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ABSTRACT

Query processing on uncertain data streams has attracted a lot of

attentions lately, due to the imprecise nature in the data generated

from a variety of streaming applications, such as readings from a

sensor network. However, all of the existing works on uncertain

data streams study unbounded streams. This paper takes the first

step towards the important and challenging problem of answer-

ing sliding-window queries on uncertain data streams, with a fo-

cus on arguably one of the most important types of queries—top-k
queries.

The challenge of answering sliding-window top-k queries on un-

certain data streams stems from the strict space and time require-

ments of processing both arriving and expiring tuples in high-speed

streams, combined with the difficulty of coping with the exponen-

tial blowup in the number of possible worlds induced by the uncer-

tain data model. In this paper, we design a unified framework for

processing sliding-window top-k queries on uncertain streams. We

show that all the existing top-k definitions in the literature can be

plugged into our framework, resulting in several succinct synopses

that use space much smaller than the window size, while are also

highly efficient in terms of processing time. In addition to the theo-

retical space and time bounds that we prove for these synopses, we

also present a thorough experimental report to verify their practical

efficiency on both synthetic and real data.

1. INTRODUCTION
It has become an important issue to process uncertain (proba-

bilistic) data in many applications, such as sensor networks, data

cleaning, and objects tracking. For a given uncertain dataset, there

are many possible instances called worlds, and the possible worlds

semantics has been widely used [12, 20, 28, 29, 30, 33].

Consider a radar-controlled traffic monitoring application, where

a radar is used to detect car speeds with possible errors caused by

nearby high voltage lines, close cars’ interference, human operators

mistakes, etc. It implies that a speed reading is correct with certain

probability. Table 1 shows a simple uncertain dataset for car speed
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readings. For example, the 4th record indicates that a Benz car (No.

W-541) runs at speed 2 (×10) km per hour through the monitoring

area at AM 10:38 with probability 0.4.

ID Reading Info Speed (×10) prob.

1 AM 10:33, Honda, X-123 5 0.8

2 AM 10:35, Toyota, Y-245 6 0.5

3 AM 10:37, Mazda, Z-341 8 0.4

4 AM 10:38, Benz, W-541 2 0.4

Table 1: 4 Radar reading records
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Figure 1: The possible worlds at time 4

For the 4-tuple uncertain dataset given in Table 1, there are in

total 16 possible worlds for all the 4 speed readings: 8, 6, 5, and

2. Here, a possible world is a set of speed readings associated with

a probability of the set, which is computed based on both the ex-

istence of all the tuples in the possible world and the absence of

all the tuples in the dataset that are not in the possible world, as-

suming mutual independence among the tuples. Figure 1 shows all

the 16 possible worlds. In Figure 1, the top line numbers all the 16

possible worlds; a possible world is of a subset of the 4 speed read-

ings, represented in the middle, and is associated with an occurring

probability of the possible world below. Consider the 10th possible

world that contains a set of 2 speed readings: 6 and 5. The prob-

abilities of the existences of 6 and 5 are 0.5 and 0.8, respectively,

as given in Table 1. The probabilities of the absence of 8 and 2 are

both 1 − 0.4. Therefore, the probability of the 10th possible world

becomes 0.144 (= 0.5 × 0.8 × (1 − 0.4) × (1 − 0.4)).

Uncertain data streams. In many real application scenarios, the

collected uncertain data is returned in a streaming fashion, such as

the radar readings example in Table 1 and the collected sensor read-

ings from a real-time monitoring sensor network. These uncertain

data streams have attracted a lot of attention very recently [1, 9, 22,

23, 34]. Since large amounts of such streaming data could arrive

rapidly, the goal here is to design both space- and time-efficient

query processing techniques. On the other hand, streaming data is
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also highly time-sensitive: each item arrives with a timestamp, and

people are generally more interested in the recent tuples than those

in the far past. There are two models for dealing with the time as-

pect on data streams. One is the so-called time-decaying model,

which assigns a weight to each tuple that is exponentially decreas-

ing over time. This model usually works together with statistical

aggregates [10, 11], such as averages, histograms, heavy hitters,

etc., but may not be well defined for many other general database

queries such as top-k queries. The other model is the more popular

sliding window model, where we are interested in evaluating the

query on tuples that have arrived in, say, the last 24 hours. This

model is more general, since any query defined on a static dataset

can be also defined with respect to a sliding window. In addition,

sliding-window queries are usually required to be continuous, i.e.,

the user should be alerted whenever the query result changes, so

that he/she always has the up-to-date query result for the current

sliding window.

Although query processing in sliding windows has been thor-

oughly studied on certain data streams (see [17] and the references

therein), sliding-window queries on uncertain streams are still an

untapped territory, due to the many challenges brought by the strict

space and time requirements of processing both arriving and expir-

ing tuples in the high-speed stream, combined with the difficulty

of coping with the exponential blowup in the number of possible

worlds induced by the uncertain nature of the data. Previous works

on uncertain streams [9, 22, 23, 34] only deal with unbounded

streams but not sliding windows. In this paper, we make a first step

towards answering sliding-window queries on uncertain streams,

focusing on arguably one of the most important types of queries—

top-k queries.

Top-k queries on uncertain data. Top-k queries have been re-

cently studied in the setting of uncertain data. Given a ranking

function, the goal is to find the top-k ranked tuples in a given uncer-

tain dataset. Soliman et al. [30] defined two types of top-k queries

over a uncertain dataset, called U-Topk and U-kRanks. Hua et al.

[20] defined a probabilistic threshold top-k query, denoted PT-k.

We introduce them in brief below.

The U-Topk query returns the top-k tuples in all possible worlds

with maximum probability. Let k = 2, the query U-Topk upon

the uncertain dataset (Table 1) returns {6, 5}, because this vector

is ranked top in the 9th and 10th possible worlds, with probability

0.24 (= 0.096 + 0.144). The probability 0.24 is higher than that

of any other two speed readings. For example, it is higher than the

probability of having 8 and 6 as the top-2, whose probability is 0.2
(= 0.064 + 0.096 + 0.016 + 0.024), as 8 and 6 are ranked top-2

in the 1th, 2nd, 5th, and 6th possible worlds.

The U-kRanks query returns the winner for the i-th rank for all

1 ≤ i ≤ k. Consider the same example. When k = 2, the U-

kRanks query upon Table 1 returns {8, 5}, because the probability

of having 8 as the winner in the first rank is higher than any other

speed readings, and the probability of having 5 as the winner of the

second rank is higher than any other speed readings.

The PT-k query returns all the tuples with maximum aggregate

probability greater than a user-given threshold p, where the aggre-

gate probability represents the sum of probabilities of ranking as

one of the top-k ranked tuples in all possible worlds. Consider Ta-

ble 1, the answer is {5, 6, 8}, with probability 0.64, 0.5, and 0.4,

respectively (assuming p = 0.3). The speed reading 5 is ranked

in top-2 in the 3rd, 4th, 9th, 10th, 13th, and 14th possible worlds,

with the aggregate probability 0.64 (= 0.064 + 0.096 + 0.096 +
0.144 + 0.096 + 0.144).

The three top-k query definitions have different semantics and

may possibly give different results on the same uncertain dataset.

The intention of U-Topk is to find the most likely top-k ranking

list in a random possible world, and to preserve such ranking or-

der. U-kRanks considers the winner in every individual rank, and

PT-k considers the probability of being one of the top-k. It is not

the focus of this paper to argue which definition is better than the

others, or to propose yet another definition. Indeed, the particular

choice should probably be application-dependent. Our goal, on the

other hand, is to design a unified framework for processing sliding-

window top-k queries, which can be coupled with any of the defi-

nitions above.

To make the presentation concise, we use the PT-k query to il-

lustrate our framework; discussions on the other top-k queries are

deferred to Section 5. However, one undesirable problem with the

PT-k query is that the number of tuples returned may differ a lot

over different databases even when using the same threshold value.

The user must set the threshold carefully to make the result set con-

tain k tuples. Therefore, we study a slight variation of it, namely,

the probabilistic k top-k, or simply Pk-topk. In the Pk-topk query,

we do not set a threshold, but return k tuples with the highest aggre-

gate probabilities being one of the top-k ranked tuples in a random

possible world. Formally, the Pk-topk query is defined as follows:

Definition 1.1. Probabilistic k top-k query (Pk-topk): Let D de-

note an uncertain database, PW the possible world space for D.

Let PW (ti) ⊆ PW denote the set of possible worlds containing

ti as one of its top-k ranked tuples. A Pk-topk query returns a set

of k tuples T = {t1, · · · , tk}, satisfying
P

pw∈PW (ti) Pr[pw] ≥
P

pw∈PW (tj ) Pr[pw], for any ti ∈ T and tj /∈ T .

The Pk-topk query returns the k most probable tuples of being

the top-k among all. For example, in the uncertain dataset of Ta-

ble 1 and with k = 2, the answer is {5, 6}, as they are the two with

the highest probabilities of being among the top-k, with probabili-

ties 0.64 and 0.5, respectively.

All the existing approaches for processing top-k queries [20, 21,

28, 30, 33] are designed for static uncertain datasets, and are inca-

pable of handling streaming data. Directly applying the previous

solutions on sliding windows would require storing all the tuples

within the window, which is quite memory consuming. One major

challenge is that the number of possible worlds that change as the

window slides for one timestamp is huge. Assuming that there are

W tuples in the window, then the number of possible worlds is 2W .

When a new tuple arrives and an old tuple fades out, 3/4 of the 2W

possible worlds will change.

Consider a continuous Pk-topk query with k = 2 over a slid-

ing window of size W = 3, evaluated on the example in Table 1.

Initially the first three tuples arrive (speed readings are 5, 6, and

8). The Pk-topk answer is {6, 5}. Then, when the fourth tuple

(speed reading 2) arrives, the first speed reading 5 expires, and the

possible worlds are built over {6, 8, 2}. Now the top-2 answer be-

comes {6, 8}. It is important to note that the highest speed reading,

8, is not included in the top-k answer in the first sliding window,

but is included in the top-k answer in the second sliding window.

This example shows that in the sliding-window setting, in order to

lower the memory requirement, we need a delicate and efficient

mechanism to decide which tuples shall and shall not be kept for

answering the query as the window advances through time.

Our contributions. In this paper, we design a unified framework

for processing continuous top-k queries in a sliding window over

uncertain data streams. All of the previously proposed top-k defi-

nitions can be plugged into our framework. Our framework is com-

posed of several space- and time-efficient synopses with provable

bounds. As depicted in Section 3, while it is relatively easy to

handle arriving tuples, it is much difficult to cope with tuples expir-
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ing. We need a carefully designed synopsis storing the minimum

amount of information while sufficient for answering the query

continuously at all times, which can also be maintained efficiently.

After formally defining the problem (Section 2), we first show

how the previous techniques can be adapted to be self-maintainable

with respect to insertions (Section 3). This automatically gives us

a solution if tuples only arrive but never expire, which corresponds

to the case of unbounded streams (or the so-called landmark win-

dows). However, handling deletions is inherently much more dif-

ficult than insertions. In fact, if deletions are arbitrary, there is no

better way than keeping everything in the sliding window, since

each tuple would have a chance of being in the query results. Thus,

in order to lower the space complexity, we need to exploit the im-

portant property of a sliding window that tuples arriving first will

also expire first. In Section 4, we propose a series of synopses, each

one building upon the previous one, that progressively improve

the space and time complexities. These synopses are the results

of a novel combination of several techniques including data com-

pression, buffering, and ideas from exponential histograms [15].

We also analytically prove their space and time bounds, showing

that although our synopses use much less space than the window

size, we can still match the best running time one can hope for,

even if linear space is allowed. Our analytical results are then fur-

ther supported by an experimental report in Section 6, where we

observe order-of-magnitude improvements over the previous solu-

tions adapted to the sliding window model. In Section 5, we fur-

ther discuss how the other top-k definitions can be plugged into our

framework. Finally, we review the related work in Section 7 before

concluding the paper.

2. PROBLEM STATEMENT
Let T be an uncertain stream containing a sequence of tuples,

t1, t2, . . . , tN , where the superscripts denote the timestamps of the

tuples. Let f be a ranking function. We use ti ≺f tj if f(ti) >
f(tj), and we say ti’s rank is higher than tj’s. In a similar fash-

ion, ti ≻f tj means ti’s rank is lower than tj’s. Without loss of

generality, we assume that the ranks of all tuples are unique. The

membership probability of tuple t is denoted as p(t).

A sliding window starting at position i and ending at j is de-

noted as S[i, j], i.e., S[i, j] = (ti, ti+1, · · · , tj), for i ≤ j. The

size of the sliding window is wsize(S[i, j]) = j − i + 1. For

the sliding window S[i, j], PW(S[i, j]) denotes its possible world

space PW(S[i, j]) = {PW1, PW2, · · · }, where PWj is a pos-

sible world that is a subset of tuples in S[i, j]. The probability of

such a possible world PW is given as Pr(PW ) = Πt∈PW p(t) ×
Πt 6∈PW (1 − p(t)).

Problem statement. Given an uncertain data stream T = (t1, t2,
. . . , tN), and a sliding window size W , the goal is to answer the

top-k query for every sliding window S[i − W + 1, i] as i goes

from W to N . For now we will use tuple-based windows, where

at time i, ti arrives while ti−W expires. But all our algorithms can

be easily extended to time-based windows. We will mostly focus

on the Pk-topk query, but will also discuss extensions to the other

queries in Section 5. As with all streaming algorithms [3], memory

consumption is the most important measure; but at the same time,

we would like the processing time per tuple to be as low as possible.

3. COMPACT SET
This section first defines the compact set, a basic concept in all

our synopses. It turns out if there are only insertions, one single

compact set is sufficient for maintaining the top-k answers. How-

ever, we need multiple compact sets combined together to cope

with expiring tuples.

Suppose the tuples in an uncertain dataset D are t1 ≺f · · · ≺f

tn. Denote by Di the subset of D containing the first i tuples in D,

Di = {t1, · · · , ti}. For 0 ≤ j ≤ i ≤ n, let ri,j be the probability

that a randomly generated world from Di has exactly j tuples. It

is clear that the probability that ti ranks the j-th in a randomly

generated world from D is p(ti) · ri−1,j−1.

Definition 3.1. The compact set C(D) for the Pk-topk query on

an uncertain data set D is the smallest subset of D that satisfies

the following conditions. (1) ∀t′ ∈ C(D) and t′′ ∈ D − C(D),

t′ ≺f t′′. (2) Let d = |C(D)|, td the tuple with the lowest rank in

C(D). There are k tuples in C(D), and each such tuple tα has

p(tα)
X

1≤l≤k

rα−1,l−1 ≥
X

1≤l≤k

rd,l−1. (1)

Note that D may not always have a compact set, that is, even

if we put all tuples into C(D), (1) still cannot be satisfied. When

there exists a C(D) such that (1) holds, we say that D admits a

compact set.

It is not difficult to obtain the following recursion [20, 33]:

ri,j =

8

<

:

p(ti)ri−1,j−1 + (1 − p(ti))ri−1,j , i ≥ j ≥ 0;
1, i = j = 0;
0, else.

(2)

Thus we can use dynamic programming to compute all the entries

in the array r, as well as C(D), in time O(kd). We first show that

if D has a compact set C(D), then we do not need to look at tuples

not in C(D) in order to answer a Pk-topk query.

Theorem 3.1. The compact set C(D) is sufficient for answering a

Pk-topk query on D.

PROOF. Consider any tuple ti, i > d. Let ξs be the probability

that exactly s tuples from {td+1, · · · , ti−1} appear. The probabil-

ity that ti’s rank is j is p(ti)(
Pj

l=1 rd,l−1ξj−l). Then, the proba-

bility of ti being ranked at any position between 1 and k is

p(ti)

k
X

j=1

 

j
X

l=1

rd,l−1ξj−l

!

= p(ti)

k
X

l=1

 

rd,l−1

k−l
X

j=0

ξj

!

≤ p(ti)

k
X

j=1

rd,j−1 ≤
k
X

j=1

rd,j−1,

where the first “≤” is because
Pk−1

j=0 ξj ≤ 1.

Thus if D has a compact set C(D), then we only need to run

the dynamic program on C(D) to compute the Pk-topk results in

time O(kd). This algorithm is actually similar to that in [20, 21,

33], which also show that except for some pathological cases, the

compact set almost always exists and much smaller than the whole

data set. So answering a top-k query is usually quite efficient, and

we do not need to look at the entire dataset at all, assuming of

course the tuples are already sorted in rank order.

Example 3.1. Consider a Pk-topk query over the dataset in Table

1, k = 2. After sorting, t1 = 8, t2 = 6, t3 = 5, and t4 = 2. Ap-

plying (2), we calculate the array r using dynamic programming:

r0,0 = 1, r0,1 = 0, r1,0 = 0.6, r1,1 = 0.4, r2,0 = 0.3, r2,1 = 0.5,

r3,0 = 0.06, r3,1 = 0.34. Now, we find that when d < 3, there

does not exist any tuple tα (α ≤ d) satisfying (1). When d = 3, all

of three tuples (t1, t2, and t3) are valid tα. So, the compact set for

that dataset is {t1, t2, t3}. ✷
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However, [20, 21, 33] only considered the static case. It is not

clear at all whether this compact set can be self-maintained as tu-

ples are inserted into D. It turns out that to answer this question, a

much more careful analysis is required.

Self-maintenance of the compact set. We first need to study some

important characteristics of the array r. We also study the change

ratio qi,j of adjacent entries for any tuple ti, namely qi,j =
ri,j+1

ri,j
.

Specifically, we can prove the following properties.

Lemma 3.1. The value of qi,j is monotonically decreasing for any

tuple ti, i.e., r2
i,j ≥ ri,j−1 · ri,j+1, for j ≥ 1.

PROOF. When i = 1, ri,0 = 1 − p(t1), ri,1 = p(t1), and for

any j > 1, ri,j = 0. So, when i = 1, the lemma holds.

Assuming the lemma is true for i, we consider the case of i + 1.

If j + 1 > i, it is trivial because ri,j+1 = 0. So, we only need to

analyze the situation where 1 ≤ j < i. By (2),

∆ = r2
i+1,j − ri+1,j−1ri+1,j+1

= (p(ti+1)ri,j−1 + (1 − p(ti+1))ri,j)
2

−(p(ti+1)ri,j−2 + (1 − p(ti+1))ri,j−1) ·

(p(ti+1)ri,j + (1 − p(ti+1))ri,j+1)

= (p(ti+1))
2(r2

i,j−1 − ri,j−2ri,j)

+(1 − p(ti+1))
2(r2

i,j − ri,j−1ri,j+1)

+p(ti+1)(1 − p(ti+1))(ri,j−1ri,j − ri,j−2ri,j+1)

≥ p(ti+1)(1 − p(ti+1))(ri,j−1ri,j −
r2

i,j−1

ri,j

r2
i,j

ri,j−1
) (3)

= 0.

Note that we assumed ri,j−1 > 0 and ri,j > 0 in (3). Otherwise,

ri,j−2 = 0, we still have ∆ ≥ 0.

Lemma 3.2. For any two tuples ti, tj satisfying ti ≺f tj , we have

qi,l ≤ qj,l, where l ≥ 0, i.e., ri,l+1rj,l ≤ ri,lrj,l+1.

PROOF. First, consider the case j = i + 1. We have

qi,l − qi+1,l =
ri,l+1

ri,l
−

ri+1,l+1

ri+1,l

=
1

ri,lri+1,l
(ri,l+1ri+1,l − ri,lri+1,l+1)

=
p(ti+1)

ri,lri+1,l+1
(ri,l+1ri,l−1 − r2

i,l) ≤ 0 (Lemma 3.1)

Repeating the same step iteratively proves the lemma for any

j > i.

Lemma 3.3. For any tuple ti, the series ri,j is unimodal, i.e., there

exists some m such that ri,j is monotonically increasing when j <
m while monotonically decreasing when j > m.

PROOF. According to Lemma 3.1, the value of qi,j decreases

monotonically. Let m be the maximum such that qi,m ≤ 1, then

it is not difficult to verify that m meets the requirement in the

lemma.

Lemma 3.4. For any tuples ti, tj , ti ≺f tj . The peak point of the

corresponding series (in Lemma 3.3) for ti is no later than tj .

PROOF. Follows from Lemma 3.2.

Theorem 3.2. Let C(D) be the compact set of D, let td be the

lowest-rank tuple in C(D), and let tnew be a new tuple to be in-

serted into D. Then C(D ∪ {tnew}) = C(D) if td ≺f tnew, and

C(D ∪ {tnew}) ⊆ C(D) ∪ {tnew} if tnew ≺f td.

PROOF. Let r′ be the array for C(D)∪{tnew}. Let us consider

the following cases in turn.

Case 1: tnew ≻f td. Then ri,j = r′i,j for all 1 ≤ i ≤ d,

so rα−1,l−1 and rd,l−1 remain unchanged for 1 ≤ l ≤ k. Thus,

C(D ∪ {tnew}) = C(D).

Case 2: For all the tα that meets (1), td ≻f tnew ≻f tα. We

will show that (1) still holds on r′. For 1 ≤ l ≤ k, we have

r′d,l−1 = p(tnew)rd,l−2 + (1 − p(tnew))rd,l−1.

Summing over all l,

k
X

l=1

r′d,l−1 =
k
X

l=1

rd,l−1 − p(tnew)rd,k−1, (4)

namely, the RHS of (1) is reduced while its LHS stays the same.

So (1) still holds on r′, hence C(D ∪ {tnew}) ⊆ C(D) ∪ {tnew}.

Case 3: There exists one or more tα that meet (1) such that

tα ≻f tnew. Now both the LHS and RHS of (1) change, so we

need to be more careful.

First, for any such tα, we have

r′α−1,l−1 = p(tnew)rα−1,l−2 + (1 − p(tnew))rα−1,l−1.

Summing over all l,

k
X

l=1

r′α−1,l−1 =

k
X

l=1

rα−1,l−1 − p(tnew)rα−1,k−1.

So the LHS of (1) decreases by a fraction of

1 −
p(tα)

Pk
l=1 r′α−1,l−1

p(tα)
Pk

l=1 rα−1,l−1

= p(tnew)
rα−1,k−1

Pk
l=1 rα−1,l−1

.

Similarly, by (4), the RHS of (1) decreases by a fraction of

p(tnew)
rd,k−1

Pk
l=1 rd,l−1

.

Next we show that

rd,k−1
Pk

l=1 rd,l−1

≥
rα−1,k−1

Pk
l=1 rα−1,l−1

, (5)

thus establishing the fact that (1) still holds on r′.
We prove (5) by induction. For the base case k = 2, by Lemma

3.2, we have

rd,1

rd,0 + rd,1
= 1 −

rd,0

rd,0 + rd,1
≥ 1 −

rd,0

rd,0 +
rα−1,1rd,0

rα−1,0

=
rα−1,1

rα−1,0 + rα−1,1
.

Next we consider k + 1 assuming (5) is true for k. Again by

Lemma 3.2, we have

rd,k
Pk+1

l=1 rd,l−1

≥

rα−1,krd,k−1

rα−1,k−1

Pk
l=1 rα−1,l−1

rd,k−1

rα−1,k−1
+

rα−1,krd,k−1

rα−1,k−1

=
rα−1,k

Pk+1
l=1 rα−1,l−1

.

So (5) holds for all k, and the theorem is proved.

Theorem 3.2 gives us a very simple algorithm for maintaining

the compact set if tuples are only inserted into D but never deleted.

For an incoming tuple tnew , we first check if tnew ≺f td. If so

then we recompute the array r on C(D) ∪ {tnew}, which gives us

the updated compact set C(D∪{tnew}) and also the updated top-k
results. Otherwise we simply discard tnew knowing that it will not

4
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affect the query results. However, the presence of expiring tuples

make the problem much more difficult, since if a tuple in C(D)
expires, this whole compact set is useless and we need to compute

a new compact set from D. Thus simply using one compact set for

a sliding window implies that we cannot discard any tuple in the

window until it expires, using memory Ω(W ). In the next section,

we present our sliding-window synopses, which combines multiple

compacts sets together, so that we can safely discard most tuples in

the window while still being able to maintain the up-to-date query

results at any time as the window slides through time.

4. SYNOPSES FOR SLIDING WINDOWS
The previous section shows that the compact set is self-maintain-

able under insertions. However, if a tuple in the compact set ex-

pires, then there is no way to reconstruct it without maintaining tu-

ples outside the compact set. Then the question is, how many other

tuples do we need to keep? This section will focus on answering

this question.

First of all, notice that in the worst-case scenario, for example

when the tuples always arrive with decreasing ranks and decreasing

probabilities, any tuple will be in the top-k result at some point in

time as the window slides. In this case, any synopsis has to remem-

ber everything in the window in order to avoid incorrect query re-

sults. So it is hopeless to design a synopsis with a sublinear worst-

case space bound. Therefore, we will assume that the tuples arrive

in a random order. This random-order stream model has received

much attention lately from the stream algorithms community [18,

6, 5], mainly because the worst-case bounds for many streaming

problems are simply too pessimistic and thus meaningless. The

random-order stream model has been argued to be a reasonable ap-

proximation of real-world data streams while often allowing for

much better expected bounds. This model is an ideal choice for the

study of our problem since as shown above, in the worst case, there

is really nothing better one can do than the naive approach, which

simply keeps all tuples in the sliding window.

Before presenting our solutions, we first analyze the direct adap-

tation of the existing technique to the sliding window setting, which

we refer to as the Base Synopsis, or the BS. To make the analytical

comparison with our synopses easier, we use H to denote the max-

imum size of the compact sets that are maintained in the synopsis.

As argued in [33, 20], although in the worst case, H = W , but on

most datasets, H ≪ W . As discussed in the previous section, BS

needs to keep all the W tuples in the window (in the rank order)

and its compact set C. The array r takes O(kH) space, thus the

total space of BS is O(W +kH), which is effectively O(W ) since

H ≪ W . When the window slides, if either the expiring tuple is

in C, or the incoming tuple’s rank is higher than the lowest ranked

tuple in C, then we recompute C from all the tuples in the win-

dow. Since C keeps the highest-ranked tuples in the window, either

event happens with probability O(H/W ), so the expected cost of

maintaining C is O(kH2/W ). Maintaining the tuples in the rank

order takes O(log W ) time per tuple. Thus we have the following.

Lemma 4.1. BS requires O(W + kH) space and spends expected

O(kH2/W + log W ) time to process each tuple.

In the following subsections we present our sliding-window syn-

opses. Each of them builds upon the previous one with new ideas,

progressively improving either the space complexity or the process-

ing time. Our final synopsis requires O(H(k + log W )) space

and has a processing time of O(kH2/W + log W ). So it matches

the processing time of BS while having a much lower space com-

plexity. To appreciate this result, the reader is reminded that most

streaming algorithms, e.g., most sketches [3, 25], require higher

Algorithm 1 MaintainCSQ

1: Tuple set D = ∅; compact set queue Ψ = ∅;

2: for each arriving tuple t
3: insert t into D;

4: if (successfully create a compact set C(D) for D)

5: append C(D) to Ψ;

6: remove tuples in D older than t′′ (including t′′), where

t′′ is the oldest tuple in C(D);

7: for (each compact set C(Si) ∈ Ψ from new to old)

8: if (t ≺f lowest ranked tuple in C(Si))

9: update C(Si) := C(C(Si) ∪ {t});

10: if (C(Si) = the previous compact set in Ψ)

11: remove C(Si) from Ψ;

12: else

13: break;

14: if (the expiring tuple ∈ C(SW ))

15: remove C(SW ) from Ψ;

16: C(SW ) := first compact set in Ψ;

17: compute the array r on the new C(SW );

running times than the naive approach in order to achieve low space

complexity.

4.1 Compact Set Queue
Our first synopsis, called the Compact Set Queue (CSQ) is the

simplest of all but forms the basis of the more advanced synopses.

Let Si denote the set of the last i tuples in the sliding window. In

the CSQ, we simply keep all the distinct compact sets C(Si) for all

i = 1, . . . , W . We only keep the array r for C(SW ) from which

we can extract the top-k results. Since we have the compact set for

each Si, when a tuple in C(SW ) expires, we can move C(SW−1)
forward to become the new C(SW ).

Algorithm 1 describes the detailed algorithm to maintain the

CSQ. We maintain a queue Ψ of all the distinct compact sets. The

tuple set D temporarily keeps the newest tuples. Initially D does

not admit a compact set. As tuples arrive at D, D will have a valid

compact set at some point. When this happens, we create C(D),

and append it to Ψ. Tuples in D but older than the oldest tuple in

C(D) (including the oldest tuple in C(D)) are removed from D
(lines 1–6). Note that after the removal, D does not admit a com-

pact set anymore. Therefore, when D has collected enough new

tuples, the new compact set it generates must be different from the

existing ones in Ψ. Next we update all the compact sets in Ψ in turn

according to Theorem 3.2, while removing duplicates (lines 7–13).

Finally, we check if the expiring tuple exists in C(SW ), if so we

remove C(SW ) from Ψ, and the next compact set in Ψ becomes

the new C(SW ) (lines 14–17).

Lemma 4.2. The expected number of distinct compact sets in CSQ

is O(H log W ); the expected number of compact sets that need to

be updated per tuple is O(H).

PROOF. Let Xi be the indicator variable such that Xi = 1 if

C(Si) is different from C(Si+1), and Xi = 0 otherwise. It is

obvious that the expected number of distinct compact sets in Ψ is

E[
PW

i=1 Xi]. The event C(Si+1) 6= C(Si) happens only when

the rank of the oldest tuple in Si+1 is higher than the lowest ranked

tuple in C(Si). Because C(Si) contains the ≤ H highest ranked

tuples in Si, the occurring probability of this event is at most H/i.
Hence,

E[Xi] = Pr[Xi = 1] ≤ max{1, H/i},
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and

E

"

W
X

i=1

Xi

#

≤ H + H

„

1

H
+ · · · +

1

W

«

= O(H log W ).

Now consider the arrival of a new tuple t. Let Yi be the indicator

variable such that Yi = 1 iff Xi = 1 and t affects C(Si+1). For the

latter to happen, t must rank higher than the lowest ranked tuple in

C(Si+1), so Pr[Yi = 1|Xi = 1] ≤ max{1, H/(i + 1)}. Hence,

the expected number of compact sets affected by t is

E

"

W
X

i=1

Yi

#

=
W
X

i=1

Pr[Xi = 1] Pr[Yi = 1|Xi = 1]

≤ H + H2

„

1

H(H + 1)
+ · · · +

1

W (W + 1)

«

≤ H + H2 ·
1

H
= O(H).

Theorem 4.1. CSQ requires O(H2 log W ) space and can be main-

tained in time O(kH2) per tuple.

PROOF. Since each compact set has size O(H), and the array r
has size O(kH), the space bound follows from Lemma 4.2. Each

compact set can be updated in time O(kH) and there are O(H)
of them that need to be updated, so the total time for the update is

O(kH2).

4.2 Compressed Compact Set Queue
Although CSQ only contains distinct compact sets, there is still

a lot of redundancy as one tuple may appear in multiple compact

sets. In the Compressed Compact Set Queue (CCSQ), we try to

eliminate this redundancy by storing only the difference between

two adjacent compact sets C(Si) and C(Si−1). More precisely, if

C(Si) 6= C(Si−1), we keep both ∆+
i = C(Si) − C(Si−1) and

∆−
i = C(Si−1) − C(Si). Now we can discard all the C(Si) in

the queue Ψ except the newest one.

We need to bound the total size of these differences. First, since

Si has only one more tuple than Si−1, by Theorem 3.2, it is clear

that |∆+
i | ≤ 1. By Lemma 4.2, the total number of nonempty

∆+
i is O(H log W ), so we have

PW
i=1 |∆

+
i | = O(H log W ). To

bound the total size of all the ∆−
i , we need the following property.

Lemma 4.3. If tuple t appears both in C(Si) and C(Sj), i < j,

then it appears in all compact sets between C(Si) and C(Sj), i.e.,

t ∈ C(Sl) for all i ≤ l ≤ j.

PROOF. Because Sj ⊃ Sl, by repeatedly applying Theorem 3.2,

we have C(Sj) ⊆ C(Sl) ∪ (Sj − Sl), i.e., any tuple in C(Sj) is

either from C(Sl) or from Sj − Sl. For any t ∈ C(Si) ∩ C(Sj),

since t ∈ Si and Si∩(Sj −Sl) = ∅, we must have t ∈ C(Sl).

Thus, as we go from C(S1) to C(SW ), once a tuple disappears,

it will never appear again. So we have

W
X

i=1

|∆−
i | ≤ H +

W
X

i=1

|∆+
i | = O(H log W ).

By this compression technique, we have reduced the space com-

plexity of CSQ by roughly an O(H) factor.

Theorem 4.2. CCSQ requires O(H(k + log W )) space and can

be maintained in time O(kH2) per tuple.

PROOF. As argued above, storing all the compact sets with com-

pression requires O(H log W ) space. We also need the array r,

which takes O(kH) space.

To see that the processing time remains unchanged, just note that

Lemma 4.2 still holds, and we can restore each C(Si) in Ψ by

making a pass over ∆+
i and ∆−

i , update it, and compute the new

∆+
i and ∆−

i , all in time O(kH2).

4.3 Segmental Compact Set Queue
With CCSQ, we have lowered the space complexity of the synop-

sis to almost minimal: we only need one array r and keep O(H log W )
tuples, as opposed to BS which stores all the W tuples. However,

the maintenance cost of CCSQ is still very high. In the next two

advanced synopses, we try to improve the processing time while

maintaining the low space complexity.

We notice that the high computation complexity is due to the

fact that O(H) compact sets need to be updated per incoming tu-

ple. However, only the oldest compact set C(SW ) is needed to

extract the top-k query results; all the other compact sets simply

act as a continuous “supply” for C(SW ) when it expires. For these

compact sets, we actually do not need to maintain them exactly. As

long as we have a super set for each of them, which can be main-

tained much more efficiently, then we can still reconstruct it exactly

when it becomes the oldest compact set in the queue. But on the

other hand, we do not want these super sets to be too large to violate

the space constraint, so we need a carefully designed mechanism to

balance space and time. With this intuition, we introduce our next

synopsis, the Segmental Compact Set Queue (SCSQ).

In SCSQ, we only maintain a small number of distinct compact

sets C(Sℓ1), · · · , C(Sℓn), for 1 ≤ ℓ1 < · · · < ℓn ≤ W . For

each i, we also maintain Λℓi
, a set of tuples in Sℓi+1

− Sℓi
(define

ℓn+1 = W ) such that C(Sj) ⊆ Sℓi
∪ Λℓi

for all ℓi ≤ j < ℓi+1.

Note that any tuple in Λℓi
must rank higher than the lowest ranked

tuple in C(Sℓi
). Finally, we always keep C(SW ) and its associated

array r, from which we extract the top-k results.

We maintain the following invariants in SCSQ throughout time1:

|Λℓi
| ≤ H, for i = 1, . . . , n; (6)

|Λℓi
| + |Λℓi+1

| ≥ H, for i = 1, . . . , n − 1. (7)

The correctness of SCSQ follows from its definition and The-

orem 3.2: Whenever C(SW ) expires, since the new C(SW ) is a

subset of C(Sℓn) ∪ Λℓn , we can rebuild it in time O(kH).

Whenever invariant (7) is violated, we do a merge by setting

Λℓi
:= Λℓi

∪Λℓi+1∪{t
′}, where t′ is the oldest tuple in C(Sℓi+1),

and then removing C(Sℓi+1
), Λℓi+1

. It is not difficult to verify that

Λℓi
∪C(Sℓi

) now contains all the tuples needed to cover any C(Sj)
for ℓi ≤ j < ℓi+2, and both invariants (6) and (7) are restored.

The procedure to maintain the SCSQ is actually very similar to

that of CSQ, the only difference is now we only update C(SW ) and

C(Sℓi
) for each i = 1, . . . , n. Next, if C(Sℓi

) has changed, tuples

in Λℓi
are simply removed if their ranks are lower than the lowest

ranked tuple in C(Sℓi
). Whenever invariant (7) is violated, we do a

merge as described above. Finally, if C(SW ) expires, we compute

a new C(SW ) from C(Sℓn) ∪ Λℓn .

Example 4.1. Figure 2 shows how the SCSQ evolves over time.

For illustration purposes we assume H = 3 and all compact sets

have exactly the 3 highest ranked tuples. The queue contains two

1Note that H is not fixed in advance and may change over time.
So we update and use a new H whenever the maximum size of
the compact sets currently maintained in the synopsis changes by
a factor of 2. This does not affect the asymptotic bounds of our
algorithms.

6

306



compact sets at time 8: C(S3) = {5, 6, 1}, Λ3 = ∅; C(S4) =
{3, 5, 6}, Λ4 = {8, 7, 9}. When tuple t9 arrives, the existing

two compact sets are shifted and updated as C(S4) = {5, 6, 4},

C(S5) = {5, 6, 4}. At the same time, Λ3 and Λ4 are also shifted

(but unchanged) to be Λ4 and Λ5. Since C(S4) and C(S5) are now

the same, we delete C(S5), and set Λ4 = Λ5. A new compact set

is created C(S3) = {5, 6, 1} and Λ3 = ∅. Next, we remove the ex-

piring tuple 8 from Λ4. Since |Λ3|+|Λ4| = 2 < H , we do a merge,

removing C(S4) while updating Λ3 := Λ3∪Λ4∪{5} = {7, 9, 5}.

The final status is shown in Figure 2(b). ✷

The following result is crucial in bounding the size and process-

ing time of SCSQ.

Lemma 4.4. SCSQ maintains expected O(log W ) compact sets.

PROOF. Under the random-order stream model, all of ℓ1, . . . , ℓn,

as well as n, are random variables. Below we show that E[n] =
O(log W ).

Consider the stochastic process consisting of the sequence of

random variables ℓ1, ℓ3, ℓ5, . . . . We say that it is a good event if

ℓ2i+1 ≥ 2ℓ2i−1, and a bad event otherwise. It is clear that the se-

quence will terminate before we have log W good events. We con-

struct a sequence of indicator variables X1, X2, . . . , where Xi = 1
iff the i-th event is good, and let Ym = X1 + · · · + Xm. Then

E[n] ≤ 2 · E[arg minm{Ym = log W}].
Now we focus on bounding E[Y ]. Consider the bad event ℓ2i+1 <

2ℓ2i−1. If this happens, due to invariant (7), there must be more

than H tuples in S2ℓ2i−1
− Sℓ2i−1

that rank higher than the H-

th ranked tuple in Sℓ2i−1
. If so, among the top-(2H) ranked tu-

ples in S2ℓ2i−1
, more than half of them must be in the older half

S2ℓ2i−1
−Sℓ2i−1

. This occurs with probability less than 1/2. There-

fore, for any i, the probability that the i-th event is bad is less than

1/2, or equivalently Pr[Xi = 1] > 1/2.

Although X1, X2, . . . are not necessarily independent, the argu-

ment above holds for each Xi regardless of the values of Xj , j 6= i.
Therefore Ym is stochastically greater than a binomial random

variable Zm ∼ binomial(m, 1/2): Ym ≥st Zm. The expectation

E[arg minm{Ym = log W}] can be written as

X

i≥1

Pr[arg min
m

{Ym = log W} ≥ i]

=
X

i≥1

Pr[Yi−1 < log W ]

≤ 4 log W + 1 +
X

i≥4 log W

Pr[Yi < log W ]

≤ O(log W ) +
X

i≥4 log W

Pr[Zi < log W ] (Ym ≥st Zm)

≤ O(log W ) +
X

i≥4 log W

e−(i/2−log W )2/i
(Chernoff bound)

≤ O(log W ) +
X

i≥4 log W

e−i/16 = O(log W ),

hence the proof.

Theorem 4.3. SCSQ requires O(H(k + log W )) space and pro-

cesses each tuple in time O(kH log W ).

PROOF. Since the array r has size O(kH) and each compact

set has size O(H), the space bound then follows from Lemma 4.4.

Updating all the compact sets takes O(kH log W ) time. Updating

all the Λℓi
and doing the necessary merges take time O(H log W ),

hence the time is bounded.
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(b) At time 9

Figure 2: Maintaining the SCSQ.

4.4 SCSQ with Buffering
SCSQ makes an O(H)-factor improvement over the previous

synopses in terms of processing time, but there is still room for

improvement. With our final synopsis, SCSQ-Buffer, we make an-

other significant improvement by augmenting SCSQ with a buffer-

ing technique, reducing the processing time to minimum.

The basic intuition here is that since only C(SW ) is useful for

the query, we update only this compact set every time the window

slides. For the rest of the compact sets, we update them in batches.

More precisely, we keep a buffer B of size kH for the latest tuples2.

(We assume W > kH ; otherwise we just switch to BS.) When

the buffer is full, we empty it and make necessary changes to the

synopsis. The detailed algorithm is shown in Algorithm 2.

Algorithm 2 BatchUpdate

1: let B be a buffer with size kH ;

2: for (each arriving tuple t)
3: insert t into B;

4: if (B is full)

5: find the smallest i such that Bi admits a compact set;

6: starting from i, build SCSQ on B;

7: update the existing SCSQ;

8: B = ∅;

9: if (C(SW ) is affected)

10: update C(SW );

11: remove expired compact sets in SCSQ;

First, we need to build new compacts sets and the relevant Λℓ’s

for the tuples in B. Let Bi be the set of i latest tuples in B. To

do so, we first do a binary search to find the smallest i such that

Bi admits a compact set (line 5). Since checking each Bi takes

O(kH) time, the binary search takes O(kH log(kH)) time. Then

we build the first compact set. Next we scan the remaining tu-

ples from new to old, putting into Λi those tuples ranking higher

than the lowest ranked one in C(Bi). When |Λi| = H we stop,

and restart the same process by building another compact set. By

Lemma 4.4 we will build O(log(kH)) new compact sets for B,

spending O(kH log(kH)) time in total (line 6).

Secondly, we update all the existing compact sets C(Sℓi
) and

the Λℓi
with all the tuples in B (line 7). Since there are O(log W )

compact sets and updating each one takes O(kH) time, the total

cost is O(kH log W ). Updating all the Λℓi
and making all the nec-

essary merges take O(H log W ) time. Therefore, the total cost for

emptying a buffer of size kH is O(kH log(kH) + kH log W ) =
O(kH log W ). So the amortized cost per tuple is only O(log W ).

Finally, for each incoming tuple, we always update C(SW ) if

necessary (line 9–10). Similar to the case with BS, C(SW ) is af-

fected with probability O(H/W ), so the cost of maintaining C(SW )

2We change the size of the buffer whenever H changes by a factor
of 2. See also footnote 1.
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Space Processing time

BS O(W + kH) O(kH2/W + log W )
CSQ O(H2 log W ) O(kH2)

CCSQ O(H(k + log W )) O(kH2)
SCSQ O(H(k + log W )) O(kH log W )

SCSQ-Buffer O(H(k + log W )) O(kH2/W + log W )

Table 2: Asymptotic space and processing time bounds analysis

is O(kH2/W ).

Theorem 4.4. SCSQ-Buffer requires O(H(k +log W )) space and

has an amortized processing time of O(kH2/W + log W ).

We summarize the space and time complexities of all five syn-

opses we have presented so far in Table 2. Bearing in mind that

k < H ≪ W , we can see that SCSQ-Buffer has both the best

space bound and the best processing time.

5. SUPPORTING OTHER TOPK DEFINI

TIONS
As we have seen, our synopses are quite general in the sense that

any other top-k query definition can be plugged into the framework

if a compact set can be defined such that Theorem 3.1 (sufficiency)

and Theorem 3.2 (self-maintenance with respect to insertions) both

hold. This section briefly shows how to support the other three

top-k definitions on uncertain data proposed in the literature in our

framework. In fact, all the existing solutions read the tuples in the

rank order, and stop as soon as the correctness of the results are

guaranteed. Such an approach naturally yields a compact set which

is also sufficient. So we only need to prove self-maintainability.

PT-k queries. Let the array r be defined as before.

Definition 5.1.([20]) The compact set C(D) for the PT-k query

with a threshold τ on an uncertain data set D is the smallest subset

of D that satisfies the following conditions. (1) ∀t′ ∈ C(D) and

t′′ ∈ D − C(D), t′ ≺f t′′. (2) τ ≥
P

1≤l≤k rd,l−1, where td is

the lowest ranked tuple in C(D).

Theorem 5.1. The compact set defined for PT-k queries is self-

maintainable with respect to insertions.

PROOF. Let tnew be the new tuple to be inserted to D. If tnew ≻f

td, rd,l−1 remains unchanged for 1 ≤ l ≤ k, so C(D) stays un-

changed. Otherwise if tnew ≺f td, then

k
X

l=1

r′d,l−1 =

k
X

l=1

(p(tnew)rd,l−2 + (1 − p(tnew))rd,l−1)

=

k−1
X

l=0

p(tnew)rd,l−1 +

k
X

l=1

(1 − p(tnew))rd,l−1

=

k
X

l=1

rd,l−1 − p(tnew)rd,k−1 ≤
k
X

l=1

rd,l−1 < τ.

So, any tuple not in C(D) ∪ {tnew} cannot be an answer.

U-kRanks Queries. Let the array r be defined as before.

Definition 5.2.([33]) The compact set C(D) for the U-kRanks query

on an uncertain data set D is the smallest subset of D that satisfies

the following conditions. (1) ∀t′ ∈ C(D) and t′′ ∈ D − C(D),

t′ ≺f t′′. (2) Let td be the lowest ranked tuple in C(D), then

max
1≤i≤d

p(ti)ri−1,j−1 ≥ max
1≤l≤k

rd,l−1, for j = 1, . . . , k. (8)

As defined, condition (8) is unwieldy to prove self-maintainability.

So we first convert it to an equivalent, but much simpler condition.

Specifically, we replace (8) with the following:

p(tα)rα−1,k−1 ≥ max
1≤l≤k

rd,l−1, for some α ≤ d. (9)

Compared with (8), (9) is much easier to check because it only

requires finding one tuple tα for rank k, not for all the ranks. But

as we show below, (9) also implies (8), hence equivalent with (8).

Lemma 5.1. For any i, if p(ti)ri−1,k−1 ≥ max1≤l≤k rd−1,l−1,

then for any j, 1 ≤ j ≤ k, we have

p(ti)ri−1,j−1 ≥ max
1≤l≤j

rd−1,l−1. (10)

PROOF. Let arg max1≤l≤k rd−1,l−1 = m. According to Lemma

3.3, rd−1,l−1 monotonically increases when l ≤ m and monoton-

ically decreases when l ≥ m. By Lemma 3.2, when l ≥ m, we

have

ri−1,l−1 ≥
rd−1,l−1

rd−1,l
· ri−1,l ≥ ri−1,l.

So for all m ≤ j ≤ k,

p(ti)ri−1,j−1 ≥ p(ti)ri−1,k−1 ≥ max
1≤l≤k

rd−1,l−1 = max
1≤l≤j

rd−1,l−1.

Next consider the case 1 ≤ j ≤ m. Note that in this case the

RHS of (10) is rd−1,j−1. We will prove (10) by induction for j =
m, . . . , 1. The base case j = m has already been proved above.

Now suppose (10) holds for j, i.e., p(ti)ri−1,j−1 ≥ rd−1,j−1, and

we consider j − 1. By Lemma 3.2,

p(ti)ri−1,j−2 ≥ p(ti)
ri−1,j−1

rd−1,j−1
rd−1,j−2 ≥ rd−1,j−2.

So, (10) holds for all j, 1 ≤ j ≤ k.

Theorem 5.2. The compact set defined for U-kRanks query is self-

maintainable with respect to insertions.

PROOF. We consider the following three cases.

Case 1: tnew ≻f td. In this case, rα−1,k−1 and rd,l−1 remain

unchanged, so C(D) stays unchanged.

Case 2: td ≻f tnew ≻f tα. In this case, rd,l−1 changes to

r′d,l−1 = p(tnew)rd,l−2 + (1 − p(tnew))rd,l−1

≤ max{rd,l−2, rd,l−1} ≤ max
1≤l≤k

rd,l−1,

while rα−1,l−1 is unchanged. So (9) still holds on C(D)∪{tnew}.

Case 3: tα ≻f tnew. Both rα−1,l−1 and rd−1,l−1 change to

r′α−1,l−1 and r′d−1,l−1. We compute

∆ = p(tα)r′α−1,k−1 − max
1≤l≤k

r′d,l−1

= p(tα)(p(tnew)rα−1,k−2 + (1 − p(tnew))rα−1,k−1)

− max
1≤l≤k

{p(tnew)rd,l−2 + (1 − p(tnew))rd,l−1}

≥ p(tα)(p(tnew)rα−1,k−2 + (1 − p(tnew))rα−1,−1)

−(p(tnew) max
1≤l≤k−1

rd,l−1 + (1 − p(tnew)) max
1≤l≤k

rd,l−1)

= p(tnew)(p(tα)rα−1,k−2 − max
1≤l≤k−1

rd,l−1)

+(1 − p(tnew))(p(tα)rα−1,k−1 − max
1≤l≤k

rd,l−1))

≥ 0. (by Lemma 5.1)

So (9) still holds on C(D) ∪ {tnew}.
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U-Topk queries. Suppose the tuples in D are t1, t2, . . . in the de-

creasing rank order. Consider a k-vector T = (tm1
, . . . , tmk

). Let

Pr(T ) be the probability of T being the top-k tuples in a random

possible world. We have

Pr(T ) =
k
Y

i=1

p(tmi
)

Y

i<mk,ti /∈T

(1 − p(ti)).

Recall that a U-Topk query returns the vector T with maximum

Pr(T ). Let Di = {t1, . . . , ti}, and let Dp
i be the subset of Di

containing the k tuples with maximum probabilities in Di. Define

ρi as

ρi =
Y

tj∈D
p
i

p(tj)
Y

j≤d,tj /∈D
p
i

(1 − p(tj)). (11)

Definition 5.3.([33]) The compact set C(D) for the U-Topk query

on an uncertain data set D is C(D) = Dd where d is the smallest

such that

max
k≤i≤d

ρi ≥
Y

1≤i≤d

max{p(ti), 1 − p(ti)}. (12)

Lemma 5.2. C(D) contains at most k tuples with probability

greater than 1
2

.

PROOF. If C(D) contains more than k tuples with probability

greater than 1
2

, there exists d′ < d, and exactly k tuples from Dd′

have probabilities are greater than 1
2

. We have maxk≤i≤d′ ρi ≥
ρd′ =

Q

1≤i≤d′ max{p(ti), 1 − p(ti)}. This contradicts the fact

that d is the smallest such that (12) holds.

Theorem 5.3. The compact set defined for U-kRanks queries is

self-maintainable with respect to insertions.

PROOF. We consider the following two cases.

Case 1: tnew ≻f td. In this case, it is easy to see that C(D)
stays unchanged.

Case 2: td ≻f tnew. Let D′ = C(D)∪{tnew}, also represented

as D′ = {t′1, · · · , t′d+1}, ordered by rank. Suppose t′m = tnew,

then for 1 ≤ i < m, t′i = ti; for m < i ≤ d, t′i+1 = ti. Let p̂i

denote the kth largest probability in {t1, · · · , ti}, p̌ the probability

of tuple tnew, ρ′
i and ρi the value of (11) for the set D′ and C(D)

respectively. We have

ρ′
i =

8

>

>

>

>

>

<

>

>

>

>

>

:

ρi, i < m
ρi−1(1 − p̌), i ≥ m, p̌ < p̂i−1;
ρi−1(1 − p̂i−1)

p̌
p̂i−1

≥ ρi−1(1 − p̌), i ≥ m, 1
2

> p̌ ≥ p̂i−1;

ρi−1p̌
1−p̂i−1

p̂i−1
≥ ρi−1p̌, i ≥ m, p̌ ≥ 1

2
> p̂i−1;

ρi−1p̌
1−p̂i−1

p̂i−1
, i ≥ m, p̌ ≥ p̂i−1 ≥ 1

2
.

We claim that

d+1
max
i=k

ρ′
i ≥

d+1
Y

i=1

max{p(t′i), 1 − p(t′i)}. (13)

Indeed,

RHS of (13) =



(1 − p̌)
Qd

i=1 max{p(ti), 1 − p(ti)}, p̌ < 1
2
;

p̌
Qd

i=1 max{p(ti), 1 − p(ti)}, p̌ ≥ 1
2
.

When p(tnew) = p̂ ≥ p̂i−1 ≥ 1
2

, (13) follows from Lemma 5.2.

Otherwise, it follows from the integration of above two equations.

So, C(D′) ⊆ C(D) ∪ {tnew}.
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Figure 3: Size of the compact set.
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Figure 4: Space consumption on synthetic dataset

6. EXPERIMENTAL REPORT
In this section, we present an experimental study with both syn-

thetic and real data comparing the five algorithms discussed so far,

namely, BS, CSQ, CCSQ, SCSQ, and SCSQ-Buffer. All the algo-

rithms are implemented in C and the experiments are performed on

a Linux server with Pentium 4 CPU (2.4GHz) and 1G memory.

Results on synthetic data. We created a synthetic dataset contain-

ing 1,000,000 tuples. The rank of each tuple t is randomly gener-

ated from 1 to 1,000,000 without replacement and the probability

p(t) is uniformly distributed in (0, 1).

Figure 3 shows the number of tuples in the compact set for the

Pk-topk query for this dataset, as k increases. We can see that it is

quite small and basically linear in k. This justifies our assumption

that H is usually much smaller than the size of the dataset. Note

that the previous studies [33, 20] also observed similar behaviors

on the size of the compact set.

Next, we feed the dataset in a streaming fashion to each of the

synopses and measure their space consumption and processing time.

Figure 4 shows the space consumption of the synopses with vary-

ing k and varying window size W , respectively. For simplicity,

when calculating the space consumption we only counted the tu-

ples and the array r, assuming that each tuple takes 6 bytes and

each array entry takes 4 bytes. Keep in mind that, in real appli-

cations, the tuples could be much larger as it may contain multi-

ple attributes including long fields like texts. So the sizes for the

synopses shown here are only for comparison purposes; the actual

sizes will be much larger and application-dependent. The exper-

imental results agree with our theoretical bounds in Table 2 very

well: BS is the largest, and its size is dominated by the window

size W , irrespective to k. CSQ reduces the size considerably com-

pared with BS, except for very small window sizes. All the other

synopses are basically comparable in terms of size, all of which are

significantly smaller than CSQ and BS. In general, we observe a

space reduction of 2 to 3 orders of magnitude from BS to CCSQ

and SCSQ/SCSQ-Buffer on large window sizes.

9

309



5 10 15 20
1E-6

1E-5

1E-4

1E-3

0.01

0.1

P
er

-tu
pl

e 
P

ro
ce

ss
in

g 
co

st
 (s

ec
.)

Parameter k

 BS
 CSQ
 CCSQ
 SCSQ
 SCSQBuffer

(a) Varying k (W = 100, 000)

10000 100000
1E-6

1E-5

1E-4

1E-3

0.01

0.1

1

P
er

-tu
pl

e 
pr

oc
es

si
ng

 c
os

t (
se

c.
)

Window size

 BS
 CSQ
 CCSQ
 SCSQ
 SCSQBuffer

(b) Varying W (k=20)

Figure 5: Per-tuple cost on synthetic dataset

Figure 5 shows the per-tuple processing cost of the five meth-

ods. We can observe that CSQ and CCSQ runs slowest, due to their

cubic dependency on k (since H is roughly linear in k). SCSQ

is better, since the dependency on k is quadratic. BS and SCSQ-

Buffer runs the fastest. Interestingly, although they have the same

asymptotic bound, we observe that SCSQ-Buffer actually runs even

faster than BS. This is a bit counter-intuitive since what BS does for

each tuple is very simple. It maintains all the tuples in the window

in sorted order (using two balanced binary tree), and simply inserts

and deletes tuples in this tree as they arrive and expire. In addi-

tion, it rebuilds C(SW ) if it becomes invalid. The latter step is also

done in SCSQ-Buffer. The explanation is that although maintaining

a balanced binary tree is computationally easy, it is quite memory

intensive. When we perform an insertion or a deletion, many nodes

in the tree, possibly in different memory locations, are read and

written, causing a lot of cache misses. On the other hand, SCSQ-

Buffer is much more cache friendly, due to its small memory print

and the way it performs the batched updates. Another interesting

observation is that the per-tuple processing cost either remains the

same or even decreases as the window size increases. The reason

is that an incoming tuple has a smaller probability to affect the ex-

isting compact sets when the window size is larger, thus saving the

computation cost. Similar phenomenon can also be observed in

Figure 7(b), 8(d), 9(d), and 10(d).

Results on real data. We used the International Ice Patrol (IIP) Ice-

berg Sightings Database3 to examine the efficiency of our synopses

in real applications. The (IIP) Iceberg Sightings Database collects

information on iceberg activity in North Atlantic to monitor ice-

berg danger near the Grand Banks of Newfoundland by sighting

icebergs, plotting and predicting iceberg drift, and broadcasting all

known icebergs to prevent icebergs threatening. In the database,

each sighting record contains the date, location, shape, size, num-

ber of days drifted, etc. It is crucial to find the icebergs drifting

for long periods, so use the number of days drifted as the ranking

attribute. Each sighting record in the database contains a confi-

dence level attribute according to the source of sighting, includ-

ing R/V (radar and visual), VIS (visual only), RAD(radar only),

SAT-LOW(low earth orbit satellite), SAT-MED (medium earth or-

bit satellite), SAT-HIGH (high earth orbit satellite), and EST (esti-

mated, used before 2005). We then converted these six confidence

levels to probabilities 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, and 0.4 respec-

tively. We gathered all of records from 1998 to 2007 and result

in 44440 records. Based on it, we created a 1,000,000-record data

stream by repeatedly selecting records randomly. The experimen-

tal results on this real dataset are shown in Figure 6 and 7. We

observe very similar results as those on the synthetic data, which

demonstrates the robustness of our synopses.

3http://nsidc.org/data/g00807.html

5 10 15 20

1k

10k

100k

1M

S
pa

ce
 c

on
su

m
pt

io
n 

(b
yt

es
)

Parameter k

 BS
 CSQ
 CCSQ
 SCSQ
 SCSQBuffer

(a) Varying k (W = 100, 000)

10000 100000

10k

100k

1M

10M

S
pa

ce
 c

on
su

m
pt

io
n 

(b
yt

es
)

Window size

 BS
 CSQ
 CCSQ
 SCSQ
 SCSQBuffer

(b) varying W (k=20)

Figure 6: Space consumption on real dataset
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Figure 7: Per-tuple processing cost on real dataset

Other top-k queries. Finally, we also implemented the compact

sets for the other three top-k definitions: PT-k, U-kRanks, and U-

topk. We plugged them into our synopses and conducted exper-

iments on the real dataset. The results are shown in Figure 8, 9,

and 10. Again, both the space consumption and processing time

have very similar behaviors as those on the Pk-topk query, which

testifies the generality of our framework.

7. RELATED WORK

Top-k Queries. Top-k queries on a traditional certain dataset have

been well studied in the literature. Numerous query processing

algorithms have been proposed[16, 26]. The threshold algorithm

(TA) [26] is one of the best known algorithms. It assumes that each

tuple has several attributes, and the ranking function is a monotone

function on these attributes. TA first sorts the tuples by each at-

tribute and then scans the sorted lists in parallel. Each time a new

tuple appears, TA looks it up in all lists to calculate its rank. In ad-

dition, TA maintains a “stopping value”, which acts as a threshold

to prune the tuples in the rest of the lists if they cannot have better

scores than the threshold.

There are many recent development and extensions to top-k queries

under different scenarios. Babcock and Olston [4] proposed an al-

gorithm to monitor the top-k most frequent items in a distributed

environment. Das et al. [14] use views to answer top-k queries effi-

ciently. Xin et al. [31] remove redundancy in top-k patterns. Xin et

al. [32] also apply multidimensional analysis in top-k queries. Hua

et al. [19] define the rank of a tuple by the typicality and answer the

top-k typicality queries. A very relevant work to ours is the paper

by Mouratidis et al. [24], which presents a method to continuously

monitor top-k queries over sliding windows. However, same as all

of the other works listed above, it only considers certain databases.

Uncertain data management and top-k queries. Uncertain data

management [27] has received increasing attention with the emer-

gence of practical applications in domains like sensor networks,
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Figure 8: PT-k query on real dataset
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Figure 9: U-kRanks query on real dataset

5 10 15 20

1k

10k

100k

1M

S
pa

ce
 c

on
su

m
pt

io
n 

(b
yt

es
)

Parameter k

 BS
 CSQ
 CCSQ
 SCSQ
 SCSQBuffer

(a) Space used (W = 105)

10000 100000

1k

10k

100k

1M

10M

S
pa

ce
 c

on
su

m
pt

io
n 

(b
yt

es
)

Window size

 BS
 CSQ
 CCSQ
 SCSQ
 SCSQBuffer

(b) Space used (k = 20)

5 10 15 20

1E-6

1E-5

1E-4

P
er

-tu
pl

e 
pr

oc
es

si
ng

 c
os

t (
se

c.
)

Parameter k

 BS
 CSQ
 CCSQ
 SCSQ
 SCSQBuffer

(c) Per-tuple cost (W = 105)

10000 100000

1E-6

1E-5

1E-4

1E-3

P
er

-tu
pl

e 
pr

oc
es

si
ng

 c
os

t (
se

c.
)

Window size

 BS
 CSQ
 CCSQ
 SCSQ
 SCSQBuffer

(d) Per-tuple cost (k = 20)

Figure 10: U-topk query on real dataset

data cleaning, and location tracking. The TRIO system [29] in-

troduced different working models to capture data uncertainty at

different levels, with an elegant perspective of relating uncertainty

with lineage as an emphasis on uncertain data modeling. A good

survey on recent uncertain data algorithms is [2].

Cheng et al. [8] provided a general classification of probabilistic

queries and evaluation algorithms over uncertain data sets. Dif-

ferent from query answering in traditional data sets, a probabilis-

tic quality estimate was proposed to evaluate the quality of results

in probabilistic query answering. Dalvi and Suciu [12] proposed

an efficient algorithm to evaluate arbitrary SQL queries on proba-

bilistic databases and rank the results by their probability. Later,

they showed in [13] that the complexity of evaluating conjunctive

queries on a probabilistic database is either PTIME or #P-complete.

Ŕe et al. [28] gave a solution to answer SQL query over uncer-

tain databases. The idea for their method is to run in parallel several

Monte-Carlo simulations, one for each candidate answer, and ap-

proximate each probability only to the extent needed to compute

the correct top-k answers. However, they are only concerned with

the probability of a tuple appearing in the query results, and no

ranking function is involved.

There are three definitions proposed so far for uncertain top-

k queries based on a ranking function. Soliman et al. [30] first

defined two types of such top-k queries, named U-Topk and U-

kRanks, and proposed algorithms for each of them. Their algo-

rithms were subsequently improved by Yi et al. [33]. Hua et al. [20,

21] proposed another top-k definition, namely PT-k, and proposed

efficient solutions. The Pk-Topk query that we mainly focus in this

paper is actually a slight variant of PT-k. But we show how all of

the existing three definitions can be plugged into our framework.

All the existing works only study the problem of how to answer a

“one-shot” top-k query on a static uncertain data set, with the ex-

ception of [7], which presents a fully dynamic structure to support

arbitrary insertions and deletions. However, the structure of [7]

has size linear in the data set since the goal there is to allow any

tuple to be deleted. In the sliding window model, the “first in, first

out” property has allowed us to reduce the space complexity sig-

nificantly. In addition, [7] is only concerned with U-Topk queries,

and the structure is quite complicated and theoretical in nature.

Uncertain data streams. As mentioned in Section 1, there has

been a lot of effort in extending the query processing techniques on
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static uncertain data to uncertain data streams [1, 9, 10, 11, 22, 23,

34]. Though there are papers on computing statistical aggregates

and clustering, there is still no work on top-k queries over uncertain

streams. Nevertheless, as we point out in Section 3, it is actually

not difficult to extend the existing top-k algorithms to the case of

unbounded streams. But in the more meaningful sliding window

model, the problem becomes much more difficult. To the best of

our knowledge, our paper is the first piece of work on uncertain

streaming algorithms in the sliding window model.

8. CONCLUSIONS
Top-k queries are arguably one of the most important types of

queries in databases. This paper extends the problem of answering

uncertain top-k queries on static datasets to the case of uncertain

data streams with sliding windows. We designed both space- and

time-efficient synopses to continuously monitor the top-k results,

and showed that all the existing top-k definitions can be plugged

into our framework. In the present paper, we adopted the simple

uncertain data model where each tuple appears with a certain prob-

ability independent of other tuples. In future, we are planning to

find solutions to cope with more complex uncertain models.

This paper only considers how to cope with sliding-window top-

k queries exactly accordingly to the definitions. Another future

direction is study the approximate versions of them [21], which

possibly allows for more space- and time-efficient solutions.
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