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Abstract

Multi-Armed Bandit (MAB) techniques have been successfully applied to many classes
of sequential decision problems in the past decades. However, non-stationary settings—
very common in real-world applications—received little attention so far, and theoretical
guarantees on the regret are known only for some frequentist algorithms. In this paper,
we propose an algorithm, namely Sliding-Window Thompson Sampling (SW-TS), for non-
stationary stochastic MAB settings. Our algorithm is based on Thompson Sampling and
exploits a sliding-window approach to tackle, in a unified fashion, two different forms of
non-stationarity studied separately so far: abruptly changing and smoothly changing. In
the former, the reward distributions are constant during sequences of rounds, and their
change may be arbitrary and happen at unknown rounds, while, in the latter, the reward
distributions smoothly evolve over rounds according to unknown dynamics. Under mild
assumptions, we provide regret upper bounds on the dynamic pseudo-regret of SW-TS for
the abruptly changing environment, for the smoothly changing one, and for the setting
in which both the non-stationarity forms are present. Furthermore, we empirically show
that SW-TS dramatically outperforms state-of-the-art algorithms even when the forms of
non-stationarity are taken separately, as previously studied in the literature.

1. Introduction

The Multi-Armed Bandit (MAB) setting, introduced by Auer, Cesa-Bianchi, and Fis-
cher (2002), models the sequential decision-making problem, addressing the well-known
exploration-exploitation trade-off. In this setting, at each round of a finite time horizon,
the learner selects an action from a finite set of actions (also known as arms), and she only
observes the reward of the chosen action. The goal of the learner is to play the optimal
arm, maximizing the expected reward while minimizing the loss incurred during the learn-
ing process. This loss is usually addressed as regret, defined as the difference between the
expected reward collected by a clairvoyant algorithm, selecting the optimal arm through
the whole-time horizon, and the expected reward achieved by the used MAB algorithm. We
focus on the Non-Stationary stochastic MAB (NS-MAB) setting, where, differently from the
classical stochastic MAB setting, the expected reward of each arm may change over time,
thus potentially changing the optimal arm.

c©2020 AI Access Foundation. All rights reserved.
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Non-stationarity behaviours are common in real-world applications. We recall that the
former motivation for MAB settings argued by Thompson (1933) was the study of clinical
trials, where different treatments are available, and a learner aims at selecting the treatment
to use for the next patient. Although the clinical trial scenario was assumed stationary over
time in its original formulation, it may not be in the real world. Indeed, in a scenario
in which the trial takes place over periods, the disease to defeat may mutate. Thus, as
showed by Gorre, Mohammed, Ellwood, Hsu, Paquette, Rao, and Sawyers (2001), a treat-
ment that initially was optimal might subsequently slowly decrease its effectiveness, and
another treatment, which initially was ineffective, might become the best option. Similarly,
non-stationarity plays a prominent role in Internet economics. For instance, in optimal
pricing problems, a non-stationarity may be due to a new product invading the market.
For instance, Eliashberg and Jeuland (1986) show that the price maximizing the expected
profit of a product already present in the market may change abruptly when a newer prod-
uct enters. Furthermore, in untruthful auction mechanisms for search advertising where
advertisers try to learn the best bid to obtain their ad displayed in some profitable slot,
non-stationarity may be due to the arrival and departure of advertisers, which change the
profitability of the slots, as studied by Kitts and Leblanc (2004).1 Finally, Lai, El Gamal,
Jiang, and Poor (2011) study a cognitive medium radio access problem, in which a user
aims to opportunistically exploit the availability of an empty channel in a multiple chan-
nel system. The reward expresses the binary/fractional availability of the channel, whose
distribution is unknown to the users. In particular, the probability that a given channel is
available to a user changes over time as the other users’ behavior changes.

As stressed by Hartland, Gelly, Baskiotis, Teytaud, and Sebag (2006), general-purpose
classical MAB algorithms are not suitable when tackling NS-MAB settings, their regret
bounds not holding anymore. In non-stationary settings, two main approaches are studied:
passive, e.g., the works by Combes and Proutiere (2014) and Garivier and Moulines (2008),
and active, e.g., the works by Liu, Lee, and Shroff (2018), Besson and Kaufmann (2019),
Auer, Gajane, and Ortner (2019). The former ones can deal with non-stationarity without
detecting explicitly that a change of the reward distributions occurred, while the latter ones
exploit techniques coming from the change detection field to deal with reward distributions
varying over time. In our work, we focus on passive approaches, since they require fewer
assumptions on the change characteristics than those required by active approaches. For
instance, as argued by Liu et al. (2018), active approaches commonly require the knowledge
of the minimum magnitude of the change, to avoid excessively long delays in its detec-
tion. However, in practice, this knowledge is rarely available to the learner, making active
approaches less appealing for real-world applications.

Among the techniques following the passive approach, some frequentist algorithms have
been proposed showing order optimal theoretical guarantees. We mention the works by Bes-
bes, Gur, and Zeevi (2014), Combes and Proutiere (2014), Garivier and Moulines (2008),
Kocsis and Szepesvári (2006), and Wei, Hong, and Lu (2016). To the best of our knowledge,

1. Generalized Second Price (GSP) is an untruthful auction mechanism used by Google and BING. Ex-
amples of problems on the publisher side are discussed by Farina and Gatti (2017) and Gatti, Lazaric,
Rocco, and Trovò (2015), while examples of problems on the advertiser side are discussed by Nuara,
Trovò, Gatti, and Restelli (2018), Gasparini, Nuara, Trovò, Gatti, and Restelli (2018), and Nuara, Sosio,
Trovò, Zaccardi, Gatti, and Restelli (2019).
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all the known Bayesian methods are only based on heuristics, e.g., the works by Granmo
and Berg (2010) and Mellor and Shapiro (2013), while we recall that, in stationary settings,
some Bayesian algorithms with theoretical guarantees are known, e.g., Thompson Sam-
pling (TS) by Thompson (1933), and these algorithms empirically outperform frequentist
algorithms in most scenarios. Some examples are also discussed by Chapelle and Li (2011),
Granmo (2010), Kaufmann, Korda, and Munos (2012b), May, Korda, Lee, and Leslie (2012),
Paladino, Trovò, Restelli, and Gatti (2017). Notably, heuristic algorithms might outper-
form algorithms with theoretical guarantees in specific settings, but, on the other side,
they may provide an arbitrarily large regret in others. In the present paper, we provide a
Bayesian MAB algorithm for non-stationary settings with theoretical guarantees in terms
of dynamic pseudo-regret. Remarkably, our algorithm tackles in a unified fashion two forms
of non-stationarity—the abruptly changing one and the smoothly changing one—that have
been studied separately so far in the literature. In the former, the reward distributions
are constant during sequences of rounds, and their change may be arbitrary and happen at
unknown rounds, while, in the latter, the reward distributions smoothly evolve over rounds
according to unknown dynamics. More precisely, our original contributions are as follows:

• we design a novel Bayesian MAB algorithm, named Sliding-Window Thompson Sam-
pling (SW-TS), working when two different forms of non-stationarity coexist;

• we derive some an bound over the dynamic pseudo-regret for SW-TS of order Õ(N
1+α

2 )
when abruptly changing non-stationarity is present, and an upper bound of order
Õ(Nβ) when smoothly changing non-stationarity is present.2 Parameters α and β
provide a measure of the number of abrupt changes and the number of rounds the
expected rewards of the arms are close enough, respectively, over a horizon of N
rounds. Finally, we derive a bound on the dynamic pseudo-regret in the setting in
which both the non-stationarity forms are present;

• we empirically show the superior performance of SW-TS over state-of-the-art fre-
quentist MAB passive algorithms even when the forms of non-stationarity are taken
separately. Finally, we provide a sensitivity analysis of SW-TS for the parameters α
and β.

2. Related Works

Non-stationary MAB settings have received attention in the scientific community only in
the last few years. When rewards may change arbitrarily over time, the problem of NS-
MAB is intractable, i.e., one can only derive trivial bounds on the dynamic pseudo-regret.
For this reason, the literature mainly focuses on non-stationary MAB settings with some
specific structure in the attempt to design algorithms with better regret bounds. Garivier
and Moulines (2008) study abruptly changing MAB settings and present the SW-UCB
algorithm achieving an Õ(

√
N) bound on the dynamic pseudo-regret. The same setting is

tackled by Allesiardo, Féraud, and Maillard (2017), who present the SER4 algorithm, which
empirically outperforms the SW-UCB algorithm. Combes and Proutiere (2014) present
SW-KL-UCB, which is a policy working in a smoothly changing MAB setting. In this

2. With the notation Õ(·) we disregard logarithmic terms in the computation of the order.
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non-stationary setting, the authors provide a bound of Õ(σ1/4N) on the dynamic pseudo-
regret, being σ the Lipschitz constant of the process. This result implies that the per-round
pseudo-regret of SW-KL-UCB vanishes as the speed at which the expected rewards evolve
decreases to 0.

Besbes et al. (2014) study a non-stationary MAB setting under the assumption that
the total variation of the expected rewards over the time horizon is bounded by a budget
that is a priori fixed. They provide a distribution-independent lower bound. Further-
more, they propose the REXP3 algorithm, a near-optimal frequentist algorithm with a
dynamic pseudo-regret of order O(N2/3). Slivkins and Upfal (2008) focus on the dynamic
bandit setting—a special case of the restless bandits—, in which the reward distribution
of the arms changes at each round according to Brownian motion. The authors propose
algorithms that minimize the per-round pseudo-regret over an infinite time horizon. We
also mention the work by Trovò, Paladino, Restelli, and Gatti (2018), who provide some
bandit algorithms for dynamic pricing in non-stationary settings. Finally, the problem of
non-stationarity with bounded per-round variation is tackled using contextual bandit tech-
niques by Slivkins (2011), who designs the Contextual Zooming algorithm, and by Luo, Wei,
Agarwal, and Langford (2018), for which they use a variant of the classic EXP4 algorithm.

The MAB literature also provides some works that exploit MAB techniques as heuristics
on application scenarios without providing theoretical guarantees. To cite a few, Granmo
and Berg (2010) propose a Bayesian algorithm for the specific case of non-stationary bandit
settings with normally distributed rewards. Mellor and Shapiro (2013) analyze an NS-MAB
where the probabilities according to which the expected value of the arms change are a
priori fixed and propose the CTS algorithm that combines Thompson Sampling with a
change point detection mechanism. St-Pierre and Jialin (2014) present an evolutionary
algorithm to deal with generic non-stationary environments which empirically outperforms
classical solutions.

Other settings, closely related to the MAB one, are also studied in the presence of non-
stationarity. For instance, Wei et al. (2016) present a study of the regret in the case of
non-stationary stochastic experts, providing an upper bound of order O(N1/3) in the case
we assume a constant number of switches and limited variance of the expected rewards over
time.

3. Problem Formulation

We model our problem as a stochastic NS-MAB setting, in which, at each round t over
a finite horizon N , the learner selects an arm ait among a finite set of K arms A :=
{a1, . . . , aK}. At each round t the learner observes a realization of the reward xit,t obtained
from the chosen arm ait . The reward for each arm ai at round t is modeled by a sequence of
independent random variables Xi,t from a distribution unknown to the learner. We denote
by µi,t := E[Xi,t] the expected value of the reward of the arm ai at round t. As is customary
in the MAB literature, here we consider Bernoulli distributed rewards, i.e., Xi,t ∼ Be(µi,t).3
A policy U is a function U(ht) = ait that chooses the arm ait to play at round t according
to history ht, defined as the sequence of past plays and obtained rewards.

3. The extension to other bounded distributions is straightforward. Bernoulli variables are considered here
for the sake of simplicity.
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The goal of the learner is to design a policy U that minimizes the loss w.r.t. the optimal
decision in terms of reward. This loss, usually addressed as cumulative dynamic pseudo-
regret, is defined as:

RN (U) := E

[
N∑
t=1

(
µi∗t ,t − µit,t

)]
, (1)

where µi∗t ,t = maxi∈{1,...,K} µi,t is the expected reward of the optimal arm ai∗t at round t and
E [ · ] is the expectation w.r.t. the stochasticity of the policy. Differently from the classical
(stationary) stochastic MAB setting, where an arm (unique unless degeneracy) is optimal
for the whole-time horizon (ai∗t = ai∗ , ∀t), in the NS-MAB setting the arms that are optimal
might change over time. We recall that when the optimal expected value of the arm can
change without any restriction, the NS-MAB setting has only trivial bounds on the dynamic
pseudo-regret RN (U). One of the focus of the MAB research is the design of algorithms
that guarantee sublinear pseudo-regret, i.e., RN (U) = Õ(Nω) with 0 ≤ ω < 1. When this
is not possible, an alternative performance metric is the average pseudo-regret, defined as:

ARN (U) := lim sup
N→∞

RN (U)

N
. (2)

In what follows, we will discuss two different settings where the evolution over time of the
reward distributions of the arms is constrained to change according to specific schemes.

3.1 Abruptly Changing Setting

The Abruptly Changing MAB (AC-MAB) setting is introduced, for the first time, by Gariv-
ier and Moulines (2008). In this scenario, the reward distributions are constant during
sequences of rounds, namely phases, and change at unknown rounds, namely breakpoints.
Thus, the expected value µi,t of the reward of arm ai at round t only changes at the begin-
ning of each phase and, therefore, the best arm ai∗t remains constant during the phase. The
change of the expected rewards at the breakpoints may be arbitrary and is unknown.

Let us define a breakpoint as a round b ∈ {1, . . . , N} s.t. ∃i | µi,b−1 6= µi,b, i.e., a round
b in which the expected reward of at least one arm ai changes w.r.t. the one at round b− 1.
In an AC-MAB setting with horizon N , we have a set of breakpoints B := {b1, . . . , bBN }
of cardinality BN (for sake of notation we define b0 = 1), which determines a set of phases
{F1, . . . ,FBN }, where each phase is a set of rounds between two consecutive breakpoints,
namely, Fφ = {t ∈ {1, . . . , N} s.t. bφ−1 ≤ t < bφ}. In order to have sublinear dynamic
pseudo-regret, we upper bound the number of breakpoints BN over the time horizon N .
We do that by making the following assumption.

Assumption 1. There exists α ∈ [0, 1], independent of N , s.t. the number of break-
points BN is of order O(Nα). That is, there exist α ∈ [0, 1) and B ∈ R+ such that:
BN ≤ BNα.

During phase Fφ of an AC-MAB setting, with abuse of notation, we denote with µi,φ
the expected value of the reward of arm ai, where ai∗φ is the optimal arm and µi∗,φ is the

corresponding expected reward. By defining the length of a phase as Nφ := |Fφ|, a more
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compact formulation of the dynamic pseudo-regret of a generic policy U over an AC-MAB
is available:

RN (U) =
K∑
i=1

BN∑
φ=1

∆i,φE[Ti(Fφ)],

where Ti(Fφ) =
∑

t∈Fφ 1 {it = i} is the number of times arm ai has been pulled during
phase Fφ, ∆i,φ := µi∗,φ − µi,φ is the difference between the expected reward µi∗,φ of the
optimal arm ai∗φ of phase Fφ and the expected reward µi,φ of arm ai, and E[ · ] is the

expectation w.r.t. the stochasticity of the policy.4 This alternative formulation highlights
that the dynamic pseudo-regret in this setting can be decomposed over the different phases
such that, in each phase, the dynamic pseudo-regret takes the form of the classic expected
pseudo-regret.

3.2 Smoothly Changing Setting

The Smoothly Changing MAB (SC-MAB) setting we study is similar to that one studied
by Combes and Proutiere (2014), where the expected value µi,t of each arm varies no more
than σ at each round, and the evolution of the dynamics is unknown to the learner. More
formally, we make the following Lipschitz assumption.

Assumption 2. There exists σ > 0, such that
∣∣µi,t − µi,t′∣∣ ≤ σ |t− t′| for all t, t′ ∈

{1, . . . , N} and all i ∈ {1, . . . ,K}.

Furthermore, in such a setting, a suboptimal arm ai might be arbitrarily close to the
optimal one ai∗t in terms of expected reward. Identifying the best arm among those with
similar expected rewards is known to be hard, as showed by Lai and Robbins (1985). Indeed,
it is known that a learner takes a time of the order of 1

(µi∗t ,t
−µi,t)2 . Thus, to prevent the

dynamic pseudo-regret from being linearly dependent on the horizon N , we assume also
that the separation between the expected rewards of two arms is arbitrarily small only for
a limited number of rounds. More formally, consider 0 < ∆ < 1, we define:

F∆,N := {t ∈ {1, . . . , N} s.t. ∃i 6= j, |µi,t − µj,t| < ∆}

and we assume the following.

Assumption 3. There exist β ∈ [0, 1], F ∈ R+, and ∆0 ∈ (0, 1), all independent of N ,
s.t. for all ∆ < ∆0 it holds:

|F∆,N | ≤ F∆Nβ.

We remark that the assumption used by Combes and Proutiere (2014) is a particular
case of the above assumption when β = 1.

4. From now on, we denote with | · | the cardinality operator and with 1{·} the indicator function of a
generic event.

316



Sliding-Window Thompson Sampling for Non-Stationary Settings

Table 1: Summary of the notation used in the paper.
Parameter Description

A = {a1, . . . aK} Set of the K available arms ai.

Xi,t Random variable corresponding to the reward for arm ai at round
t.

µi,t Expected value of arm ai at round t.

ai∗t Optimal arm at round t, i.e., the one providing the largest ex-
pected reward µi∗t ,t

U(ht) Policy selecting an arm in A for round t, given history ht.

B := {b1, . . . , bBN } Set of the BN breakpoints bφ.

Fφ Set of rounds between two consecutive breakpoints bφ−1 and bφ
Ti(Fφ) Number of times arm ai is pulled during phase Fφ.

∆i,φ := µi∗,φ − µi,φ Difference between the expected reward µi∗,φ of the optimal arm
ai∗φ of phase Fφ and the expected reward µi,φ of arm ai.

F∆,N Set of rounds over a time horizon of N in which the optimal arm
expected reward has a distance of at least ∆ from the second best
arm.

3.3 Abruptly and Smoothly Changing Setting

Finally, in a quite straightforward way, it is possible to study also a scenario, from now
on addressed as Abruptly and Smoothly Changing MAB (ASC-MAB) setting, in which
the two forms of non-stationarity introduced above (abrupt changes and smooth ones)
simultaneously occur over a finite time period. In this setting, in addition to Assumptions 1
and 3, we also require the following assumption.

Assumption 4. There exists σ > 0 and a set of phases {Fφ, . . . ,FBN } that, for each Fφ
with φ ∈ {1, . . . , BN}, it holds: ∣∣µi,t − µi,t′∣∣ ≤ σ ∣∣t− t′∣∣ ,
for all i ∈ {1, . . . ,K} and for all t, t′ ∈ Fφ, i.e., the expected value of the reward function is
Lipschitz continuous w.r.t. the rounds belonging to a single phase.

This newly defined assumption is the natural extension of Assumption 2 to this new
setting, in which the smoothness assumption might be violated if the process is at break-
points.5

4. Sliding-Window Thompson Sampling Algorithm

We propose an algorithm that exploits a Sliding-Window (SW) approach to forget past
information during the learning, which could provide a bias to the estimation process.
More precisely, we use a sliding window of length τ ∈ N such that the algorithm, at every

5. A summary of the notation defined in the previous section and used in the following sections is provided
in Table 1.
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Algorithm 1 SW-TS

1: Input: {πi,0}i prior distributions, N time horizon, A arm set, τ sliding window size
2: for t ∈ {1, . . . , N} do
3: for i ∈ {1, . . . ,K} do
4: Compute πi,t = Beta(Si,t,τ + 1, Ti,t,τ − Si,t,τ + 1)
5: Sample ϑi,t from πi,t
6: Play arm ait s.t.: it = arg maxi∈{1,...,K} ϑi,t and observe xit,t+1

round t, takes into account only the rewards obtained in the last τ rounds. Based on these
realizations, we apply a TS-based algorithm to decide which is the arm to pull in the next
round. In particular, the expected value of each arm is coupled with a posterior distribution
from which we draw samples, and the arm with the highest value is the next arm to play. At
first, we describe the algorithm and provide theoretical results about the finite-time analysis
of its dynamic pseudo-regret for Bernoulli distributed rewards separately for the AC-MAB
and SC-MAB. After that, we study the ASC-MAB setting in which both the non-stationary
forms (abrupt and smoothly changing) are present at the same time.6

4.1 The Algorithm

The pseudocode of SW-TS for Bernoulli distributed rewards is presented in Algorithm 1.
Assume to have, for each arm ai, a prior πi,0 on the reward expected value µi,t and let πi,t be
the posterior distribution for the parameter µi,t after t rounds. In the case we do not have
further information on the expected value of the arm, we use an uninformative prior, i.e.,
πi,0 := Beta(1, 1), where we denote with Beta(a, b) the Beta distribution with parameters
a and b. The posterior of the expected reward of arm ai at round t is πi,t := Beta(Si,t,τ +
1, Ti,t,τ −Si,t,τ +1), where Ti,t,τ :=

∑t
s=max{t−τ+1,1} 1{is = i} is the number of times arm ai

has been selected in the last min{t, τ} rounds, and Si,t,τ :=
∑t

s=max{t−τ+1,1} xi,s1{is = i}
is the cumulative reward collected by arm ai in the last min{t, τ} rounds.7 Once computed
the distributions πi,t (Line 4), from each one of them, we draw a random sample ϑi,t, also
known as Thompson sample (Line 5). Finally, we select arm ai with the highest sample
ϑi,t for this round (Line 6). The extension of the SW-TS algorithm to the case where the
rewards Xi,t comes from other bounded distributions is similar to what proposed for the
classical TS algorithm, as showed by Chapelle and Li (2011) and Agrawal and Goyal (2012),
given that conjugate prior/posterior distributions for the expected rewards of the arms are
available.

4.2 Finite-Time Analysis in the Abruptly Changing Setting

We provide a finite-time analysis of the dynamic pseudo-regret achieved by the SW-TS
algorithm, in the AC-MAB setting introduced in Section 3.1.

6. We report the proofs of our theoretical results in Appendix B, Appendix C, and Appendix D, respectively.
7. To avoid an excessively cumbersome notation, we omit the subscript τ in all the terms depending on the

choice of τ , e.g., πi,t.
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Theorem 1. If the SW-TS policy is run over an AC-MAB setting with Xi,t ∼ Be(µi,t), for
every τ ∈ N, the dynamic pseudo-regret after N rounds is at most:

RN (U) ≤
K∑
i=1

[
τBNα +

BN∑
φ=1

∆i,φ
Nφ

τ

(
52 log τ

∆2
i,φ

+ log τ + 5 +
19

log τ

)]
,

where B and α are defined in Assumption 1 and ∆i,φ := µi∗,φ−µi,φ is the difference between
the expected reward µi∗,φ of the best arm ai∗φ and the expected reward µi,φ of arm ai during
phase Fφ. By defining:

∆i := min
φ∈{1,...,BN}

∆i,φ1{i 6= i∗φ},

for all i ∈ {1, . . . ,K}, i.e., the minimum over all the phases Fφ of the difference of the
expected rewards ∆i,φ, the dynamic pseudo-regret can be written as:

RN (U) ≤ τKBNα +
N

τ

K∑
i=1

(
52 log τ

∆i
+ log τ + 5 +

19

log τ

)
.

From this general result we derive two corollaries for the cases in which we have a
number of breakpoints BN which is either sublinear or linear w.r.t. the time horizon N .

Corollary 1. If the SW-TS policy is run over an AC-MAB setting in which Assumption 1

holds with α ∈ [0, 1) and using a sliding window τ ∝ N 1−α
2 , the dynamic pseudo-regret is:

RN (U) = Õ(N
1+α

2 ).

Notice that the size of the sliding window prescribed by Corollary 1 decreases as the
parameter α increases, meaning that, in settings in which we have a large number of break-
points, we should use a short sliding window. In particular, if Assumption 1 holds for α = 0,
meaning that the number of breakpoints is constant w.r.t. the time horizon, and we use a
sliding window τ ∝

√
N , the order of the dynamic pseudo-regret is Õ(

√
N). Interestingly,

even in the basic setting with a single breakpoint (α = 0 and BN = 1) and two arms, the
sliding window approach outperforms classical MAB algorithms for stationary settings, e.g.,
UCB1. Indeed, MAB algorithms for stationary settings would suffer from Ω(

√
N) dynamic

pseudo-regret in the second phase, in addition to the regret due to the first phase.8

Conversely, if Assumption 1 holds with α = 1, and consequently with B < 1, the above
bound would provide a linear upper bound on the dynamic pseudo-regret over the time
horizon. In this case, the interest is in bounding the average pseudo-regret, as stated in the
following corollary.

Corollary 2. If the SW-TS policy is run over an AC-MAB setting in which Assumption 1

holds with α = 1, 0 < B < 1, and using a sliding window τ ∝
√

log( 1
B )

B , the average
pseudo-regret is:

ARN (U) = O(
√
−B logB).

8. For instance, be given two arms a1, a2 and a breakpoint b1 = N/2 in which the expected values of the
arms switch (e.g., a1 is better than a2 before N/2 and worse after). After N/2, O(

√
N) pulls of a1 are

required before the upper confidence bound of a2 is higher than that one of a1. It is easy to see that, in
this situation, the algorithm suffers from a dynamic pseudo-regret of at least Ω(

√
N).
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Finally, we remark that the bound provided in Theorem 1 has the order of O(logN)
when we have a single phase and τ = T , i.e., in such a setting we have Nφ = T , BN = 0
and Assumption 1 holds when B = 0. Such a result is consistent with the upper bounds
on the expected pseudo-regret of Thompson Sampling algorithm provided by Kaufmann
et al. (2012b) and Agrawal and Goyal (2012).

4.3 Finite-Time Analysis in the Smoothly Changing Setting

We provide a finite-time analysis of the dynamic pseudo-regret achieved by the SW-TS
algorithm, in the SC-MAB setting introduced in Section 3.2.

Theorem 2. If the SW-TS policy is run over a SC-MAB setting with Xi,t ∼ Be(µi,t),
Lipschitz constant σ > 0 and there exists ∆0 ∈ (0, 1) as in Assumption 3, for any τ ∈ N
s.t. 2στ < ∆ ≤ ∆0, the dynamic pseudo-regret after N rounds is at most:

RN (U) ≤ F∆Nβ +
NK

τ

[
52 log τ

(∆− 2στ)2
+ log τ + 5 +

19

log τ

]
+

+K

[
52 log τ

(∆− 2στ)2
+ 3 +

19

log τ

]
.

The dependence of the dynamic pseudo-regret on the factor N
τ is similar to the result

obtained by Combes and Proutiere (2014) and Garivier and Moulines (2008) for frequentist
algorithms. In what follows, depending on the value of the parameter β in Assumption 3,
we can show that either the dynamic pseudo-regret of the SW-TS algorithm is sublinear in
the time horizon N or it is linear.

Depending on the characteristic of the specific SC-MAB setting, we can provide differ-
ent results in terms of dynamic pseudo-regret once we fix the sliding window size. More
specifically, one of the parameter characterizing the dynamic pseudo-regret is P , i.e., the
number of times that the expected rewards of a couple of arms switch over the time horizon,
or formally:

P = |{t ∈ {1, . . . , N − 1} s.t. ∃i 6= j(µi,t − µj,t)(µi,t+1 − µj,t+1) < 0}|.

If we do not have any switch between the expected rewards of the arms, we can ensure
the following.

Corollary 3. If the SW-TS policy is run over an SC-MAB setting with no switches be-
tween expected rewards of the arms (P = 0), in which Assumption 3 holds with β ∈
[1 − logN

(
∆
2σ

)
, 1], and using a sliding window τ := N1−β, for each ∆ ≤ ∆0 the dynamic

pseudo-regret is at most:
RN (U) = Õ(Nβ).

Notice that, as the parameter β increases, the sliding window size prescribed by Corol-
lary 3 reduces. Intuitively, this is due to the fact that settings with a large value of β present
a large number of rounds in which two arms are hard to be distinguished, i.e., the difference
between their expected rewards is smaller than ∆. This fact, in its turn, also shortens the
phases in which the bandit algorithm is capable of properly operating and implies the use
of a shorter sliding window. In particular, it is easy to prove that, if Assumption 3 holds
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with β = 0, meaning that we have σ ≤ ∆
2N , we would have an SC-MAB setting in which the

expected rewards do not switch over time. Therefore, using the prescribed time window of
τ = N provides a logarithmic dynamic pseudo-regret.

Conversely, if we have at least one switch between the expected reward of the arms, the
result on the dynamic pseudo-regret upper bound requires a further condition on the values
of β to hold. More formally, we have the following:

Corollary 4. If the SW-TS policy is run over an SC-MAB setting with P ∈ N switches
between expected rewards of the arms, in which Assumption 3 holds with:

β ∈
[

max

{
1− logN

(
∆

2σ

)
,
1

2
− logN

√
F∆

P

}
, 1

]
,

where max{a, b} denotes the maximum between a and b, and using a sliding window τ :=
N1−β, F is defined in Assumption 3, for each ∆ ≤ ∆0 the dynamic pseudo-regret is at
most:

RN (U) = Õ(Nβ).

If Assumption 1 holds with β = 1, the above corollaries provide an upper bound on the
dynamic pseudo-regret, which is linear in the time horizon N , similarly to what provided
by Combes and Proutiere (2014). Nonetheless, we can bound the average pseudo-regret as
follows.

Corollary 5. If the SW-TS policy is run over an SC-MAB setting in which Assumption 3
holds with β = 1 and using a sliding window τ ∝ σ− 3

4 , the average pseudo-regret is:

ARN (U) = Õ(σ
1
2 ).

Finally, if we have a stationary environment, i.e., σ = 0, we are able to find ∆
s.t. |F∆,N | = 0 and, therefore, we have that β = 0. Choosing a sliding window τ = N ,
Theorem 2 provides an upper bound over the expected pseudo-regret of order O(logN),
as it happens in the classical MAB literature, as discussed by Auer et al. (2002) and Auer
et al. (2012b).

4.4 Finite-Time Analysis in the Abruptly and Smoothly Changing Setting

In this section, we provide theoretical guarantees of SW-TS in both the AC-MAB and
SC-MAB settings. The main result follows.

Theorem 3. If the SW-TS policy is run over an ASC-MAB setting with Xi,t ∼ Be(µi,t),
Lipschitz constant σ > 0 as in Assumption 4 and there exists ∆0 ∈ (0, 1) as in Assumption 3,
for any τ ∈ N s.t. 2στ < ∆ ≤ ∆0, the dynamic pseudo-regret after N rounds is at most:

RN (U) ≤ F∆Nβ + τBNα +
NK

τ

[
52 log τ

(∆− 2στ)2
+ log τ + 5 +

19

log τ

]
,

where B and α are defined in Assumption 1 and F and β are defined in Assumption 3.
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Similarly to what has been done in the other two scenarios, we provide the order of the
derived upper bounds when the sliding window length τ has been set properly, depending
on the values of the parameters α and β and the number of times the expected rewards
switch P .

Corollary 6. If the SW-TS policy is run over an ASC-MAB setting with no switches
between expected rewards of the arms (P = 0) and Assumption 1 and Assumption 3 hold
with α ∈ (1− 2 logN

(
∆
2σ

)
, 1) and β ∈ (0, 1), respectively, for each ∆ ≤ ∆0, using a sliding

window of τ := N
1−α

2 , the dynamic pseudo-regret is at most:

RN (U) =

{
Õ
(
N

1+α
2

)
if β ≤ 1+α

2

Õ
(
Nβ
)

if β > 1+α
2

.

Conversely, in the case we have some switches between the expected rewards over time,
we require further conditions on the parameters α and β.

Corollary 7. If the SW-TS policy is run over an ASC-MAB setting with P ∈ N switches
between expected rewards of the arms, and Assumption 1 and Assumption 3 hold with α ∈
(1 − 2 logN

(
∆
2σ

)
, 1) and β ∈ (0, 1), respectively, for each ∆ ≤ ∆0, using a sliding window

of τ := N
1−α

2 , if β + α
2 ≥ 1

2 − logN
(
F∆
P

)
holds, the dynamic pseudo-regret is at most:

RN (U) =

{
Õ
(
N

1+α
2

)
if β ≤ 1+α

2

Õ
(
Nβ
)

if β > 1+α
2

.

Intuitively, the results in Corollaries 6 and 7 state that, depending on which form of non-
stationarity dominates, we have two different orders of dynamic pseudo-regret dependent
on either α or β.

Similarly to the other two settings (AC-MAB and SC-MAB), if α = 1 and β = 1,
Theorem 3 provides an upper bound over the dynamic pseudo-regret over the time horizon
N . Conversely, it is possible to bound the average pseudo-regret as follows:

Corollary 8. If the SW-TS policy is run over an SC-MAB setting in which Assumption 1
holds with α = 1, Assumption 3 holds with β = 1, and using a sliding window τ ∝ B− 1

4σ−
3
4 ,

the average pseudo-regret is:

ARN (U) = Õ(B
1
2σ

1
2 ).

The asymptotic order of SW-TS in the ASC-MAB setting upper bound reduces to the
one of Theorem 2 in the case we have B = 0, i.e., we are in an SC-MAB setting. If we apply
the bound in Theorem 3 for the AC-MAB setting, in which we have σ = 0 and by fixing
∆ = mini ∆i we have |F∆,N | = 0, thus F = 0, we obtain a slightly less accurate bound
in terms of ∆ than the one provided in Theorem 1. Nonetheless, the bound presents the
same order in terms of N and τ . Finally, if we are in a stationary setting, i.e., F = B = 0,
the bound over the expected pseudo-regret reduces to the order of the one provided by
the Thompson Sampling algorithm, analyzed by Kaufmann et al. (2012b) and Agrawal and
Goyal (2012).
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Figure 1: AC-MAB: average dynamic pseudo-regret R̄t(U) and 95% confidence intervals.
Settings with K = 10 arms and time horizon N = 104 (a), and with N = 105 (b).

5. Experimental Evaluation

We experimentally evaluate our algorithm w.r.t. the state-of-the-art passive algorithms with
theoretical guarantees in terms of pseudo-regret performance in the AC-MAB, SC-MAB,
and ASC-MAB settings. In particular, we compare SW-TS with Thompson Sampling (TS)
by Thompson (1933) to evaluate the improvement obtained thanks to the employment of a
sliding window τ . Furthermore, we compare SW-TS with REXP3 by Besbes et al. (2014),
SW-UCB by Garivier and Moulines (2008), SW-KL-UCB by Combes and Proutiere (2014)
and SER4 by Allesiardo et al. (2017) to evaluate the improvement obtained thanks to the
adoption of Bayesian methods vs. frequentist ones in non-stationary settings.9 The figures
of merit we consider are the dynamic pseudo-regret RN (U), as defined in Equation (1),
and the corresponding 95% confidence intervals (reported in the figures as semi-transparent
areas) computed over 100 independent runs, if not specified otherwise. Finally, we perform
a sensitivity analysis on the two parameters whose knowledge is required by the SW-TS
algorithm, specifically α and β.

5.1 Abruptly Changing MAB Setting

Experimental Setting We use a time horizon N ∈ {104, 105, 106} and a number of arms
K ∈ {5, 10, 20, 30}. We split the time horizon N into four phases of equal length. The
expected value µi,φ is chosen randomly for every arm ai during each phase. In particular,
after every breakpoint, the expected value µi,φ of each arm ai is drawn from a uniform
probability distribution over [0, 1], thus assuring that there is never the same optimal arm
in two different phases, i.e., ai∗φ 6= ai∗

φ′
, ∀φ, φ′ with φ 6= φ′. For the sake of comparison, we

choose a sliding window τ = 4
√
N log(N) as is discussed by Garivier and Moulines (2008).

We generate 10 configurations for every combination of N and K as discussed above, and

9. If not specified otherwise, the parameters of REXP3 and SER4 are set as in Corollary 3 provided
by Allesiardo et al. (2017) and Theorem 2 provided by Besbes et al. (2014), respectively, since these
values allow the two algorithms to have sublinear regret.
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Table 2: AC-MAB: average dynamic pseudo-regret R̄N (U) and 95% confidence intervals.
Best results on average have been highlighted in boldface.

N

104 105 106

K

5

TS 1317±52.89 12857±425.68 114476±4836.98

SER4 2494±37.63 25601±513.99 238034±4323.34

REXP3 1451±13.70 8448±55.21 42561±212.75

SW-UCB 824±66.80 5687±814.94 32939±7587.28

SW-KL-UCB 344±7.57 1570±31.51 6248±145.51

SW-TS 437±13.37 1467±30.45 4904±39.00

10

TS 1251±26.90 10927±315.30 98312±4168.24

SER4 3151±34.63 31454±499.91 279232±6504.65

REXP3 1913±17.85 12170±108.38 61978±345.25

SW-UCB 1116±68.46 8143±872.37 49537±6191.14

SW-KL-UCB 469±7.98 2197±45.54 8601±162.32

SW-TS 470±8.82 1632±32.85 5493±92.67

20

TS 1130±30.91 8864±139.77 69919±2447.98

SER4 3684±26.76 33293±167.89 293844±3038.42

REXP3 2480±17.27 16134±93.65 83042±337.96

SW-UCB 1405±57.44 11789±503.34 68751±6651.74

SW-KL-UCB 652±6.70 3086±48.22 11921±315.74

SW-TS 536±10.26 1858±26.82 6156±149.64

30

TS 1016±35.55 7714±170.92 61979±2001.15

SER4 3922±19.23 33622±212.29 285382±1727.97

REXP3 2712±22.37 18432±100.09 96851±378.67

SW-UCB 1566±60.42 12271±804.93 82006±8424.70

SW-KL-UCB 770±19.79 3858±84.94 15287±233.75

SW-TS 575±12.20 2067±35.65 7123±96.46

we provide the results averaged over the configurations and over 100 independent trials for
each configuration.

Results The numerical results in terms of RN (U) are reported in Table 2. For every
combination of N and K, we highlight in bold the minimum value of RN (U) achieved.
SW-TS outperforms the other algorithms in all the configurations except for the setting
with N = 104 and K = 5 where SW-KL-UCB outperforms SW-TS. In the setting with
N = 104 and K = 10 there is no statistical evidence to determine which algorithm is
the best between SW-TS and SW-KL-UCB since the 95% confidence intervals overlap.
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Figure 2: SC-MAB: examples of evolution of the expected reward µi,t of the arms over time.
Settings with N = 104, K = 5 (a), and N = 105, K = 10 (b).

In Figure 1, we report the results for the settings with K = 10 as t varies. It can be
observed that, with N = 104 (Figure 1a), the performance of SW-TS and SW-KL-UCB
are similar. However, the regret obtained by the algorithms is almost linear, suggesting
that the algorithms are not able to learn since the problem is excessively hard. With a
longer time horizon of N = 105 (Figure 1b), the sliding window τ becomes larger (we recall
that we use a τ depending on N), as well as the length of the phases and, thus, SW-TS
outperforms SW-KL-UCB. The SW-TS suffers from a larger regret when we enter a new
phase, e.g., around t = 5 · 104, but once the sliding window discards the samples coming
from the previous phase SW-TS can learn faster than other algorithms, which is exemplified
by the lower slope of the regret between t = 6 · 104 and t = 7 · 104.

5.2 Smoothly Changing MAB Setting

Experimental Setting We use a time horizon N ∈ {104, 105, 106} and a number of arms
K ∈ {5, 10, 20, 30}. We replicate the experimental setting of Combes and Proutiere (2014),
where the expected value µi,t of arm ai changes according to the following function:

µi,t =
K − 1

K
− |w(t)− i|

K
,

w(t) = 1 +
(K − 1)(1 + sin(tσ))

2
.

Examples of the evolution over time of the expected reward of the arms are presented in
Figure 2.

We use two different sliding window lengths. In the first case, we use the values of the
parameters τ and σ prescribed by our theoretical results. In particular, with the above
experimental setting, Assumption 3 is satisfied for every value of N ∈ {104, 105, 106} when
β = 1

2 and σ = 0.0001.10 Such a value of β leads to τ =
√
N . In the second case, we

10. Details on the conditions for which Assumption 3 is satisfied are provided in Appendix E.
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Table 3: SC-MAB with τ =
√
N : average dynamic pseudo-regret R̄N (U) and 95% confi-

dence intervals. Best results on average have been highlighted in boldface.

N

104 105 106

K

5

TS 218±41.94 11995±562.73 161933±3767.54

SER4 1787±6.61 22398±61.49 212095±309.93

REXP3 957±16.58 11141±58.95 111403±169.79

SW-UCB 1624±62.40 6560±49.31 34615±160.23

SW-KLUCB 987±13.79 7407±50.99 40190±165.42

SW-TS 608±15.43 3330±40.60 16403±117.46

10

TS 520±42.19 13253±579.05 169850±4434.77

SER4 2206±14.66 26094±145.80 242464±498.22

REXP3 1253±19.36 14391±63.09 144581±199.42

SW-UCB 3424±105.37 36622±314.36 80256±4375.85

SW-KLUCB 1289±12.56 11009±50.77 64518±179.97

SW-TS 922±16.18 5529±49.82 28258±149.82

20

TS 549±26.74 12843±390.73 173140±2772.27

SER4 2361±32.85 27286±259.41 258380±1039.26

REXP3 1470±16.91 17334±67.77 174065±219.54

SW-UCB 4466±202.74 45089±353.93 448649±155.59

SW-KLUCB 1330±12.17 13630±38.60 89442±157.88

SW-TS 1180±15.48 7971±49.70 44186±154.32

30

TS 581±26.29 12483±297.63 172305±2205.39

SER4 2480±23.17 27872±354.54 279190±1680.75

REXP3 1607±14.59 18854±59.28 189734±178.99

SW-UCB 4348±329.65 47586±911.96 462611±443.20

SW-KLUCB 1638±11.92 14603±37.31 102707±126.91

SW-TS 1339±11.49 9595±39.76 54298±124.20

use the value of the parameter τ used by Combes and Proutiere (2014) to provide a direct

comparison between the SW-TS and SW-KLUCB algorithms. Thus, we set τ = σ−
4
5 . Let

us notice that such a choice is not optimal for SW-TS according to our theoretical results.
Furthermore, we do not set σ equal to a fixed value, but we evaluate the performance of the
algorithms as σ varies. In both cases, we average the results over 100 independent trials for
every combination of N , K and σ.

Results First, we analyze the results for the settings with τ =
√
N . The numerical results

in terms of R̄N (U) are reported in Table 3. The SW-TS algorithm outperforms all the other
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Figure 3: SC-MAB: average dynamic pseudo-regret R̄t(U) and 95% confidence intervals.
Settings with K = 5 arms and time horizon N = 104 (a), and N = 105 (b).

ones, except for the case with N = 104, in which SW-TS achieves the best performance
w.r.t. the other algorithms using a sliding window, but it is not able to outperform TS. The
reason behind this behaviour lies in the fact that, with such a small value of σ, the optimal
arm remains the same until round t = 5 ·103 and it is not convenient to use a sliding window
approach. Conversely, if we have longer time horizons, the optimal arm changes more often.
In particular, with N = 105, we have 14 changes of the optimal arm, and the performance
of TS becomes the worst. In Figure 3a, we report the dynamic pseudo-regret R̄t(U) of the
analysed algorithms as t varies in the case with N = 104. It can be observed that, when
the optimal arm changes, there is a worsening in the dynamic pseudo-regret performance
of TS. However, no sliding window algorithm can achieve its performance. Conversely, as
it can be observed in Figure 3b, when N = 105, TS is outperformed by almost all the other
algorithms, and this is because the optimal arm changes multiple times. Even if TS and
SW-TS share similar behaviours in the very first rounds, the use of a sliding window allows
SW-TS to provide the best performance on a longer time horizon.

Second, we analyze the results for the settings with τ = σ−
4
5 . The results in terms of

dynamic pseudo-regret R̄N (U) are reported in Table 4 for the experiments with σ = 10−3.
We observe that SW-TS outperforms all the other algorithms, providing in every setting the
minimum R̄N (U) (highlighted in bold). In Figure 4, we report the dynamic pseudo-regret
R̄t(U) as t varies in the setting with N = 104, K = 10 and σ = 10−3. It can be observed
that, in the first 4 · 103 rounds, TS outperforms SW-KL-UCB, but, subsequently, thanks to
the use of a sliding window, SW-KL-UCB forgets the past and improves its performance.
Instead, SW-TS outperforms all the other algorithms for the whole time horizon. Notably,
REXP3 achieves performance similar to the one of TS, while TS outperforms SW-UCB even
if this latter algorithm employs a sliding window approach. Finally, in Figure 5, we report
the dynamic pseudo-regret R̄N (U) as σ varies in the setting with N = 104. We observe
that SW-TS outperforms all the other algorithms for each value of σ. As the number of
arms K increases from K = 5 to K = 30, the performance of REXP3 and SW-KL-UCB
gets worse and, with σ = 0.01, TS (without sliding window) outperforms both REXP3 and
SW-KL-UCB. The setting with the other values of N , K and σ, are not reported since they
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Table 4: SC-MAB with τ = σ−
4
5 : average dynamic pseudo-regret R̄N (U) and 95% con-

fidence intervals. Setting with σ = 10−3. Best results on average have been
highlighted in boldface.

N

104 105 106

K

5

TS 1374±41.16 22965±186.32 211996±209.56

REXP3 1094±6.49 11915±21.08 118999±96.21

SW-UCB 677±8.24 7533±127.33 92532±4929.63

SW-KL-UCB 752±7.18 8249±35.44 82469±317.70

SW-TS 423±8.14 4629±33.14 46291±269.55

10

TS 1419±36.45 25969±276.69 266539±210.95

REXP3 1426±7.70 15505±23.81 155050±92.10

SW-UCB 3247±27.03 41238±43.84 422468±38.42

SW-KL-UCB 1093±7.75 11973±31.21 119631±238.20

SW-TS 690±8.03 7664±30.12 76583±199.37

20

TS 1442±29.13 26623±226.21 292824±228.08

REXP3 1727±6.89 18863±22.90 188579±65.92

SW-UCB 3987±41.67 45247±38.81 458502±41.66

SW-KL-UCB 1321±7.02 14507±26.76 145215±134.47

SW-TS 944±6.95 10413±24.59 104074±88.18

30

TS 1401±26.42 26887±201.09 302460±219.72

REXP3 1887±6.92 20529±24.08 205269±93.17

SW-UCB 4144±71.81 46490±69.65 470566±70.75

SW-KL-UCB 1383±8.81 15121±25.55 151357±90.92

SW-TS 1104±7.30 12107±21.06 120868±71.62

provide results in line with what has been presented before, in which SW-TS outperforms
state-of-the-art algorithms.

5.3 Abruptly and Smoothly Changing MAB Setting

Experimental Setting We use a time horizon N ∈ {104, 105, 106} and a number of arms
K ∈ {5, 10, 20, 30}. For each setting, we generate the expected reward of the arms µi,t as
follows. We split the time horizon N into four phases Fφ of equal length and the set the
expected value µi,t of arm ai according to the following function:

µi,t =
K − 1

K
− |w(t)− i|

K
,
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Figure 4: SC-MAB with τ = σ−
4
5 : average dynamic pseudo-regret R̄t(U) and 95% confi-

dence intervals. Setting with number of arms K = 10, time horizon N = 104, and
σ = 10−3.
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Figure 5: SC-MAB with τ = σ−
4
5 : average dynamic pseudo-regret R̄N (U) and 95% con-

fidence as the value of σ varies. Setting with number of arms K = 5 (a) and
K = 30 (b), time horizon N = 104.

w(t) = 1 +
(K − 1)(1 + sin(tσ + N(φ−1)

4 ))

2
,

where φ ∈ {1, . . . , 4} represents the index of the phase. Note that the presence of the
second term in the argument of the sine induces an abrupt change at the beginning of each
phase by shifting the argument of the sine by an amount proportional to the time horizon
N : after the first breakpoint, we shift of an number of rounds of N

4 ; after the second one,
N
2 of N ; after the third one, 3N

4 . As in Section 5.2, we run a set of experiments using

both a sliding window τ =
√
N and σ = 0.0001, and a sliding window τ = σ−

4
5 and

σ ∈ {0.001, 0.002, . . . , 0.01}. In both cases, we average the results over 100 independent
trials for every combination of N , K and σ.
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Table 5: ASC-MAB with τ =
√
N : average dynamic pseudo-regret R̄N (U) and 95% con-

fidence intervals. Setting with σ = 10−4. Best results on average have been
highlighted in boldface.

N

104 105 106

K

5

TS 416±42.09 11598±294.55 155795±3325.74

SER4 2136±10.24 22894±63.04 211904±386.48

REXP3 984±18.45 11428±55.26 111657±166.40

SW-UCB 1424±80.93 6565±58.97 34832±162.74

SW-KLUCB 991±16.66 7367±51.78 40395±171.51

SW-TS 587±15.28 3376±51.61 16546±143.17

10

TS 513±33.02 13322±399.70 166233±4166.45

SER4 2677±28.61 26590±163.43 243132±652.63

REXP3 1391±20.59 14652±65.30 144851±231.14

SW-UCB 3807±146.66 51669±13.16 82394±5545.59

SW-KLUCB 1434±15.94 10994±42.74 64783±166.04

SW-TS 967±15.41 5512±47.74 28539±143.63

20

TS 598±30.29 13099±243.57 172319±3124.95

SER4 2832±56.99 28280±242.18 258039±1055.98

REXP3 1664±18.84 17838±62.91 173867±198.21

SW-UCB 5085±229.91 56948±35.71 450598±200.35

SW-KLUCB 1544±12.00 13718±40.59 89463±139.87

SW-TS 1280±12.89 8017±52.56 44306±115.80

30

TS 589±21.37 12854±288.97 171534±2879.85

SER4 2929±48.64 29651±457.64 278093±1590.27

REXP3 1833±18.58 19585±53.51 189882±189.03

SW-UCB 4819±418.89 59078±38.20 464238±565.19

SW-KLUCB 1882±14.16 14718±33.40 102637±138.04

SW-TS 1471±13.06 9612±41.48 54363±134.34

Results The results for both settings are similar to the ones presented in Section 5.2,
suggesting that the abrupt changes not affect the dynamic pseudo-regret if the expected
values of the arms are smoothly changing.

The numerical results in terms of dynamic pseudo-regret R̄N (U) with τ =
√
N are

reported in Table 5 for the experiments with σ = 10−4. We observe that SW-TS outperforms
all the other algorithms except for the case with N = 104, in which TS is the algorithm with
the lowest dynamic pseudo-regret. The reason behind this behaviour lies in the fact that,
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Table 6: ASC-MAB with τ = σ−
4
5 : average dynamic pseudo-regret R̄N (U) and 95% con-

fidence intervals. Setting with σ = 10−3. Best results on average have been
highlighted in boldface.

N

104 105 106

K

5

TS 1252±39.02 23163±305.47 211871±380.91

SER4 2253±9.44 23133±55.87 226316±294.62

REXP3 1661±14.75 17517±42.07 175080±115.16

SW-UCB 684±15.74 7451±74.99 90968±7174.24

SW-KLUCB 754±9.62 8232±50.02 83436±359.15

SW-TS 470±11.90 4645±54.85 47197±298.63

10

TS 1370±39.51 26078±384.97 266289±283.49

SER4 2745±23.31 29277±99.78 299947±456.21

REXP3 2063±12.45 21719±49.39 217066±140.36

SW-UCB 4736±62.98 41371±76.94 423199±99.35

SW-KLUCB 1090±11.15 11958±48.21 120388±218.01

SW-TS 728±11.76 7630±47.36 77302±207.19

20

TS 1394±41.43 26573±341.85 292356±328.06

SER4 3107±21.22 34016±46.53 341214±164.83

REXP3 2389±14.57 25122±46.73 251113±143.90

SW-UCB 5309±4.98 45305±77.67 459211±75.73

SW-KLUCB 1345±9.73 14479±36.84 145437±133.78

SW-TS 980±9.92 10420±34.53 104146±107.82

3
0

TS 1401±27.51 26713±326.58 301882±317.67

SER4 3252±13.63 35227±22.46 352542±78.03

REXP3 2558±12.68 26911±40.75 268738±126.13

SW-UCB 5513±4.21 46429±132.47 471276±0.00

SW-KLUCB 1418±11.11 15161±37.74 151120±143.85

SW-TS 1136±10.84 12102±32.18 120625±115.00

with such a small value for σ, the optimal arm remains the same until round t = 5 ·103, and,
therefore, it is not convenient to use a sliding window approach. Conversely, with longer
time horizons, the optimal arm changes multiple times, and the performance of TS gets
worse.

The results in terms of R̄N (U) with τ = σ
4
5 are reported in Table 6 for the experiments

with σ = 10−3, and confirm the superior performance showed by the SW-TS algorithms in
the SC-MAB setting.
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6. Sensitivity Analysis

In this section, we present the results of the sensitivity analysis for parameter α in the
AC-MAB when the sliding window is set as prescribed by Corollary 1, and for parameter
β in the SC-MAB when the sliding window is set as prescribed by Corollary 3.

6.1 Abruptly Changing MAB Setting

Experimental Setting We compare the performance of the SW-TS algorithm using

different sliding windows τ = N
1−α

2 with α ∈ A, where A = {−1,−0.95, . . . , 0.95, 1}.
We use the same set of arms K ∈ {5, 10, 20, 30} previously used in Section 5.1, and a
more fine-grained set of time horizons N ∈ {104, 105, 2 · 105, 3 · 105, . . . , 9 · 105, 106}. The
different configurations of expected values µi,φ for each arm ai are generated as described
in Section 5.1. The results are averaged over these configurations and over 100 independent
trials for each configuration. In addition to the sensitivity analysis w.r.t. α, we also show
the change in terms of cumulative per-round pseudo-regret R̂N := R̄N (U)/N as the value
of α varies.

Results In Figure 6, we report the values of α (denoted with α∗ and using the solid
red line), minimizing the dynamic pseudo-regret R̄N (U), as the length of the time horizon
N varies. We also report the value of α (denoted with α0 and using the solid blue line)
prescribed by Corollary 1; in this case, α0 = 0. For a better comprehension of how the
dynamic pseudo-regret increases as α gets far from the optimal α∗, we also plot the values
of α corresponding to an increase of 50%, 100% and 200% of the dynamic pseudo-regret
R̄N (U) w.r.t. the one achieved with α∗. These curves are denoted with α50%, α100% and
α200%, respectively, and are reported using dashed lines (notice that we have two curves for
every α%, one for α larger than α∗ and another for α smaller than α∗; the curves above
α = 1 and below α = −1 are omitted). It can be observed that, when using α0, the increase
in terms of dynamic pseudo-regret is always lower than 50% w.r.t the dynamic pseudo-
regret achieved with α∗, α0 being always between the two curves corresponding to α50%.
Moreover, α∗ always corresponds to a negative value, suggesting that, on average, a sliding
window τ longer than the one obtained with α0 is preferable in these settings.

In Figure 7, for every number K of arms, we show the curves of the per-round pseudo-
regret R̂N for every different value of the time horizon N as the value of α varies. The
minimum of each curve corresponds to α∗ for the considered time horizon N . It can also
be observed that the minimum per-round pseudo-regret is always achieved with almost the
same value of α ≈ −0.4. Moreover, R̂N grows faster moving from α∗ to larger values of α
rather than to smaller values of α, thus suggesting that underestimating the value of α to
use in the algorithm, and therefore overestimating the length of the sliding window, is safer
than overestimating it.

In Figure 8, for every value of the time horizon N , we show the curves of the per-
round pseudo-regret R̂N for every different number K of arms as the value of α varies.
The minimum of each curve corresponds to α∗ for the considered number of arms K. We
observe that the value of α∗ decreases as the number K of arms increases. Intuitively, this
behavior is due to the fact that, when SW-TS has more arms to play, it also needs to collect
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Figure 6: AC-MAB: values of α providing the best dynamic pseudo-regret (α∗), the best
dynamic pseudo-regret increased by 50% (α50%), by 100% (α100%), and by 200%
(α200%) as the time horizon N varies; α0 is the value prescribed by Corollary 1.

more samples for each arm in order to identify which is the optimal arm and, consequently,
a larger sliding window τ is preferable.

333
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Figure 7: AC-MAB: per-round pseudo-regret R̂N as the value of α ∈ A varies for every
value of the time horizon N and every different number of arms K.
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Figure 8: AC-MAB: Per-round pseudo-regret R̂N as the value of α ∈ A varies for every
number of arms K and every different length of the time horizon N .
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Trovò, Paladino, Restelli, & Gatti

6.2 Smoothly Changing MAB Setting

Experimental Setting We compare the performance of the SW-TS algorithm using

different sliding windows τ = N
1−β

2 with β = B, where B = {−1,−0.95, . . . , 0.95, 1}. We
use the same set of arms K ∈ {5, 10, 20, 30} previously used in Section 5.1, and a time
horizon with a length in N ∈ {104, 105, 106}. The expected value of the rewards µi,t for
arm ai changes as described in Section 5.2.

Results In Figure 9, we report the values of β (denoted with β∗ and using the solid
red line), minimizing the dynamic pseudo-regret R̄N (U), as the length of the time horizon
N varies. We also report the value of β (denoted with β0 and using the solid blue line)
prescribed by Corollary 3; in this case, β0 = 0. For a better comprehension of how the
dynamic pseudo-regret increases as β gets far from the optimal β∗, we also plot the values
of β corresponding to an increase of 50%, 100% and 200% of the dynamic pseudo-regret
R̄N (U) w.r.t. the one achieved with β∗. These curves are denoted with β50%, β100% and
β200% and are reported using dashed lines. It can be observed that, when using β0, the
increase in terms of dynamic pseudo-regret is always lower than the 50% w.r.t. the dynamic
pseudo-regret achieved with β∗, β0 being always between the two curves corresponding to
β50%. As in the analysis for the parameter α, we notice that β∗ always corresponds to a
negative value, suggesting that a sliding window τ longer than the one obtained with β0 is
preferable.

In Figure 10, for every number K of arms, we show the curves of the per-round pseudo-
regret R̂N for every different value of the time horizon N as the value of β varies. The
minimum of the curves corresponds to β∗ for the considered time horizon N . It can also
be observed that the minimum per-round pseudo-regret is always achieved with a value of
β ≈ −0.2. Moreover, R̂N grows faster moving from β∗ toward larger values of β rather
than towards smaller values of β. Such behavior suggests that, in practice, using a sliding
window τ slightly longer than the one of the optimal β∗ is preferable w.r.t. a slightly smaller
one.

In Figure 11, for every value of the time horizon N , we show the curves of the per-
round pseudo-regret R̂N for every different number K of arms as the value of β varies. The
minimum of the curves corresponds to β∗ for the considered number of arms K. We observe
that the larger the number of arms K, the lower the value of β∗, which is in line with what
has been observed for parameter α.

7. Conclusions and Future Work

In this paper, we study the non-stationary Multi-Armed Bandit problem, investigating set-
tings in which two different forms of non-stationarity are present: the abruptly changing one,
namely AC-MAB, in which the expected reward of the arm remains the same for sequences
of rounds, and it changes at unknown rounds, and the smoothly changing one, namely
SC-MAB, in which the expected reward of every arm continuously changes over rounds in
a smooth way. Besides, we also study the setting in which both the non-stationarity forms
coexist, namely ASC-MAB. We propose an algorithm, namely Sliding-Window Thompson
Sampling (SW-TS), which chooses the next arm to play on the basis of the information
collected in the last τ rounds. We derive an upper bound on the dynamic pseudo-regret

336



Sliding-Window Thompson Sampling for Non-Stationary Settings

0 2 · 105 4 · 105 6 · 105 8 · 105 1 · 106
−1

−0.5

0

0.5

1

N

β

K = 5

β0
β∗

β50%
β100%
β200%

(a)

0 2 · 105 4 · 105 6 · 105 8 · 105 1 · 106
−1

−0.5

0

0.5

1

N

β

K = 10

β0
β∗

β50%
β100%
β200%

(b)

0 2 · 105 4 · 105 6 · 105 8 · 105 1 · 106
−1

−0.5

0

0.5

1

N

β

K = 20

β0
β∗

β50%
β100%
β200%

(c)

0 2 · 105 4 · 105 6 · 105 8 · 105 1 · 106
−1

−0.5

0

0.5

1

N

β

K = 30

β0
β∗

β50%
β100%
β200%

(d)

Figure 9: SC-MAB: values of β providing the best dynamic pseudo-regret (β∗), the best
dynamic pseudo-regret increased by 50% (β50%), by 100% (β100%), and by 200%
(β200%) as the time horizon N varies; β0 is the value prescribed by Corollary 3.

for SW-TS when it is applied to one of the settings mentioned before. Finally, we present
a thorough experimental evaluation of the performance of the SW-TS algorithm separately
for the AC-MAB, SC-MAB, and ASC-MAB settings. We show that our algorithm signifi-
cantly outperforms state-of-the-art approaches for NS-MAB problems in terms of dynamic
pseudo-regret, achieving the lowest pseudo-regret in almost all the configurations we tested.
Future development of this work may consider an analysis of our algorithm in MAB prob-
lems with structure, e.g., the Unimodal MAB, in which the arm space presents a graph
structure, the case of continuous decision space as studied by Nuara, Trovó, Crippa, Gatti,
and Restelli (2020), and adversarial settings as studied by Marchesi, Trovó, and Gatti (2020)
and Bisi, Nittis, Trovò, Restelli, and Gatti (2017). Moreover, another research line we in-
tend to explore is the derivation of bounds depending on the characteristics of the abrupt
changes, such as their magnitude and their distribution over the time horizon.
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Figure 10: SC-MAB: per-round pseudo-regret R̂N as the value of β ∈ B varies for every
value of the time horizon N and every different number of arms K.

338



Sliding-Window Thompson Sampling for Non-Stationary Settings

−1 −0.5 0 0.5 1
0

0.1

0.2

0.3

β

R̂
N

N = 10000

K = 5
K = 10
K = 20
K = 30

(a)

−1 −0.5 0 0.5 1
0

0.1

0.2

0.3

β

R̂
N

N = 100000

K = 5
K = 10
K = 20
K = 30

(b)

−1 −0.5 0 0.5 1
0

0.1

0.2

0.3

0.4

β

R̂
N

N = 500000

K = 5
K = 10
K = 20
K = 30

(c)

−1 −0.5 0 0.5 1
0

0.1

0.2

0.3

0.4

β

R̂
N

N = 1000000

K = 5
K = 10
K = 20
K = 30

(d)

Figure 11: SC-MAB: per-round pseudo-regret R̂N as the value of β ∈ B varies for every
number of arms K and every different length of the time horizons N .
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Paladino, S., Trovò, F., Restelli, M., & Gatti, N. (2017). Unimodal Thompson Sampling
for graph-structured arms. In Proceedings of the AAAI Conference on Artificial In-
telligence, pp. 2457–2463.

Slivkins, A. (2011). Contextual bandits with similarity information. In Proceedings of the
Conference on Learning Theory (COLT), pp. 679–702.

Slivkins, A., & Upfal, E. (2008). Adapting to a changing environment: the Brownian restless
bandits. In Proceedings of the Conference on Learning Theory (COLT), pp. 343–354.

St-Pierre, D. L., & Jialin, L. (2014). Differential evolution algorithm applied to non-
stationary bandit problem. In Proceeding of the IEEE Congress on Evolutionary
Computation (CEC), pp. 2397–2403.

Thompson, W. R. (1933). On the likelihood that one unknown probability exceeds another
in view of the evidence of two samples. Biometrika, 25 (3), 285–294.
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Appendix A. Preliminaries

In this section, we introduce some lemmas that we use in the proofs of our main theorems.
At first, we recall the link shown by Agrawal and Goyal (2012), and cited by Kaufmann
et al. (2012b), between Beta and Bernoulli distributions, usually addressed in the literature
as the “Beta-Binomial trick”.

Lemma 1 (Agrawal & Goyal, 2012). Let us denote with FBeta
a,b the Cumulative Distribution

Function (CDF) of a Beta distribution Beta(a, b) with parameters a and b and with FB
n,µ

the CDF of a random variable with Binomial distribution Bi(n, µ) with parameters n and
µ. It is true that:

FBeta
a,b (y) = 1− FB

a+b−1,y(a− 1).

We introduce the following lemma that we use below to bound the number of times a
Thompson sample ϑi,t is drawn from a high quantile of the Beta distribution.

Lemma 2. Consider a random variable Beta with Beta distribution Beta(S+1, T −S+1),
where S :=

∑T
s=1Xs is the sum of T ∈ N Bernoulli trials Xs ∼ Be(µ) with same parameter

µ ∈ [0, 1]. Consider a finite integer τ ∈ N, τ > T , a parameter ε > 1
2 and:

uT :=
S

T
+

√
ε log τ

T
,

qT := Q

(
1− 1

τ

)
,

where Q(α) is the α-quantile of the random variable Beta. We have that qT ≤ uT .

Proof. Here, we use the inequalities provided by Kaufmann, Cappé, and Garivier (2012a)
to bound the (1− 1

τ )-quantile of a Beta distribution with the KL-divergence and elaborate
over them. Consider the event that variable B ∼ Beta(S+ 1, T −S+ 1) is greater than the
UCB-like bound uT . We have:

P(Beta ≥ uT ) = 1− FBeta
S+1,T−S+1(uT ) (3)

= FB
T+1,uT

(S) (4)

= 1− FB
T+1,1−uT (T − S + 1) = P(BiT+1,1−uT > T − S + 1) (5)

≤ exp

{
−T ·KL

(
T − S + 1

T + 1
, 1− uT

)}
(6)

≤ exp

{
−2T

(
T − S + 1

T + 1
− 1 + uT

)2
}

(7)

= exp

−2T

(
T − S + 1

T + 1
− 1 +

S

T
+

√
ε log τ

T

)2
 (8)

≤ exp

{
−2T

ε log τ

T

}
=

1

τ2ε
, (9)

where Bin,µ is a random variable with Binomial distribution Bi(n, µ) with parameters n
and µ, KL(·, ·) is the Kullback-Leibler divergence, the equalities in Equation (3) follow
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from Lemma 1, Equation (5) follows from the properties of the Binomial distribution,
Equation (6) follows from the Sanov inequality, Equation (7) follows from the Pinsker
inequality. The quantile Q

(
1− 1

τ

)
satisfies, by definition, the property:

P (Beta ≥ qT ) =
1

τ
.

Since we have 1
τ ≥ 1

τ2ε for ε ≥ 1
2 , it follows that qT ≤ uT .

Finally, we introduce the following lemma, whose proof is provided independently in
the appendices of the works by Garivier and Moulines (2011) (Lemma 1) and Combes and
Proutiere (2014) (Lemma 4.1).

Lemma 3 (Garivier & Moulines, 2011; Combes & Proutiere, 2014). Let A ⊂ N and a(t) =∑t−1
t′=t−τ 1{t′ ∈ A}, then for every positive integer τ and every s ∈ N we have:

N∑
t=1

1{t ∈ A, a(t) ≤ s} ≤ s
⌈
N

τ

⌉
.

Appendix B. Abruptly Changing Setting: Proofs

Theorem 1. If the SW-TS policy is run over an AC-MAB setting with Xi,t ∼ Be(µi,t), for
every τ ∈ N, the dynamic pseudo-regret after N rounds is at most:

RN (U) ≤
K∑
i=1

[
τBNα +

BN∑
φ=1

∆i,φ
Nφ

τ

(
52 log τ

∆2
i,φ

+ log τ + 5 +
19

log τ

)]
,

where B and α are defined in Assumption 1 and ∆i,φ := µi∗,φ−µi,φ is the difference between
the expected reward µi∗,φ of the best arm ai∗φ and the expected reward µi,φ of arm ai during
phase Fφ. By defining:

∆i := min
φ∈{1,...,BN}

∆i,φ1{i 6= i∗φ},

for all i ∈ {1, . . . ,K}, i.e., the minimum over all the phases Fφ of the difference of the
expected rewards ∆i,φ, the dynamic pseudo-regret can be written as:

RN (U) ≤ τKBNα +
N

τ

K∑
i=1

(
52 log τ

∆i
+ log τ + 5 +

19

log τ

)
.

Proof. We adapt, to the AC-MAB setting, the proof provided by Kaufmann et al. (2012b)
to bound the expected pseudo-regret of the classical Thompson Sampling algorithm. In
particular, in the following, we remark the points where our proof distinguishes from the
one by Kaufmann et al. (2012b).

Let us define the effective phase F ′φ := {t ∈ N s.t. bφ−1 + τ ≤ t < bφ} and denote with
Ti(F ′φ) :=

∑
t∈F ′φ 1{it = i, i 6= i∗φ}, i.e., the number of times a suboptimal arm ai 6= ai∗φ is

played during the effective phase F ′φ. During every generic effective phase F ′φ, the MAB
setting is stationary. Moreover, by the definition of effective phase F ′φ, we have:

E [Ti(Fφ)] ≤ τ + E
[
Ti(F ′φ)

]
, (10)
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where we recall that Ti(Fφ) is the number of times arm ai is pulled during phase Fφ.

At first, we bound the expected number of times the algorithm chooses a suboptimal
arm in a generic effective phase F ′φ. The rationale with which we bound E[Ti(F ′φ)] is to
decompose E[Ti(F ′φ)] into two terms. The first term is conditioned to the fact that the
reward of the optimal arm ai∗φ is underestimated, while the second term is conditioned to
the fact that the reward of the optimal arm ai∗φ is not underestimated, but the suboptimal
arm ai is played. Hence, we have:

E
[
Ti(F ′φ)

]
=
∑
t∈F ′φ

E [1{it = i}] (11)

=
∑
t∈F ′φ

[
P

(
ϑi∗φ,t ≤ µi∗φ,t −

√
5 log τ

Ti∗φ,t,τ
, it = i

)
+ P

(
ϑi∗φ,t > µi∗φ,t −

√
5 log τ

Ti∗φ,t,τ
, it = i

)]
(12)

≤
∑
t∈F ′φ

P

(
ϑi∗φ,t ≤ µi∗φ,t −

√
5 log τ

Ti∗φ,t,τ

)
+
∑
t∈F ′φ

P

(
ϑi,t > µi∗φ,t −

√
5 log τ

Ti∗φ,t,τ
, it = i

)
(13)

≤
∑
t∈F ′φ

P

(
ϑi∗φ,t ≤ µi∗φ,t −

√
5 log τ

Ti∗φ,t,τ

)
+

+
∑
t∈F ′φ

P

(
ϑi,t > µi∗φ,t −

√
5 log τ

Ti∗φ,t,τ
, it = i, ϑi,t < qTi,t,τ

)
+
∑
t∈F ′φ

P
(
ϑi,t ≥ qTi,t,τ

)
(14)

≤
∑
t∈F ′φ

P

(
ϑi∗φ,t ≤ µi∗φ,t −

√
5 log τ

Ti∗φ,t,τ

)
︸ ︷︷ ︸

RA

+
∑
t∈F ′φ

P

(
uTi,t,τ > µi∗φ,t −

√
5 log τ

Ti∗φ,t,τ
, it = i

)
︸ ︷︷ ︸

RB

+ (15)

+
∑
t∈F ′φ

P
(
ϑi,t ≥ qTi,t,τ

)
︸ ︷︷ ︸

RC

, (16)

where, in bounding Equation (12), we use the property that the Thompson sample ϑit,t =
ϑi,t chosen at round t is larger than the one of the optimal arm ϑi∗φ,t (i.e., ϑi,t ≥ ϑi∗φ,t), qTi,t,τ
is the quantile of order 1− 1

τ of the Beta distribution corresponding the expected value µi,t
of arm ai, and we use Lemma 2, applied to the rewards of arm ai and with T = Ti,t,τ and
ε = 2, to bound the second term in Equation (14).

Let us focus on RA. In the analysis by Kaufmann et al. (2012b), the probability that
the optimal arm is pulled in the past less than tb times (by properly defining the constant
b ∈ (0, 1)) is bounded by a constant (from Proposition 1 by Kaufmann et al. (2012b)). In
the setting we study, such a result does not hold as the number of samples used in the
posterior distribution πi,t of the expected reward µi,t does not increase indefinitely over
time due to the sliding-window approach that limits the number of samples to at most τ .
Thus, we bound the probability that an arm is pulled less than n̄A times by using Lemma 3
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with A = {t|it = i}, t ∈ F ′φ and, consequently a(t) = Ti,t,τ . We have:

∑
t∈F ′φ

E [1{it = i, Ti,t,τ ≤ n̄A}] ≤ n̄A
⌈
Nφ − τ
τ

⌉
≤ n̄A

Nφ

τ
, (17)

where |F ′φ| = Nφ − τ ≤ Nφ, which holds for all i ∈ {1, . . . ,K}. Thus, by choosing n̄A =⌈
19

log τ

⌉
, we have:

RA =
∑
t∈F ′φ

P

(
ϑi∗φ,t ≤ µi∗φ,t −

√
5 log τ

Ti∗φ,t,τ

)
(18)

≤
∑
t∈F ′φ

P

(
ϑi∗φ,t ≤ µi∗φ,t −

√
5 log τ

Ti∗φ,t,τ
, Ti∗φ,t,τ > n̄A

)
+
∑
t∈F ′φ

P
(
Ti∗φ,t,τ ≤ n̄A

)
(19)

≤
∑
t∈F ′φ

P

(
ϑi∗φ,t ≤ µi∗φ,t −

√
5 log τ

Ti∗φ,t,τ
, Ti∗φ,t,τ > n̄A

)
+
∑
t∈F ′φ

E
[
1

{
Ti∗φ,t,τ ≤ n̄A

}]
(20)

≤
∑
t∈F ′φ

P

(
ϑi∗φ,t ≤ µi∗φ,t −

√
5 log τ

Ti∗φ,t,τ
, Ti∗φ,t,τ > n̄A

)
+ n̄A

Nφ

τ
, (21)

where we use Lemma 3 to bound Equation (21).

Let us define:

• {Ut}t∈F ′φ a set of i.i.d. uniform random variables over Ω = [0, 1];

• Si,t,τ :=
∑t

h=t−τ+1Xi,h1{ih = i} the sum of the rewards received by arm ai in the
last τ rounds (with abuse of notation w.r.t. the main body of the paper);

• Σi,t,τ,s :=
∑t−τ+s

s=t−τ+1Xi,h1{ih = i} the sum of the first s rewards over the last τ rounds
of arm ai.

Recalling that Ti,t,τ :=
∑t

h=max{t−τ+1,1} 1{ih = i}, we have:

P

(
ϑi∗φ,t ≤ µi∗φ,t −

√
5 log τ

Ti∗φ,t,τ
, Ti∗φ,t,τ > n̄A

)
(22)

= P

(
Ut ≤ FBeta

Si∗
φ
,t,τ+1,Ti∗

φ
,t,τ−Si∗

φ
,t,τ+1

(
µi∗φ,t −

√
5 log τ

Ti∗φ,t,τ

)
, Ti∗φ,t,τ > n̄A

)
(23)

= P

Ut ≤ 1− FB

Ti∗
φ
,t,τ+1,µi∗

φ
,t−

√
5 log τ
Ti∗
φ
,t,τ

(Si∗φ,t,τ ), Ti∗φ,t,τ > n̄A

 (24)

= P

FB

Ti∗
φ
,t,τ+1,µi∗

φ
,t−

√
5 log τ
Ti∗
φ
,t,τ

(Si∗φ,t,τ ) ≤ Ut, Ti∗φ,t,τ > n̄A

 (25)
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≤ P

(
∃s ∈ {n̄A, . . . , τ}FB

s+1,µi∗
φ
,t−

√
5 log τ
s

(Σi∗φ,t,τ,s) ≤ Ut
)

(26)

≤
τ∑

s=n̄A

P

(
Σi∗φ,t,τ,s ≤ (FB)−1

s+1,µi∗
φ
,t−

√
5 log τ
s

(Ut)

)
, (27)

where we use Lemma 1 to derive Equation (24), we use the fact that Ut ∼ 1− Ut to derive
Equation (25), and we use the union bound to derive Equation (27).

Note that:

(FB)−1

s+1,µi∗
φ
,t−

√
5 log τ
s

(Ut) ∼ Bi

(
s+ 1, µi∗φ,t −

√
5 log τ

s

)
. (28)

We also remark that term (FB)−1

s+1,µi∗
φ
,t−

√
5 log τ
s

(Ut) is independent of Σi∗φ,t,τ,s ∼ Bi(s, µi∗φ,t).

Similarly to what done by Kaufmann et al. (2012b), we define, for a chosen s, two i.i.d. se-
quences of Bernoulli random variables {X1,l}sl=1 and {X2,l}sl=1 of size s and s + 1, respec-
tively:

X1,l ∼ Be

(
µi∗φ,t −

√
5 log τ

s

)
, (29)

X2,l ∼ Be
(
µi∗φ,t

)
, (30)

whose summations correspond to the r.h.s. and l.h.s. of the inequality present in the prob-
ability in Equation (27), respectively. Let {Zl}sl=1 be another i.i.d. sequence of random

variables, with Zl := X2,l −X1,l and E[Zl] =
√

5 log τ
s .11 We get:

P

(
Σi∗φ,t,τ,s ≤ (FB)−1

s+1,µi∗
φ
,t−

√
5 log τ
s

(Ut)

)
(31)

= P

(
s∑
l=1

X2,l ≤
s+1∑
l=1

X1,l

)
= P

(
s∑
l=1

Zl ≤ X1,s+1

)
≤ P

(
s∑
l=1

Zl ≤ 1

)
(32)

= P

(
s∑
l=1

(
Zl −

√
5 log τ

s

)
≤ −

s∑
l=1

√
5 log τ

s
+ 1

)
(33)

= P

(
s∑
l=1

(
Zl −

√
5 log τ

s

)
≤ −

(√
5s log τ − 1

))
(34)

≤ P

(
s∑
l=1

(
Zl −

√
5 log τ

s

)
≤ −

√
4s log τ

)
, (35)

11. We here assume that µi∗
φ
,t −

√
5 log τ
s
≥ 0, i.e., that the sequence {X1,l}sl=1 is well defined. In the case

this condition does not hold, we have RA = 0 since the event that the Thompson sample ϑi∗t ,t < 0 has
zero probability.
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where we use that s > n̄A ⇒
√

5s log τ − 1 >
√

4s log τ to bound Equation (35). We
apply the Hoeffding’s inequality provided by Hoeffding (1963) to the bounded martingale
difference sequence {Zl}sl=1 (having support of measure 2) and we get:

τ∑
s=n̄A

P

(
Σi∗φ,t,τ,s ≤ (FB)−1

s+1,µi∗
φ
,t−

√
5 log τ
s

(Ut)

)
≤

τ∑
s=n̄A

exp

(
−2s(

√
4s log τ)2∑s
h=1 22

)
(36)

=

τ∑
s=n̄A

exp

(
−(
√

4s log τ)2

2s

)
=

τ∑
s=n̄A

e−2 log τ ≤
τ∑
s=1

1

τ2
=

1

τ
. (37)

Finally, we get:

RA =
∑
t∈F ′φ

P

(
ϑi∗φ,t ≤ µi∗φ,t −

√
5 log τ

Ti∗φ,t,τ

)
≤ n̄A

Nφ

τ
+
∑
t∈F ′φ

1

τ
3
2

(38)

≤ Nφ

τ

(
19

log τ
+ 1

)
+
Nφ

τ
=

19Nφ

τ log τ
+

2Nφ

τ
. (39)

Let us focus on RB. Differently from what done by Kaufmann et al. (2012b), we use the
Hoeffding’s inequality to bound each probability term used in RB. Let us define µ̂i,t,τ :=∑t

s=t−τ+1Xi,s1{is=i}
Ti,t,τ

, i.e., the estimator of the expected value µi,φ of the rewards of arm ai

computed over the last τ rounds and choose n̄B∗ =

⌈
20 log τ

∆2
i,φ

⌉
and n̄B =

⌈
32 log τ

∆2
i,φ

⌉
, where

we recall that ∆i,φ := µi∗φ,t − µi,t with t ∈ F ′φ. If the two properties Ti∗φ,t,τ > n̄B∗ and
Ti,t,τ > n̄B hold, we have the following:

−
(

2

√
2 log τ

Ti,t,τ
+

√
5 log τ

Ti∗φ,t,τ

)
> −∆i,φ (40)

and thus:

RB ≤
∑
t∈F ′φ

P

(
uTi,t,τ > µi∗φ,t −

√
5 log τ

Ti∗φ,t,τ
, it = i

)
(41)

=
∑
t∈F ′φ

P

(
µ̂i,t,τ +

√
2 log τ

Ti,t,τ
> µi∗φ,t −

√
5 log τ

Ti∗φ,t,τ
, it = i

)
(42)

≤
∑
t∈F ′φ

P

(
µ̂i,t,τ +

√
2 log τ

Ti,t,τ
> µi∗φ,t −

√
5 log τ

Ti∗φ,t,τ
, Ti∗φ,t,τ > n̄B∗, Ti,t,τ > n̄B

)

+
∑
t∈F ′φ

P
(
Ti∗φ,t,τ ≤ n̄B∗

)
+
∑
t∈F ′φ

P (Ti,t,τ ≤ n̄B) (43)

≤
∑
t∈F ′φ

P

(
µ̂i,t,τ +

√
2 log τ

Ti,t,τ
> µi∗φ,t −

√
5 log τ

Ti∗φ,t,τ
, Ti∗φ,t,τ > n̄B∗, Ti,t,τ > n̄B

)
(44)
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+ n̄B∗
Nφ

τ
+ n̄B

Nφ

τ
(45)

≤
∑
t∈F ′φ

P

µ̂i,t,τ −
√

2 log τ

Ti,t,τ
> µi,t + µi∗φ,t − µi,t︸ ︷︷ ︸

=∆i,φ

−
(

2

√
2 log τ

Ti,t,τ
+

√
5 log τ

Ti∗φ,t,τ

)
︸ ︷︷ ︸

>−∆i,φ

 (46)

+
Nφ

τ

(
52 log τ

∆2
i,φ

+ 2

)
(47)

≤
∑
t∈F ′φ

P

(
µ̂i,t,τ −

√
2 log τ

Ti,t,τ
> µi,t

)
+
Nφ

τ

52 log τ

∆2
i,φ

+
2Nφ

τ
, (48)

where Equation (42) is derived from the definition of uTi,t,τ .

From Corollary 21 by Garivier and Moulines (2008), we have for all η > 0:

∑
t∈F ′φ

P

(
µ̂i,t,τ −

√
2 log τ

Ti,t,τ
> µi,t

)
≤
∑
t∈F ′φ

log τ

log(1 + η)
exp

(
−12 log τ

(
1− η2

16

))
(49)

and, since η = 4
√

1− 1
12 , the bound can be written as:

∑
t∈F ′φ

P

(
µ̂i,t,τ −

√
2 log τ

Ti,t,τ
> µi,t

)
≤
∑
t∈F ′φ

log τ

τ
≤ Nφ log τ

τ
. (50)

Hence, we can write:

RB ≤
Nφ

τ

52 log τ

∆2
i,φ

+
2Nφ

τ
+
Nφ log τ

τ
. (51)

Let us focus on RC . The RC term is upper bounded by:

RC =
∑
t∈F ′φ

P
(
ϑi,t ≥ qTi,t,τ

)
=
∑
t∈F ′φ

1

τ
≤ Nφ

τ
, (52)

using the definition of quantiles qTi,t,τ .

Pseudo-regret. Since
∑BN

φ=1Nφ = N and recalling that if t ∈ Fφ ⊃ F ′φ we have µi,t = µi,φ,
the dynamic pseudo-regret over all the phases can be written as:

RN (U) = E

[
N∑
t=1

(µi∗,t − µit,t)
]

=

BN∑
φ=1

µi∗,φNφ − E

[
N∑
t=1

µit,t

]
(53)

RN (U) = E

[
N∑
t=1

(µi∗,t − µit,t)
]

=

BN∑
φ=1

µi∗,φNφ − E

[
N∑
t=1

µit,t

]
(54)
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=

BN∑
φ=1

µi∗,φNφ − E

∑
t∈Fφ

µit,t

 =

BN∑
φ=1

(
µi∗,φNφ −

K∑
i=1

µi,φE[Ti(Fφ)]

)
(55)

=

BN∑
φ=1

(
K∑
i=1

(µi∗,φ − µi,φ)E[Ti(Fφ)]

)
=

K∑
i=1

BN∑
φ=1

(µi∗,φ − µi,φ)E[Ti(Fφ)]

 (56)

=
K∑
i=1

BN∑
φ=1

∆i,φE[Ti(Fφ)]

 ≤ K∑
i=1

BN∑
φ=1

∆i,φ

(
τ + E[Ti(F ′φ)]

) (57)

≤
K∑
i=1

τBN +

BN∑
φ=1

∆i,φ (RA +RB +RC)

 (58)

≤
K∑
i=1

τBNα +

BN∑
φ=1

∆i,φ

(
19Nφ

τ log τ
+

2Nφ

τ
+
Nφ

τ

52 log τ

∆2
i,φ

+
2Nφ

τ
+
Nφ log τ

τ
+
Nφ

τ

)
(59)

≤
K∑
i=1

τBNα +

BN∑
φ=1

∆i,φ

(
19Nφ

τ log τ
+
Nφ

τ

52 log τ

∆2
i,φ

+
Nφ log τ

τ
+

5Nφ

τ

) (60)

≤
K∑
i=1

τBNα +

BN∑
φ=1

∆i,φ
Nφ

τ

(
52 log τ

∆2
i,φ

+ log τ + 5 +
19

log τ
+

1

τ
1
2

) , (61)

where BN is the number of breakpoints before N .
By defining:

∆i := min
φ∈{1,...,BN}

∆i,φ1{i 6= i∗φ} ∀i ∈ {1, . . . ,K}, (62)

i.e., the minimum, over all the phases Fφ in which the arm ai is not optimal, of the difference
between the expected reward µi∗φ,φ of the best arm ai∗φ and the expected reward µi,φ of arm
ai, the dynamic pseudo-regret can be written as:

RN (U) ≤ τKBNα +
N

τ

K∑
i=1

(
52 log τ

∆i
+ log τ + 5 +

19

log τ

)
, (63)

which concludes the proof.

Appendix C. Smoothly Changing Setting: Proofs

Theorem 2. If the SW-TS policy is run over a SC-MAB setting with Xi,t ∼ Be(µi,t),
Lipschitz constant σ > 0 and there exists ∆0 ∈ (0, 1) as in Assumption 3, for any τ ∈ N
s.t. 2στ < ∆ ≤ ∆0, the dynamic pseudo-regret after N rounds is at most:

RN (U) ≤ F∆Nβ +
NK

τ

[
52 log τ

(∆− 2στ)2
+ log τ + 5 +

19

log τ

]
+

+K

[
52 log τ

(∆− 2στ)2
+ 3 +

19

log τ

]
.
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Proof. Let us define:

• F∆,N := {t ∈ {1, . . . , N} s.t. ∃i 6= j, |µi,t − µj,t| < ∆}, i.e., the set of the rounds in
which there are two arms whose expected values differing less than ∆;

• F∆C ,N := {1, . . . , N}\F∆,N , i.e., the set of the rounds in which the expected rewards
of the arms are well separated (|µi,t − µj,t| > ∆,∀i 6= j});

• Ti(F∆,N ) :=
∑

t∈F∆,N
1{it = i, i 6= i∗t }, i.e., the number of rounds arm ai is played

when it is not optimal during rounds t ∈ F∆,N ;

• Ti(F∆C ,N ) :=
∑

t∈F
∆C,N

1{it = i, i 6= i∗t }, i.e., the number of rounds arm ai is played

when it is not optimal during rounds t ∈ F∆C ,N .

For every ∆ s.t. 2στ ≤ ∆ ≤ ∆0, we have:

RN (U) = E

[
N∑
t=1

(
µi∗t ,t − µit,t

)]
≤

N∑
t=1

E [1{it = i, i 6= i∗t }] (64)

=

K∑
i=1

N∑
t=1

E [1{it = i, i 6= i∗t }] (65)

≤
K∑
i=1

E[Ti(F∆,N )] +
K∑
i=1

E[Ti(F∆C ,N )]. (66)

The first term in Equation (66), i.e., E[Ti(F∆,N )], can be directly bounded by using
Assumption 3. Instead, bounding the second term, i.e., E[Ti(F∆C ,N )], requires a more
complex procedure. In our proof, we adapt the line provided by Kaufmann et al. (2012b)
to our setting. Indeed, we remark the result by Kaufmann et al. (2012b) cannot be directly
applied as the reward distributions vary at every round.12 We define two events: in the
first one the optimal arm ai∗t is underestimated; in the second one the optimal arm ai∗t is
not underestimated, but the suboptimal arm ai is played. Hence, we have:

E
[
Ti(F∆C ,N )

]
≤

∑
t∈F

∆C,N

P

(
ϑi∗t ,t ≤ µi∗t ,t − στ −

√
5 log τ

Ti∗t ,t,τ

)

+
∑

t∈F
∆C,N

P

(
ϑi,t > µi∗t ,t − στ −

√
5 log τ

Ti∗t ,t,τ
, it = i

)
(67)

≤
∑

t∈F
∆C,N

P

(
ϑi∗t ,t ≤ µi∗t ,t − στ −

√
5 log τ

Ti∗t ,t,τ

)

+
∑

t∈F
∆C,N

P

(
ϑi,t > µi∗t ,t − στ −

√
5 log τ

Ti∗t ,t,τ
, it = i, ϑi,t ≤ qTi,t,τ

)

12. For the sake of concision, we will omit the derivations which are the same of those discussed in the proof
of Theorem 1.
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+
∑

t∈F
∆C,N

P
(
ϑi,t ≥ qTi,t,τ

)
(68)

≤
∑

t∈F
∆C,N

P

(
ϑi∗t ,t ≤ µi∗t ,t − στ −

√
5 log τ

Ti∗t ,t,τ

)
︸ ︷︷ ︸

RA

+
∑

t∈F
∆C,N

P

(
uTi,t,τ > µi∗t ,t − στ −

√
5 log τ

Ti∗t ,t,τ

)
︸ ︷︷ ︸

RB

+
∑

t∈F
∆C,N

P
(
ϑi,t ≥ qTi,t,τ

)
︸ ︷︷ ︸

RC

, (69)

where we use Lemma 2 applied to the rewards of the arm ai with T = Ti,t,τ and ε = 2, to
bound the expression in Equation (69).

Let us focus on RA. By applying Lemma 3 and defining n̄A =
⌈

19
log τ

⌉
, we have:

RA =
∑

t∈F
∆C,N

P

(
ϑi∗t ,t ≤ µi∗t ,t − στ −

√
5 log τ

Ti∗t ,t,τ

)
(70)

≤
∑

t∈F
∆C,N

P

(
ϑi∗t ,t ≤ µi∗t ,t − στ −

√
5 log τ

Ti∗t ,t,τ
, Ti∗t ,t,τ > n̄A

)

+
∑

t∈F
∆C,N

P
(
Ti∗t ,t,τ ≤ n̄A

)
(71)

≤
∑

t∈F
∆C,N

P

(
ϑi∗t ,t ≤ µi∗t ,t − στ −

√
5 log τ

Ti∗t ,t,τ
, Ti∗t ,t,τ > n̄A

)
+ n̄A

⌈
N

τ

⌉
(72)

≤
∑

t∈F
∆C,N

P

(
ϑi∗t ,t ≤ µi∗t ,t − στ −

√
5 log τ

Ti∗t ,t,τ
, Ti∗t ,t,τ > n̄A

)
+ n̄A

(
N

τ
+ 1

)
. (73)

While in the proof of Theorem 1, as well as in the proof by Kaufmann et al. (2012b), the
expected values of the rewards are constant over the last τ rounds, in the case we study here
such property does not hold. In what follows, we define a set of auxiliary random variables
Si,t,τ whose expected values are constant over the last τ rounds and smaller than the one
of the optimal arm. Then, using the random variables Si,t,τ , we can apply Lemma 1 to
transform the Beta distribution estimating the expected reward of an arm into a Binomial
random variable, which, finally, allows us to bound the quantity RA.

Let us define:

• {Ut}t∈F
∆C,N

as a sequence of i.i.d. uniform random variables over Ω = [0, 1];
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• Si,t,τ :=
∑t

s=t−τ+1 1{is = i}Xi,s, i.e., the number of successes of arm ai at round t in
the previous τ rounds (with abuse of notation w.r.t. the main body of the paper);

• X̃i,s := Xi,s+µi,t−µi,s−στ, ∀s ∈ {t−τ +1, t}, i.e., a set of auxiliary variables having
X̃i,s ≤ Xi,s (since |µi,t − µi,s| ≤ στ) and µ

i,t
:= E[X̃i,s] = µi,t − στ ;

• Si,t,τ :=
∑t

s=t−τ+1 1{is = i}X̃i,s, the number of successes of an arm ai having rewards

X̃i,s at round s in the rounds {t− τ + 1, . . . , t};

• Σi,t,τ,s :=
∑t−τ+s

h=t−τ+1 1{ih = i}X̃i,h, i.e., the sum of the random variables X̃i,t−τ+1, . . . ,

X̃i,t−τ+s.

Note that the arm ai∗t , whose expected reward is µ
i∗t ,t

, is optimal since we are focusing on

rounds t ∈ F∆C ,N . Hence, we have:

P

(
ϑi∗t ,t ≤ µi∗t ,t − στ −

√
5 log τ

Ti∗t ,t,τ
, Ti∗t ,t,τ > n̄A

)
(74)

= P

(
Ut ≤ FBeta

Si∗t ,t,τ
+1,Ti∗t ,t,τ

−Si∗t ,t,τ+1

(
µi∗t ,t − στ −

√
5 log τ

Ti∗t ,t,τ

)
, Ti∗t ,t,τ > n̄A

)
(75)

= P

Ut ≤ 1− FB

Ti∗t ,t,τ
+1,µi∗t ,t

−στ−
√

5 log τ
Ti∗t ,t,τ

(Si∗t ,t,τ ), Ti∗t ,t,τ > n̄A

 (76)

= P

FB

Ti∗t ,t,τ
+1,µi∗t ,t

−στ−
√

5 log τ
Ti∗t ,t,τ

(Si∗t ,t,τ ) ≤ Ut, Ti∗t ,t,τ > n̄A

 (77)

≤ P

FB

Ti∗t ,t,τ
+1,µ

i∗t ,t
−
√

5 log τ
Ti∗t ,t,τ

(Si∗t ,t,τ ) ≤ Ut, Ti∗t ,t,τ > n̄A

 (78)

≤ P

(
∃s ∈ {n̄A, . . . , τ} s.t. FB

s+1,µ
i∗t ,t
−
√

5 log τ
s

(Σi∗t ,t,τ,s) ≤ Ut
)

(79)

=
τ∑

s=n̄A

P

(
Σi∗t ,t,τ,s ≤ (FB)−1

s+1,µ
i∗t ,t
−
√

5 log τ
s

(Ut)

)
, (80)

where we use Lemma 1 to derive Equation (76), Equation (77) follows from Ut ∼ 1−Ut, and
we bound Equation (78) exploiting that Si,t,τ ≥ Si,t,τ ,∀i, which follows from the definition
of Si,t,τ .

Note that:

(FB)−1

s+1,µ
i∗t ,t
−
√

5 log τ
s

(Ut) ∼ Bi

(
s+ 1, µ

i∗t ,t
−
√

5 log τ

s

)
(81)

and (FB)−1

s+1,µ
i∗t ,t
−
√

5 log τ
s

(Ut) is independent of Σi∗t ,t,τ,s ∼ Bi(s, µ
i∗t ,t

). Consider, for a chosen

s, two i.i.d. sequences of random variables {X1,l}sl=1 and {X2,l}sl=1 of size s and s + 1,
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respectively:

X1,l ∼ Be

(
µ
i∗t ,t
−
√

5 log τ

s

)
, (82)

X2,l ∼ D
(
µ
i∗t ,t

)
, (83)

whose summations correspond to the r.h.s. and l.h.s. of the inequality that is the argument
of the probability operator in Equation (80), respectively. In Equation (82), we denote
with Be(µ) a Bernoulli distribution with mean µ, and, in Equation (83), we denote with
D a discrete distribution defined over Ω = {1 + µi∗t ,t − µi∗t ,s − στ, µi∗t ,t − µi∗t ,s − στ} and
expected value equal to µ

i∗t ,t
. Let {Zl}sl=1 be another i.i.d. sequence of random variables,

with Zl := X2,l −X1,l, having support of measure 2 and E[Zl] =
√

5 log τ
s .13 We get:

P

(
Σi∗t ,t,τ,s ≤ (FB)−1

s+1,µ
i∗t ,t
−
√

5 log τ
s

(Ut)

)
= P

(
s∑
l=1

X2,l ≤
s+1∑
l=1

X1,l

)
(84)

= P

(
s∑
l=1

Zl ≤ X1,s+1

)
≤ P

(
s∑
l=1

Zl ≤ 1

)
(85)

= P

(
s∑
l=1

(
Zl −

√
5 log τ

s

)
≤ −

s∑
l=1

√
5 log τ

s
+ 1

)
(86)

= P

(
s∑
l=1

(
Zl −

√
5 log τ

s

)
≤ −

(√
5s log τ − 1

))
(87)

≤ P

(
s∑
l=1

(
Zl −

√
5 log τ

s

)
≤ −

√
4s log τ

)
, (88)

where we use the property s > n̄A ⇒
√

5s log τ − 1 >
√

4s log τ . We apply the Hoeffding’s
inequality to the bounded martingale difference sequence {Zl}sl=1 and we get:

τ∑
s=n̄A

P

Σi∗t ,t,τ,s ≤ (FB)−1

s+1,µ
i∗t ,t
−
√

5 log τ
Ti∗t ,t,τ

(Ut)

 (89)

≤
τ∑

s=n̄A

exp

(
−2

(
√

4s log τ)2

4s

)
=

τ∑
s=n̄A

e−2 log τ ≤
τ∑
s=1

1

τ2
=

1

τ
. (90)

Finally, we get:

RA =
∑

t∈F
∆C,N

P

(
ϑi∗t ,t ≤ µi∗t ,t − στ −

√
5 log τ

Ti∗t ,t,τ

)
(91)

13. Similarly to what we do in the proof of Theorem 1, here, we focus only on the case in which the sequence
{X1,l}sl=1 is well defined.
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≤ n̄A
(
N

τ
+ 1

)
+

∑
t∈F

∆C,N

1

τ
≤ 19N

τ log τ
+

2N

τ
+

19

log τ
+ 1. (92)

Let us focus on RB. Let us define µ̂i,t,τ :=
∑t
s=t−τ+1Xi,s1{is=i}

Ti,t,τ
, i.e., the estimator of the

expected value of the rewards of arm ai computed over the last τ rounds and its expected

value µi,t,τ :=
∑t
s=t−τ+1 µi,s1{is=i}

Ti,t,τ
. Note that −µi,t,τ ≥ −µi,t − στ due to Assumption 2.

We can rewrite term RB and apply Lemma 3 with n̄B∗ =
⌈

20 log τ
(∆−2στ)2

⌉
and n̄B =⌈

32 log τ
(∆−2στ)2

⌉
as follows:

RB =
∑

t∈F
∆C,N

P

(
uTi,t,τ > µi∗t ,t − στ −

√
5 log τ

Ti∗φ,t,τ
, it = i

)
(93)

=
∑

t∈F
∆C,N

P

(
µ̂i,t,τ +

√
2 log τ

Ti,t,τ
> µi∗t ,t − στ −

√
5 log τ

Ti∗t ,t,τ
, it = i

)
(94)

≤
∑

t∈F
∆C,N

P

(
µ̂i,t,τ +

√
2 log τ

Ti,t,τ
> µi∗t ,t − στ −

√
5 log τ

Ti∗φ,t,τ
, Ti∗t ,t,τ > n̄B∗, Ti,t,τ > n̄B

)

+
∑

t∈F
∆C,N

P
(
Ti∗t ,t,τ ≤ n̄B∗

)
+

∑
t∈F

∆C,N

P (Ti,t,τ ≤ n̄B) (95)

≤
∑

t∈F
∆C,N

P

(
µ̂i,t,τ +

√
2 log τ

Ti,t,τ
> µi∗φ,t − στ −

√
5 log τ

Ti∗t ,t,τ
, Ti∗t ,t,τ > n̄B∗, Ti,t,τ > n̄B

)

+ n̄B∗

⌈
N

τ

⌉
+ n̄B

⌈
N

τ

⌉
(96)

=
∑

t∈F
∆C,N

P

(
µ̂i,t,τ −

√
2 log τ

Ti,t,τ
> µi,t,τ + µi∗t ,t − µi,t,τ − στ − 2

√
2 log τ

Ti,t,τ
−
√

5 log τ

Ti∗t ,t,τ

)

+

(
N

τ
+ 1

)[
52 log τ

(∆− 2στ)2
+ 2

]
(97)

≤
∑

t∈F
∆C,N

P

(
µ̂i,t,τ −

√
2 log τ

Ti,t,τ
> µi,t,τ + µi∗t ,t − µi,t − στ − στ − 2

√
2 log τ

Ti,t,τ
−
√

5 log τ

Ti∗t ,t,τ

)

+
N

τ

52 log τ

(∆− 2στ)2
+

2N

τ
+

52 log τ

(∆− 2στ)2
+ 2 (98)

≤
∑

t∈F
∆C,N

P

µ̂i,t,τ −
√

2 log τ

Ti,t,τ
> µi,t,τ + ∆i,t − 2στ −

(
2

√
2 log τ

Ti,t,τ
+

√
5 log τ

Ti∗t ,t,τ

)
︸ ︷︷ ︸

≥−(∆−2στ)


+
N

τ

52 log τ

(∆− 2στ)2
+

2N

τ
+

52 log τ

(∆− 2στ)2
+ 2 (99)
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≤
∑

t∈F
∆C,N

P

(
µ̂i,t,τ −

√
2 log τ

Ti,t,τ
> µi,t,τ

)
+
N

τ

52 log τ

(∆− 2στ)2
+

2N

τ
+

52 log τ

(∆− 2στ)2
+ 2, (100)

where we use the property ∆i,t > ∆∀i, ∀t ∈ F∆C ,N to bound Equation (99).
By using Corollary 21 by Garivier and Moulines (2008), we have the following for every

η > 0:

∑
t∈F

∆C,N

P

(
µ̂i,t,τ −

√
2 log τ

Ti,t,τ
> µi,t,τ

)
(101)

≤
∑

t∈F
∆C,N

log τ

log(1 + η)
exp

(
−12 log τ

(
1− η2

16

))
(102)

thus, by using η = 4
√

1− 1
12 , we have:

∑
t∈F

∆C,N

P

(
µ̂i,t,τ −

√
2 log τ

Ti,t,τ
> µi,t,τ

)
≤

∑
t∈F

∆C,N

log τ

τ
≤ N log τ

τ
.

Hence, we can write:

RB ≤
N

τ

52 log τ

(∆− 2στ)2
+

2N

τ
+
N log τ

τ
+

52 log τ

(∆− 2στ)2
+ 2. (103)

Let us focus on RC . The RC term is upper bounded by:

RC =
∑

t∈F
∆C,N

P
(
ϑi,t ≥ qTi,t,τ

)
=

∑
t∈F

∆C,N

1

τ
≤ N

τ
.

Pseudo-regret. Summing all the derived bounds, the dynamic pseudo-regret becomes:

R̄N (U) = E

[
N∑
t=1

(
µi∗t ,t − µit,t

)]
(104)

≤
K∑
i=1

(
E[Ti(F∆,N )] + E[Ti(F∆C ,N )]

)
(105)

≤ |F∆,N |+K (RA +RB +RC) (106)

= F∆Nβ +K

(
19N

τ log τ
+

2N

τ
+

19

log τ
+ 1 (107)

+
N

τ

52 log τ

(∆− 2στ)2
+

2N

τ
+
N log τ

τ
+

52 log τ

(∆− 2στ)2
+ 2 +

N

τ

)
(108)

≤ F∆Nβ +
NK

τ

[
52 log τ

(∆− 2στ)2
+ log τ + 5 +

19

log τ

]
(109)

+K

[
52 log τ

(∆− 2στ)2
+ 3 +

19

log τ

]
, (110)
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where we use the property
K∑
i=1

E[Ti(F∆,N )] ≤ |F∆,N | ≤ F∆Nβ that holds as Assumption 3

is satisfied.

Corollary 3. If the SW-TS policy is run over an SC-MAB setting with no switches be-
tween expected rewards of the arms (P = 0), in which Assumption 3 holds with β ∈
[1 − logN

(
∆
2σ

)
, 1], and using a sliding window τ := N1−β, for each ∆ ≤ ∆0 the dynamic

pseudo-regret is at most:
RN (U) = Õ(Nβ).

Proof. It is easy to derive that, if we choose a sliding window τ := N1−β, we minimize
the asymptotic dynamic pseudo-regret w.r.t. N . By substituting τ in the expression of the
dynamic pseudo-regret bound used in Theorem 2, we obtain the result stated in Corollary 3.
However, the result stated in Theorem 2 holds only if the condition 2στ ≤ ∆ is satisfied.
Since we set τ = N1−β, we have that:

2σN1−β ≤ ∆

N1−β ≤ ∆

2σ

1− β ≤ logN

(
∆

2σ

)
β ≥ 1− logN

(
∆

2σ

)
,

which concludes the proof.

Corollary 4. If the SW-TS policy is run over an SC-MAB setting with P ∈ N switches
between expected rewards of the arms, in which Assumption 3 holds with:

β ∈
[

max

{
1− logN

(
∆

2σ

)
,
1

2
− logN

√
F∆

P

}
, 1

]
,

where max{a, b} denotes the maximum between a and b, and using a sliding window τ :=
N1−β, F is defined in Assumption 3, for each ∆ ≤ ∆0 the dynamic pseudo-regret is at
most:

RN (U) = Õ(Nβ).

Proof. If two arms switch their average rewards over time, i.e., it exists t s.t. (µi,t −
µj,t)(µi,t+1−µj,t+1) ≤ 0, then the set F∆,N is nonempty. In particular, for every switch, we
have at least 2∆

σ rounds during which the difference of the average rewards is smaller than
∆. This is because a variation of the expected reward by ∆ occurs in at least ∆

σ rounds
before the switch and ∆

σ rounds after it.14 Specifically, given ∆ and having P switches over
the time horizon N , we have that the number of rounds belonging to F∆,N is at least:

P∆

2σ
≤ |F∆,N | ≤ F∆Nβ, (111)

14. Assume, for sake of simplicity, that ∆ is a multiple of σ.
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where the second inequality comes from Assumption 3, thus leading to:

σ ≥ P

2FNβ
. (112)

From the assumption that 2στ ≤ ∆ and given that the length of the sliding window is
τ = N1−β, we have:

σ ≤ ∆

2N1−β . (113)

To make both Equations (112) and (113) hold at the same time, we need to have an
SC-MAB problem s.t.:

∆

2N1−β ≥
P

2FNβ
(114)

F∆Nβ ≥ PN1−β (115)

N2β−1 ≥ P

F∆
(116)

2β − 1 ≥ logN

(
P

F∆

)
(117)

β ≥ 1

2
− logN

√
F∆

P
. (118)

Given that Inequality (118) holds and condition β ∈ [1 − logN
(

∆
2σ

)
, 1], derived in Corol-

lary 3, is satisfied, we can provide following range for β:

β ∈
[

max

{
1− logN

(
∆

2σ

)
,
1

2
− logN

√
F∆

P

}
, 1

]
. (119)

Corollary 5. If the SW-TS policy is run over an SC-MAB setting in which Assumption 3
holds with β = 1 and using a sliding window τ ∝ σ− 3

4 , the average pseudo-regret is:

ARN (U) = Õ(σ
1
2 ).

Proof. Defining ε := ∆−2στ (ε ∈ (0, 1]), independent of σ and τ , the dynamic pseudo-regret
of the SW-TS algorithm is bounded by:

RN (U)

N
≤ F∆ +

K

τ

[
52 log τ

(∆− 2στ)2
+ log τ + 5 +

19

log τ

]
+
K

N

[
52 log τ

(∆− 2στ)2
+ 3 +

19

log τ

]
(120)

= F (∆− 2στ) + 2Fστ +
K

τ

[
52 log τ

ε2
+ log τ + 5 +

19

log τ

]
+
K

N
o(log τ) (121)

= 2Fστ +
K

τ

[
52 log τ

ε2
+ log τ + 5 +

19

log τ

]
+ Fε+

K

N
o(log τ) (122)
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By substituting τ = Cσ−
1
2 , we have:

RN (U)

N
≤ 2FCσ

1
2 +

58Kσ
1
2 log

(
Cσ−

1
2

)
Cε2

+ o(σ
1
2 ) +

K

N
o(σ

1
2 ), (123)

which, as N → +∞, provides the inequality given in the corollary statement.

Appendix D. Abrupt and Smoothly Changing Setting: Proofs

Theorem 3. If the SW-TS policy is run over an ASC-MAB setting with Xi,t ∼ Be(µi,t),
Lipschitz constant σ > 0 as in Assumption 4 and there exists ∆0 ∈ (0, 1) as in Assumption 3,
for any τ ∈ N s.t. 2στ < ∆ ≤ ∆0, the dynamic pseudo-regret after N rounds is at most:

RN (U) ≤ F∆Nβ + τBNα +
NK

τ

[
52 log τ

(∆− 2στ)2
+ log τ + 5 +

19

log τ

]
,

where B and α are defined in Assumption 1 and F and β are defined in Assumption 3.

Proof. Let us define:

• F∆,N := {t ∈ {1, . . . , N} s.t. ∃i 6= j, |µi,t − µj,t| < ∆}, i.e., the set of the rounds in
which there are two arms whose expected values differ by less than ∆;

• F∆C ,N := {τ, . . . , N} \ F∆,N , i.e., the set of the rounds t ≥ τ , in which the expected
rewards of the arms are well separated (|µi,t − µj,t| > ∆,∀i 6= j});

• F∆C ,φ := {bφ−1, . . . , bφ} \ F∆,N , i.e., the set of the rounds of phase Fφ, in which the
expected rewards of the arms are well separated;

• F ′
∆C ,φ

:= {bφ−1 + τ, . . . , bφ} \ F∆,N , i.e., the set of the rounds of phase Fφ except the
first τ rounds, in which the expected rewards of the arms are well separated;

• Ti(F) :=
∑

t∈F 1{it = i, i 6= i∗t }, i.e., the number of rounds the arm ai is played when
it is not optimal during rounds t ∈ F .

For every ∆ s.t. 2στ ≤ ∆, we have that:

RN (U) = E

[
N∑
t=1

(
µi∗t ,t − µit,t

)]
≤

N∑
t=1

E [1{it = i, i 6= i∗t }] =
K∑
i=1

N∑
t=1

E [1{it = i, i 6= i∗t }]

(124)

=

K∑
i=1

E[Ti(F∆,N )] +

K∑
i=1

E[Ti(F∆C ,N )] =

K∑
i=1

E[Ti(F∆,N )] +

BN∑
φ=1

K∑
i=1

E[Ti(F∆C ,φ)]

(125)

K∑
i=1

E[Ti(F∆,N )] +

BN∑
φ=1

(
τ +

K∑
i=1

E[Ti(F ′∆C ,φ)]

)
(126)
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=
K∑
i=1

E[Ti(F∆,N )] + τBN +

BN∑
φ=1

K∑
i=1

E[Ti(F ′∆C ,φ)]. (127)

The first term in Equation (127), i.e., E[Ti(F∆,N )], can be directly bounded by using
Assumption 3. Each element E[Ti(F ′∆C ,φ

)] of the summation in the third term of Equa-

tion (127) can be bounded as we do for the second term in Equation (66) in the proof of
Theorem 2 when using an opportune time horizon of length Nφ − τ for phase Fφ. This fol-
lows since, when we focus on rounds belonging to a single phase, the setting is an SC-MAB.
Formally, we have:

E[Ti(F ′∆C ,φ)] ≤ Nφ − τ
τ

[
52 log τ

(∆− 2στ)2
+ log τ + 5 +

19

log τ

]
(128)

≤ Nφ

τ

[
52 log τ

(∆− 2στ)2
+ log τ + 5 +

19

log τ

]
. (129)

Here, we omit the details about the derivation of the last equation. They are the same of
the proof of Theorem 2, except for the fact that the time horizon we use here is Nφ − τ
instead of N and that the quantities

⌈
Nφ−τ
τ

⌉
can be upper bounded with

Nφ
τ . This leads

to Equation (129), which, differently from Equation (110), lacks of some terms that are not
depending on N .

Finally, we have:

RN (U) ≤
K∑
i=1

E[Ti(F∆,N )] + τBN +

BN∑
φ=1

K∑
i=1

E[Ti(F ′∆C ,φ)] (130)

≤ F∆Nβ + τBNα +

BN∑
φ=1

K∑
i=1

Nφ

τ

[
52 log τ

(∆− 2στ)2
+ log τ + 5 +

19

log τ

]
(131)

≤ F∆Nβ + τBNα +
NK

τ

[
52 log τ

(∆− 2στ)2
+ log τ + 5 +

19

log τ

]
, (132)

where we use Assumption 1 and Assumption 3 in Equation (131), and we use the property
BN∑
φ=1

Nφ = N in Equation (132). This concludes the proof.

Corollary 6. If the SW-TS policy is run over an ASC-MAB setting with no switches
between expected rewards of the arms (P = 0) and Assumption 1 and Assumption 3 hold
with α ∈ (1− 2 logN

(
∆
2σ

)
, 1) and β ∈ (0, 1), respectively, for each ∆ ≤ ∆0, using a sliding

window of τ := N
1−α

2 , the dynamic pseudo-regret is at most:

RN (U) =

{
Õ
(
N

1+α
2

)
if β ≤ 1+α

2

Õ
(
Nβ
)

if β > 1+α
2

.

Proof. The problem of choosing the proper order of the sliding window reduces here to
minimizing the order in N of each of the first three terms of the dynamic pseudo-regret
bound in Theorem 3. More specifically, the dynamic pseudo-regret can be bounded by:

RN (U) ≤ C1N
β + C2τN

α + C3
N

τ
(133)
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where C1, C2 and C3 are proper constants. Using a sliding window τ := Nγ , with γ ∈ (0, 1),
the minimization of the dynamic pseudo-regret order can be obtained by choosing the value
of γ that minimizes max{β, α+ γ, 1− γ}.

If β ≤ 1+α
2 , the minimum is obtained with an order γ = 1−α

2 and, thus, the overall

dynamic pseudo-regret is of order Õ(N
1+α

2 ). If β > 1+α
2 , the minimization problem does

not admit a single solution. However, a solution is γ = 1−α
2 , thus providing an overall

dynamic pseudo-regret of order Õ(Nβ).
In this case, the condition on the sliding window 2στ ≤ ∆ is:

2σN
1−α

2 ≤ ∆

N
1−α

2 ≤ ∆

2σ
1− α

2
≤ logN

(
∆

2σ

)
α ≥ 1− 2 logN

(
∆

2σ

)
,

which concludes the proof.

Corollary 7. If the SW-TS policy is run over an ASC-MAB setting with P ∈ N switches
between expected rewards of the arms, and Assumption 1 and Assumption 3 hold with α ∈
(1 − 2 logN

(
∆
2σ

)
, 1) and β ∈ (0, 1), respectively, for each ∆ ≤ ∆0, using a sliding window

of τ := N
1−α

2 , if β + α
2 ≥ 1

2 − logN
(
F∆
P

)
holds, the dynamic pseudo-regret is at most:

RN (U) =

{
Õ
(
N

1+α
2

)
if β ≤ 1+α

2

Õ
(
Nβ
)

if β > 1+α
2

.

Proof. The analysis is similar to the one provided for Corollary 6. In addition to the
properties we require in Corollary 6, we need to enforce another condition on the parameters
α and β due to the number of switches between the expected rewards of the arms. More
specifically, as shown in Equation (111) we have:

σ ≥ P

2FNβ
,

and, since we use a sliding window of τ = N
1−α

2 , we require that:

σ ≤ ∆

2N
1−α

2

. (134)

Using the previous inequality together, we have:

∆

2N
1−α

2

≥ P

2FNβ
(135)

F∆Nβ ≥ PN 1−α
2 (136)

N
2β+α−1

2 ≥ P

F∆
(137)
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2β + α− 1

2
≥ logN

(
P

F∆

)
(138)

β +
α

2
≥ 1

2
− logN

(
F∆

P

)
, (139)

which concludes the proof.

Corollary 8. If the SW-TS policy is run over an SC-MAB setting in which Assumption 1
holds with α = 1, Assumption 3 holds with β = 1, and using a sliding window τ ∝ B− 1

4σ−
3
4 ,

the average pseudo-regret is:

ARN (U) = Õ(B
1
2σ

1
2 ).

Proof. As in Corollary 5, let us define ε := ∆− 2στ and, using the dynamic pseudo-regret
bound in Theorem 3, we have:

RN (U)

N
≤ F (∆− 2στ) + 2Fστ + τB +

K

τ

[
52 log τ

(∆− 2στ)2
+ log τ + 5 +

19

log τ

]
. (140)

Using a sliding window τ = CB−
1
2σ−

1
2 we have:

RN (U)

N
≤ Fε+ 2FB

1
2σ

1
2 +

52KB
1
2σ

1
2 log

(
CB−

1
2σ−

1
2

)
ε2

+ o(B
1
2σ

1
2 ), (141)

which concludes the proof.

Appendix E. Smoothly Changing Setting: Satisfaction of Assumption 3
in the Experimental Setting of Section 5.2

We want to show that the number of the rounds, in which at least one pair i, j ∈ {1, . . . ,K}
such that i 6= j the inequality |µi,t − µj,t| < ∆ holds, is upper bounded by F∆, where F is
defined in Assumption 3. Let us set ∆0 = 1

3 , which leads to ∆ ≤ 1
3 .

The evolution of the expected values of the arms over time in the SC-MAB we evaluate
in Section 5 is the following:

µi,t =
K − 1

K
−
∣∣1 + 1

2(K − 1)(1 + sin(tσ))− i
∣∣

K
.

If we are in phase F∆,N , there exists a couple of index i and j, i 6= j such that:

|µi,t − µj,t|

=

∣∣∣∣∣K − 1

K
−
∣∣1 + 1

2(K − 1)(1 + sin(tσ))− i
∣∣

K
− K − 1

K
+

∣∣1 + 1
2(K − 1)(1 + sin(tσ))− j

∣∣
K

∣∣∣∣∣
=

∣∣∣∣∣−
∣∣1 + 1

2(K − 1)(1 + sin(tσ))− i
∣∣

K
+

∣∣1 + 1
2(K − 1)(1 + sin(tσ))− j

∣∣
K

∣∣∣∣∣
=

1

K

∣∣∣ ∣∣1 + 1
2(K − 1)(1 + sin(tσ))− j

∣∣− ∣∣1 + 1
2(K − 1)(1 + sin(tσ))− i

∣∣ ∣∣∣ ≤ ∆,
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thus, we have:

−K∆ <
∣∣1 + 1

2(K − 1)(1 + sin(tσ))− j
∣∣− ∣∣1 + 1

2(K − 1)(1 + sin(tσ))− i
∣∣ < K∆.

In the following, we distinguish the analysis in two cases: the one in which the arguments of
the absolute values have the same sign, formally t is such that (1 + 1

2(K − 1)(1 + sin(tσ))−
j)(1 + 1

2(K − 1)(1 + sin(tσ)) − i) > 0, from the one in which they have opposite signs,
formally t is such that (1 + 1

2(K − 1)(1 + sin(tσ))− j)(1 + 1
2(K − 1)(1 + sin(tσ))− i) < 0.

Case 1. Let us consider the case in which both 1 + 1
2(K − 1)(1 + sin(tσ) > 0 and 1 +

1
2(K − 1)(1 + sin(tσ))− i > 0. The same holds in the case both terms are negative and by
inverting the roles of i and j. In the former case, the inequality becomes:

−K∆ < 1 + 1
2(K − 1)(1 + sin(tσ))− j − 1− 1

2(K − 1)(1 + sin(tσ)) + i < K∆

−K∆ < i− j < K∆.

If i > j, the inequality −K∆ < i − j is always satisfied, while we need to examine
whether i− j < K∆ or not. The worst case is when the two arms are i = K and j = 1:

i− j < K∆

K − 1 < K∆

∆ >
K − 1

K
,

which is always false if K > 2 since ∆0 = 1
3 . Thus, the set of the rounds in this case is

empty.
If i < j, the inequality i− j < K∆ is always satisfied, while we need to verify −K∆ <

i− j. The worst case is when i = 1 and j = K, thus:

−K∆ < i− j
−K∆ < 1−K

∆ >
K − 1

K
,

thus, the same reasoning made for the previous case holds and we have an empty set of
rounds.

Case 2. Even in this case we analyse only the case in which 1+ 1
2(K−1)(1+sin(tσ))−j > 0

and 1 + 1
2(K − 1)(1 + sin(tσ))− i < 0, the opposite one being analogous. We have that the

initial condition becomes:

−K∆ < 1 + 1
2(K − 1)(1 + sin(tσ))− j + 1 + 1

2(K − 1)(1 + sin(tσ))− i < K∆

−K∆ < 2 + (K − 1)(1 + sin(tσ))− j − i < K∆

−K∆− 2 + j + i < (K − 1)(1 + sin(tσ)) < K∆− 2 + j + i

−K∆− 2 + j + i

K − 1
− 1 < sin(tσ) <

K∆− 2 + j + i

K − 1
− 1

1

σ
arcsin

(−K∆− 2 + j + i

K − 1
− 1

)
< t <

1

σ
arcsin

(
K∆− 2 + j + i

K − 1
− 1

)
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Trovò, Paladino, Restelli, & Gatti

We are interested in the number of rounds for which the inequalities hold, i.e.,:

T =

∣∣∣∣{t :
1

σ
arcsin

(−K∆− 2 + j + i

K − 1
− 1

)
< t <

1

σ
arcsin

(
K∆− 2 + j + i

K − 1
− 1

)}∣∣∣∣
=

1

σ
arcsin

(
K∆− 2 + j + i

K − 1
− 1

)
︸ ︷︷ ︸

∆a

− 1

σ
arcsin

(−K∆− 2 + j + i

K − 1
− 1

)
︸ ︷︷ ︸

∆b

,

where | · | is the cardinality operator.
By relying on the following inequalities:

arcsin(x) ≤ 2x x ≤ 0,

arcsin(x) ≥ 2x x ≥ 0,

we have that if ∆a ≤ 0 and ∆b ≥ 0, we can write:

T ≤ 2

σ

(
K∆− 2 + j + i

K − 1
− 1

)
− 2

σ

(−K∆− 2 + j + i

K − 1
− 1

)
=

4K∆

σ(K − 1)
,

thus Assumption 3 is satisfied with F := 4K
σ(K−1) .

Finally, we have to show that ∆a ≤ 0 and ∆b ≥ 0. Let us start with ∆a ≤ 0. The value
minimizing ∆a for the indexes are i = 1 and j = 2, consequently, we have:

K∆− 2 + j + i

K − 1
− 1 =

K∆− 2 + 2 + 1−K + 1

K − 1
=
K∆−K + 2

K − 1
=

(∆− 1)K + 2

K − 1
≤ 0

∆ ≤ K − 2

K
,

which is satisfied since ∆0 ≤ 1
3 for K ≥ 3.

Let us consider ∆b ≥ 0. Even in this case the choice of i = 1 and j = 2 is the one
providing the most restrictive conditions. We have:

−K∆− 2 + j + i

K − 1
−1 =

−K∆− 2 + 2 + 1−K + 1

K − 1
=
−K∆−K + 2

K − 1
=
−(∆ + 1)K + 2

K − 1
≥ 0,

which is the same condition as in the ∆a ≥ 0 derivations.
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