for a selected couple of images is 
satisfied the condition from Eq. (52), for it is 
calculated the SR-APCA2×2. In the next hierarchical 
level the transformed images for this couple are 
defined recursively, using the images from the 
preceding moment (t-1). This results in additional 
reduction of the needed computational operations of 
SR-HAРСА, compared to HAРСА. 
 
 
3.2 Simulation of Algorithm SR-HAPCA  
For illustration of the algorithm SR-HAPCA, on 
Fig. 4а is shown a sequence of computer 
tomography (CT) images, framed by a sliding 
window of size P=8 at the time moment (t). Each 
CT image in the group is of size of 512×512 pixels 
and 8 bpp (bits per pixel).  

 
Fig. 4. A sequence of eight (P=8) computer 
tomography images (CTI) and the corresponding 
Principal Components (РС) got after the execution 
of SR-HAPCA. 
    The corresponding principal components (PСp), 
calculated by using the algorithm SR-HAPCA, are 
shown on Fig. 4b. As it could be easily seen, the 
main part of the energy in the group is concentrated 
on the first and second decomposition components.  
In this case, components 3-8 could be neglected 
without influencing the visual quality of the restored 

group of CT images, got after the execution of the 
inverse SR-HAPCA. The simulation results for the 
proposed algorithm for different kinds of 3D images 
(CTI, MSI, MVI, etc.) confirmed its efficiency in 
various application areas. The energy of the matrix 
РСр of size K×J and elements pck,j,p, which 
represents the principal component p, is calculated 
in accordance to the relation below: 

2
K

1k

J

1j
p,j,kp )pc(E ∑∑

= =

=  for p=1,2,.., P.                (65) 

    On Fig. 5 is shown the energy distribution (Ep) of 
the principal components (PСp), which represent the 
decomposition of the group of CTI, got after the 
execution of the 3-level SR-HAPCA. The energy 
concentration on the first and second components 
confirms the theoretical analysis, given above. This 
is a good basement for significant reduction of the 
information redundancy in the transformed group of 
CT images, which was one of the main objectives of 
the presented method. 
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Fig. 5. Energy distribution for a group of eight CT 
images, after the execution of 3-level SR-HAPCA 
    The algorithm SR-HAPCA could be used for 
efficient processing of correlated image sequences 
in the following application areas:  

• Optimum filtration of 3D tensor images in the 
frame of the sliding temporal window; 

• Compression of 3D tensor images with 
minimum mean square error, got in result of the 
threshold truncation of the low-energy transformed 
images (principal components) in the window for 
each discrete moment t; 

• Reduction of the features' space used for the 
classification of objects contained in the 3D tensor 
images, framed by the sliding window, at each 
discrete moment (t), etc. 
    The new method could be used not only for 
processing of 3D images, but also for decorrelation 
of multidimensional data in systems of various kind.  
 
 
4 Conclusions 
The presented new method SR-HAPCA retains all 
advantages of HAPCA towards PCA (the reduced 
number of calculations and the ability for parallel 
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implementation). Besides, because of the relative 
simplicity of SR-HAPCA, it is possible to achieve 
real-time calculation of the tensor images in the 
frame of the sliding window. The output sequence 
contains the principle components of the input 
sequence (tensor slices) framed by the selected 
window, at each discrete time moment. The 
efficiency of SR-НAPCA could be enhanced by:  

• Replacement of the fixed rearrangement of the 
couples of components obtained after APCA (in 
each hierarchical level), by adaptive rearrangement 
in accordance to the lessening of their energy; 

• Selection of the best orientation (vertical, 
horizontal, or lateral) for the group of vectors, used 
for the 3D tensor representation depending on its 
creation (source); 

• Depending on the application, it is possible to 
calculate only the output principle components 
which have maximum energy, and to miss the 
calculation of the low-energy components. As a 
result, the number of needed calculations for the 
Truncated SR-НAPCA will be additionally reduced.  
    The method SR-HAPCA opens new promising 
opportunities for various real-time applications of 
the basic HAPCA method in the area of the 3D 
digital processing (filtration, compression, 
segmentation, etc.) of tensor images in the 
contemporary systems for objects analysis and 
recognition, video communications, process 
monitoring, etc. 
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