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SLIDING WINDOWS AND PERSISTENCE:

AN APPLICATION OF TOPOLOGICAL METHODS TO SIGNAL

ANALYSIS

JOSE A. PEREA (�) AND JOHN HARER

Abstract. We develop in this paper a theoretical framework for the topo-
logical study of time series data. Broadly speaking, we describe geometrical

and topological properties of sliding window embeddings, as seen through the

lens of persistent homology. In particular, we show that maximum persis-
tence at the point-cloud level can be used to quantify periodicity at the signal

level, prove structural and convergence theorems for the resulting persistence

diagrams, and derive estimates for their dependency on window size and em-
bedding dimension. We apply this methodology to quantifying periodicity

in synthetic data sets, and compare the results with those obtained using

state-of-the-art methods in gene expression analysis. We call this new method
SW1PerS which stands for Sliding Windows and 1-dimensional Persistence

Scoring.

1. Introduction

Signal analysis is an enormous field. There are many methods to study signals
and many applications of that study. Given its importance, one might conclude
that there is little opportunity left for the development of totally new approaches
to signals. Yet in this paper we provide a new way to find periodicity and quasi-
periodicity in signals. The method is based on sliding windows (also known as
time-delay reconstruction), which have been used extensively in both engineering
applications and in dynamical systems. But it adds a new element not applied
before, which comes from the new field of computational topology [12].

Persistent homology is a topological method for measuring the shapes of spaces
and the features of functions. One of the most important applications of persistent
homology is to point clouds [3], where shape is usually interpreted as the geometry
of some implicit underlying object near which the point cloud is sampled. The
simplest non-trivial example of this idea is a point cloud which has the shape of
a circle, and this shape is captured with 1-dimensional persistence. The challenge
in applying the method is that noise can reduce the persistence, and not enough
points can prevent the circular shape from appearing. It’s also a challenge to deal
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with the fact that features come on all scale-levels and can be nested or in more
complicated relationships. But this is what persistent homology is all about.

The idea of applying 1D persistence to study time series arose in our study of
gene expression data [11, 23]. The first of these papers studied a variety of existing
methods for finding periodicity in gene expression patterns. The motivation of that
work was the search for gene regulatory networks (more precisely, possible nodes
of gene regulatory networks) that control periodic processes in cells such as the
cell division cycle, circadian rhythms, metabolic cycles and periodic patterning in
biological development (lateral roots and somites). The methods studied in [11]
were derived from a number of fields including astronomy, geometry, biology and
statistics, and all were based on a direct study of the underlying signal in either
physical or frequency space. The most successful methods are based on finding
cosine-like behavior, a rather limited definition of periodicity.

In this paper and in [23] we look instead at the shape of the sliding window point
cloud, a totally different approach. Of course the geometry of point clouds derived
from other kinds of data like images has been studied before [4, 16], but the current
approach is quite different. Our method understands periodicity as repetition of
patterns, whatever these may be, and quantifies this reoccurrence as the degree
of circularity/roundness in the generated point-cloud. Thus, it is fundamentally
agnostic.

1.1. Previous Work. The sliding window, or time-delay embedding, has been
used mostly in the study of dynamical systems to understand the nature of their
attractors. Takens’ theorem [28] gives conditions under which a smooth attractor
can be reconstructed from the observations of a function, with bounds related to
those of the Whitney Embedding Theorem. This methodology has in turn been
employed to test for non-linearity and chaotic behavior in the dynamics of ECG-
EKG, EEG and MEG [25, 26].

It has been recently demonstrated by de Silva et. al. [10] that combining time-
delay embeddings with topological methods provides a framework for parametrizing
periodic systems.

Kantz and Schreiber provide in [16, Chapter 1] a good source of examples of
time delay embeddings used in real-world data sets.

1.2. Our Contribution. In the above applications, little of the topology and none
of the geometry of the resulting sliding window embedding has ever been used. The
novelty of our approach lies in our use of this geometry and topology through per-
sistent homology. We make this possible by showing that maximum persistence, as
a measure of “roundness” of the point-cloud, occurs when the window size corre-
sponds to the natural frequency of the signal. This means that 1D persistence is
an effective quantifier of periodicity and quasi-periodicity and can be used to infer
properties of the signal.

1.3. Outline. In section 2 we show a motivating example to illustrate our perspec-
tive. In section 3 we give a general introduction to persistent homology. More on
this topic can be found in [12]. In section 4 we show that sliding windows behave
well under approximations, and give explicit estimates at the point-cloud level. Sec-
tion 5 is devoted to studying the geometric structure of sliding window embeddings
from truncated Fourier series, as well as their dependency on embedding dimension
and window size. In section 6 we prove results describing the structure of persistent
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diagrams from sliding window embeddings. We present in section 7 some examples
of how our method applies in the problem of quantifying periodicity in time series
data.

2. Definitions and Motivation

Suppose that f is a function defined on an interval of the real numbers. Choose
an integer M and a real number τ , both greater than 0. The sliding window
embedding of f based at t ∈ R into RM+1 is the point

SWM,τf(t) =


f(t)

f(t+ τ)
...

f(t+Mτ)

.
Choosing different values of t gives a collection of points called a sliding window
point cloud for f . A critical parameter for this embedding is the window-size
Mτ .

2.1. Motivation: To motivate the approach we take in the paper, let us begin
with the following example.

Example. Let L ∈ N and f(t) = cos(Lt). Then

SWM,τf(t) =


cos(Lt)

cos(Lt+ Lτ)
...

cos(Lt+MLτ)



= cos(Lt)


1

cos(Lτ)
...

cos(LMτ)

− sin(Lt)


0

sin(Lτ)
...

sin(LMτ)


= cos(Lt)u− sin(Lt)v

and therefore t 7→ SWM,τf(t) describes a planar curve in RM+1, with winding
number L, whenever u and v are linearly independent. One can in fact see how
the shape of this curve changes as a function of L, M and τ . Indeed, let

A =

 ‖u‖2 −〈u,v〉

−〈u,v〉 ‖v‖2


which can be computed using Lagrange’s trigonometric formulae

〈u,v〉 =
1

2

M∑
m=0

sin(2Lmτ) =
sin(L(M + 1)τ) sin(LMτ)

2 sin(Lτ)

‖u‖2 − ‖v‖2 =

M∑
m=0

cos(2Lmτ) =
sin(L(M + 1)τ) cos(LMτ)

sin(Lτ)

‖u‖2 + ‖v‖2 = M + 1.
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It follows that A is positive semi-definite (both its determinant and trace ar non-
negative). This means the eigenvalues of A are non-negative and real: λ1 ≥ λ2 ≥ 0,
and there is a 2× 2 orthogonal matrix B so that

A = BTΛ2B where Λ =

[√
λ1 0
0

√
λ2

]
.

Therefore, if x(t) =
[
cos(Lt) sin(Lt)

]′
(here ′ denotes transpose) then

‖SWM,τf(t)‖2 =

∥∥∥∥∥∥
 | |

u −v
| |

x(t)

∥∥∥∥∥∥
2

=
〈
x(t), A x(t)

〉
=

〈
ΛB x(t),ΛB x(t)

〉
.

Since B is a rotation matrix, say by an angle α, then the map

SWM,τf(t) 7→

√λ1 cos(Lt+ α)

√
λ2 sin(Lt+ α)


is an isometry.

In summary, for f(t) = cos(Lt), the embedding t 7→ SWM,τf(t) describes an
ellipse on the plane Span{u,v}, whose shape (minor and major axes) is determined
by the square roots of the eigenvalues of A. These eigenvalues can be computed
explicitly as

λ1 =
(M + 1) +

∣∣∣ sin(L(M+1)τ)
sin(Lτ)

∣∣∣
2

λ2 =
(M + 1)−

∣∣∣ sin(L(M+1)τ)
sin(Lτ)

∣∣∣
2

.

It follows that the ellipse is roundest when λ2 attains its maximum, which occurs
if and only if L(M + 1)τ ≡ 0 mod π. One such instance is

Mτ =

(
M

M + 1

)
2π

L

which is when the window-size approximates the length of the period of f(t). In
other words, the roundness of the sliding window point cloud for f(t) = cos(Lt) is
maximized when the window-size is close to resonating with its natural frequency.

The previous example provides the following intuition: For a generic function f ,
the degree to which the image of SWM,τf traces a closed curve in RM+1 reflects
how periodic f is. Moreover, if f is periodic, then the roundness of SWM,τf defined
as the largest radius of a ball in RM+1 so that the curve

t 7→ SWM,τf(t)

is tangent to at least two points of its equator, is maximized when the window-size
Mτ approaches the period length. The goal of this paper is to understand these
relations.
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The geometry of the curve t 7→ SWM,τf(t) can be quite complicated, as shown
in figure 1.

Figure 1. From a periodic function to its sliding window point
cloud. Left: A periodic function f . Right: Multidimensional
scaling into R3 for SW20,τf . For each t, we use the same color for
f(t) and SW20,τf(t). Please refer to an electronic version for colors.

The 1-dimensional persistence diagram for the Vietoris-Rips filtration on a finite
sample {SWM,τf(t1), . . . , SWM,τf(tS)}, on the other hand, is readily computable
[29, 30] and its maximum persistence is a measure of roundness as defined in the
previous paragraph. We will review in section 3 the basic concepts behind persistent
homology, and devote the rest of the paper to understanding how the geometry of
SWM,τf reflects properties of f such as periodicity and period.

2.2. Approach: With this motivation in mind, we now describe our approach: As
we have seen, understanding the algebraic properties of trigonometric functions
allows one to characterize the geometry of SWM,τf when f is a trigonometric poly-
nomial. This understanding, in turn, can be bootstrapped using Fourier analysis
and stability of persistence diagrams, in an approximation step towards SWM,τ

of a generic periodic function. In what follows, we will establish the appropriate
continuity results for approximation, as well as the necessary structural results for
persistence diagrams from sliding window point clouds.

3. Background: Persistent Homology

In this section we define the key concepts that underlie the theory of persistent
homology for filtered simplicial complexes. We give a terse introduction to simplicial
homology, but more information can be found in [14, 21].

3.1. Homology of Simplicial Complexes. Let K be a simplicial complex and
p a prime number. Recall that this means that K is a finite set of simplices that
is closed under the face relation and that two simplices of K are either disjoint
or intersect in a common face. Let Fp be the finite field with p elements, the Fp
vector space generated by the k-dimensional simplices of K is denoted Ck(K). It
consists of all k-chains, which are finite formal sums c =

∑
j γjxj , with γj ∈ Fp

and each xj a k-simplex in K. The boundary ∂(xj) is the alternating formal sum
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of the (k − 1)-dimensional faces of xj and the boundary of the chain c is obtained
by extending ∂ linearly

∂(c) =
∑
j

γj∂(xj).

It is not difficult to check that ∂ ◦ ∂ = ∂2 = 0. The k-chains that have boundary
0 are called k-cycles; they form a subspace Zk of Ck. The k-chains that are the
boundary of (k + 1)-chains are called k-boundaries and form a subspace Bk of Ck.
The fact that ∂2 = 0 tells us that Bk ⊂ Zk. The quotient group Hk(K) = Zk/Bk
is the k-th simplicial homology group of K with Fp-coefficients. The rank of Hk(K)
is the k-th mod p Betti number of K and is denoted βk(K). Since the prime p will
be clear from the context, we do not include it in the notation.

When we have two simplicial complexes K and K ′, a simplicial map f : K → K ′

is a continuous map that takes simplices to simplices and is linear on each. A
simplicial map induces a homomorphism on homology, f∗ : Hk(K) → Hk(K ′),
and homotopic maps induce the same homomorphism. Homotopy equivalences of
spaces induce isomorphisms on homology. The simplicial approximation theorem
tells us that a continuous map of simplicial complexes can be approximated by
a simplicial map, so that it makes sense to talk about continuous maps inducing
homomorphisms on homology.

Persistence. We next define persistence, persistent homology and the persistence
diagram for a simplicial complex K. A subcomplex of K is a subset of its simplices
that is closed under the face relation. A filtration of K is a nested sequence of
subcomplexes that starts with the empty complex and ends with the complete
complex,

∅ = K0 ⊂ K1 ⊂ . . . ⊂ Km = K.

A homology class α is born at Ki if it is not in the image of the map induced by
the inclusion Ki−1 ⊂ Ki. If α is born at Ki, we say that it dies entering Kj if the
image of the map induced by Ki−1 ⊂ Kj−1 does not contain the image of α but
the image of the map induced by Ki−1 ⊂ Kj does. The persistence of α is j − i.

We code birth and death information in the persistence diagrams, one for each
dimension. The diagram dgm(k) has a point (i, j) for every k-homology class that
is born at Ki and dies entering Kj . For most of the paper the homological dimen-
sion k will be clear from the context or unimportant for the discussion. To ease
notation we will simply write dgm instead of dgm(k), and let dgm1, dgm2 denote
two k-persistence diagrams to be compared. Sometimes we have a function h that
assigns a height or distance to each sub complex Ki, and in that case we use the
pair (h(i), h(j)). Each diagram is now a multiset since classes can be born simul-
taneously and die simultaneously. We adjoin the diagonal ∆ = {(x, x) : x ≥ 0} to
each diagram, and endow each point (x, x) ∈ ∆ with countable multiplicity.

The Bottleneck distance between two persistence diagrams dgm1 and dgm2 is
defined by

dB(dgm1, dgm2) = inf
φ

sup
x∈dgm1

||x− φ(x)||∞

where the infimum is taken over all bijections φ : dgm1 → dgm2. Note that such
φ exist even if the number of points of dgm1 and dgm2 are different since we have
included the diagonal.
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Rips Complex. Let X ⊂ Rn be a compact set, for example a finite point cloud.
We define dX(y) to be the distance from the point y ∈ Rn to X. We are interested
in how the homology of the sub-level sets Xr = d−1

X ([0, r]) changes as we increase r.
To make this computationally feasible, we replace the continuous family of spaces
Xr with a discrete family of approximations called the Rips complexes defined as
follows. Fix r ≥ 0, Rr(X) is the simplicial complex whose vertices are the points
of X and whose k-simplices are the k+ 1 tuples [x0, · · · , xk] such that the pairwise
distances ||xi − xj || are less than or equal to r for all 0 ≤ i < j ≤ k. Note that
the edges determine the simplices of Rr(X), a higher dimensional simplex is added
if and only if all its edges have been added, and that the Rips construction makes
sense for any metric space.

Since Rr(X) ⊂ Rs(X) whenever r < s, the Rips complexes form a filtration
of R∞, which denotes the largest simplicial complex having X as its vertex set.
Changes occur at the finite set of r values that are pairwise distances between
points, so we can work with just these rj to get the filtration

X = R0 ⊂ R1 ⊂ · · · ⊂ Rm,

where Rj(X) = Rrj (X) and Rm = R∞. We will use this filtered complex to study
the persistence and the persistence diagrams of the point cloud X. We thus denote
by dgm(X) the persistence diagram of the homology filtration induced from the
Rips filtration on X, where we use homology with coefficents in Fp.

A key property of persistence is that it is stable [6]. In our context this means
that if X,Y are two point clouds and dH , dGH are the Hausdorff and Gromov-
Hausdorff distances, then

dB(dgm(X), dgm(Y )) ≤ 2dGH(X,Y ) ≤ 2dH(X,Y ). (1)

4. The Approximation Theorem

In this section we show that one can study SWM,τf and the persistence of the
point cloud it generates for a generic function f ∈ L2(T = R/2πZ), by using
its Fourier Series approximation. While it seems quite difficult to study SWM,τf
directly, it is not hard to understand SWM,τ cos(nt) and SWM,τ sin(nt), so we will
build our understanding of the geometry of a general SWM,τf from these special
cases using the Fourier series of f . To do this we will need to show that SWM,τ

behaves well under approximations and that these approximations work in the
context of stability for persistence diagrams.

Let C(X,Y ) denote the set of continuous functions from X to Y equipped with
the sup norm. The sliding window embedding induces a mapping

SWM,τ : C(T,R) −→ C(T,RM+1).

The first fact about this map that we need is the following:

Proposition 4.1. Let T = R/2πZ. Then for all M ∈ N and τ > 0, the map-
ping SWM,τ : C(T,R) −→ C(T,RM+1) is a bounded linear operator with norm

‖SWM,τ‖ ≤
√
M + 1.

Proof. Linearity of SWM,τ follows directly from its definition. To see that it is
bounded, notice that for every f ∈ C(T,R) and t ∈ T we have
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‖SWM,τf(t)‖2RM+1 = |f(t)|2 + |f(t+ τ)|2 + · · ·+ |f(t+Mτ)|2

≤ (M + 1)‖f‖2∞
�

We now consider approximating a function f by its Fourier polynomials and
study how the sliding windows behave in this context. In particular, let

f(t) = SNf(t) +RNf(t)

where

SNf(t) =

N∑
n=0

an cos(nt) + bn sin(nt) =

N∑
n=−N

f̂(n)eint

is the N -truncated Fourier series expansion of f , RNf is the remainder, and

f̂(n) =


1
2an −

i
2bn if n > 0,

1
2a−n + i

2b−n if n < 0,

a0 if n = 0.

(2)

We can easily compute that

SWM,τf(t) =

N∑
n=0

cos(nt)
(
anun + bnvn

)
+ sin(nt)

(
bnun − anvn

)
+ SWM,τRNf(t)

where

un = SWM,τ cos(nt)
∣∣
t=0

and vn = SWM,τ sin(nt)
∣∣
t=0

.

The vectors un and vn form a fundamental basis out of which we can build our
understanding of the structure of the point clouds that sliding windows create. We
introduce the notation:

φτ (t) =

N∑
n=0

cos(nt)
(
anun + bnvn

)
+ sin(nt)

(
bnun − anvn

)
,

for the sliding window embedding for SNf(t). Also, when f,M and N are clear
from the context we will simply write φτ = SWM,τSNf .

The next step is to find a bound on the term SWM,τRNf(t). We will actually

find a series of bounds, one for each of the derivatives f (k) = dkf
dtk

, whenever they
exist and are continuous.

Proposition 4.2. Let k ∈ N. If f ∈ Ck(T,R) then for all t ∈ T

‖SWM,τf(t)− φτ (t)‖RM+1 ≤
√

4k − 2
∥∥∥RNf (k)

∥∥∥
2
·
√
M + 1

(N + 1)k−
1
2

Proof. If k ∈ N and f ∈ Ck(T,R), then integration by parts yields the well known
identity ∣∣∣f̂ (k)(n)

∣∣∣ = |n|k
∣∣∣f̂(n)

∣∣∣
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for the length of f̂ (k)(n), the n-th complex Fourier coefficient of f (k), n ∈ Z. Thus
for all t ∈ T, the Cauchy-Schwartz inequality, Young’s inequality and Parseval’s
theorem together imply that

|RNf(t)| ≤
∞∑

n=N+1

∣∣∣f̂ (k)(n)
∣∣∣+
∣∣∣f̂ (k)(−n)

∣∣∣
nk

≤

( ∞∑
n=N+1

(∣∣∣f̂ (k)(n)
∣∣∣+
∣∣∣f̂ (k)(−n)

∣∣∣)2
)1/2

·

( ∞∑
n=N+1

1

n2k

)1/2

≤

2
∑

|n|≥N+1

∣∣∣f̂ (k)(n)
∣∣∣2
1/2

·
(∫ ∞

N+1

1

x2k
dx

)1/2

=
√

2
∥∥∥RNf (k)

∥∥∥
2
·
√

2k − 1

(N + 1)k−
1
2

and hence, by proposition 4.1

‖SWM,τf(t)− φτ (t)‖RM+1 ≤
√
M + 1‖RNf‖∞

≤
√

4k − 2
∥∥∥RNf (k)

∥∥∥
2
·
√
M + 1

(N + 1)k−
1
2

�

These bounds readily imply estimates for the Hausdorff distance between the
sliding window point clouds of f and SNf . Indeed, let X and Y be the images of
T ⊂ T through SWM,τf and φτ respectively. It follows that if f ∈ Ck(T,R) and

ε >
√

4k − 2
∥∥∥RNf (k)

∥∥∥
2

√
M + 1

(N + 1)k−
1
2

then X ⊂ Y ε, Y ⊂ Xε and therefore dH(X,Y ) ≤ ε. Letting ε approach its lower
bound and using the stability of dB with respect to dH (equation 1), we obtain the
relation

dB
(
dgm(X), dgm(Y )

)
≤ 2
√

4k − 2
∥∥∥RNf (k)

∥∥∥
2

√
M + 1

(N + 1)k−
1
2

As described in the introduction, the maximum persistence of dgm(X) will serve
to quantify the periodicity of f when measured with sliding windows of length Mτ .
By the maximum persistence of a diagram dgm we mean the following

Definition 4.3. Let (x, y) ∈ dgm and define pers(x, y) = y−x for (x, y) ∈ R2, and
as ∞ otherwise. We let

mp(dgm) = max
x∈dgm

pers(x)

denote the maximum persistence of dgm.

Remark 4.4. If dgm∆ denotes the diagram with the diagonal as underlying set,
each point endowed with countable multiplicity, then

mp(dgm) = 2dB(dgm, dgm∆).
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Indeed, for any bijection φ : dgm −→ dgm∆ and every x ∈ dgm

‖x− φ(x)‖∞ ≥
1

2
pers(x)

with equality if and only if φ(x, y) =
(
x+y

2 , x+y
2

)
. Thus

max
x∈dgm

‖x− φ(x)‖ ≥ 1

2
mp(dgm)

and therefore dB(dgm, dgm∆) = min
φ

max
x∈dgm

‖x−φ(x)‖ ≥ 1
2mp(dgm). For the reverse

inequality, notice that the map

(x, y) 7→
(
x+ y

2
,
x+ y

2

)
extends to a bijection φ0 : dgm −→ dgm∆ of multisets, such that for all x ∈ dgm
one has ‖x− φ0(x)‖∞ = 1

2pers(x).

We summarize the results of this section in the following theorem:

Theorem 4.5 (Approximation). Let T ⊂ T, f ∈ Ck(T,R), X = SWM,τf(T )
and Y = SWM,τSNf(T ). Then

(1)

dH(X,Y ) ≤
√

4k − 2
∥∥∥RNf (k)

∥∥∥
2

√
M + 1

(N + 1)k−
1
2

(2) ∣∣mp(dgm(X)
)
−mp

(
dgm(Y )

)∣∣ ≤ 2dB
(
dgm(X), dgm(Y )

)
(3)

dB

(
dgm(X), dgm(Y )

)
≤ 2
√

4k − 2
∥∥∥RNf (k)

∥∥∥
2

√
M + 1

(N + 1)k−
1
2

It follows that the persistent homology of the sliding window point cloud of a
function f ∈ Ck(T,R) can, in the limit, be understood in terms of that of its
truncated Fourier series.

Remark 4.6. Regarding the hypothesis of f being at least C1, Proposition 4.2
(which is the basis of the Approximation Theorem, 4.5) only uses that f ′ ∈ L2(T),
thus everything up to this point (and in fact, for the rest of the paper) holds true
for functions in the Sobolev space W 1,2(T). The reason why we have phrased the
results in terms of the spaces Ck(T) is because it provides the following interpre-
tation: If the function f has certain degree of niceness, then one should expect the
approximation of the persistence diagrams from SWM,τf by those of SWM,τSNf
to improve at an explicit rate. Moreover, the nicer the function the better the rate.

Another function space for which our arguments apply is the set of Hölder con-
tinuous functions with exponent α ∈

(
1
2 , 1
)
. Indeed, if for such an f one considers

the Fejér approximation

σNf(t) =
∑
|n|≤N

(
1− |n|

N + 1

)
f̂(n)eint

then (see [22, Theorem 1.5.3])

‖σNf − f‖∞ ≤
CαKα

Nα
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where Kα is the Hölder constant of f and Cα is a constant depending solely on α.
Hence one gets the following version of Proposition 4.2: For every t ∈ T∥∥SWM,τf(t)− SWM,τσNf(t)

∥∥
RM+1 ≤ CαKα

√
M + 1

Nα

and the corresponding version of the Approximation Theorem follows. Later on (e.g.
in Theorem 6.8) we will use some bounds in terms of ‖f ′‖2 and ‖SNf ′‖2. Adapting
results involving said bounds to the Holder-continuous setting requires some work:
One can use the fact that every Holder function has a Lipschitz approximation, and
then invoke Rademacher’s theorem. We leave the details to the interested reader.

5. The Geometric Structure of SWM,τSNf

We now turn our attention to the sliding window construction when applied to
the truncated Fourier series of a periodic function. More specifically, we study the
geometric structure of the sliding window point cloud, and its dependency on τ , N
and M .

Our focus on geometry contrasts with methods used by others to determine τ
and M . Traditionally Mτ , the window size, is estimated using the autocorrelation
function [17]. While M is sometimes estimated directly using the method of false
nearest neighbors [16].

5.1. Dimension of the Embedding. One way of interpreting the dimension of
the embedding, M + 1, is as the level of detail (from the function) one hopes
to capture with the sliding window representation. Given the advantages of a
description which is as detailed as possible, it can be argued that large dimensions
are desirable. From a computational perspective, however, this is a delicate point
as our ultimate goal is to compute the persistent homology of the associated sliding
window point cloud. Indeed, as the dimension of the embedding grows, it follows
that the point cloud needs to be (potentially) more densely populated. This causes
the size of the Rips complex to outweigh the computational resources, making the
persistent homology calculation unfeasible.

While there has been considerable progress on dealing with the size problem of
the Rips complex [20], it is important to have a sense of the amount of retained
information given the computational constraints on the embedding dimension. For-
tunately, when dealing with trigonometric polynomials the answer is clear: One
loses no information if and only if the embedding dimension is greater than twice
the maximum frequency. Indeed, recall the linear decomposition

SWM,τSNf(t) =

N∑
n=0

cos(nt)
(
anun + bnvn

)
+ sin(nt)

(
bnun − anvn

)
where

un = SWM,τ cos(nt)
∣∣
t=0

, vn = SWM,τ sin(nt)
∣∣
t=0

and an, bn are as defined in equation 2. Since the angles between the un’s and the
vm’s, as well as their norms can be determined from M and τ (see Example in
section 2.1), then SNf can be recovered from SWM,τSNf if the un’s and the vm’s
are linearly independent. This is the sense in which we say that there is no loss of
information.
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Proposition 5.1. Let Mτ < 2π. Then u0,u1,v1, . . . ,uN ,vN are linearly inde-
pendent if and only if M ≥ 2N .

Proof. If 2N + 1 vectors in RM+1 are linearly independent, it readily follows that
2N ≤M . Let us assume now that u0,u1,v1, . . . ,uN ,vN are linearly dependent
and let us show that 2N > M , or equivalently that 2N ≥ M + 1. Indeed, let
γ0, β0, . . . , γN , βN ∈ R be scalars not all zero (set β0 = 0) so that

γ0u0 + β0v0 + · · ·+ γNuN + βNvN = 0.

That is, for all m = 0, . . . ,M we have

0 =

N∑
n=0

γn cos(nmτ) + βn sin(nmτ) = Re
( N∑
n=0

(γn − iβn)einmτ
)
.

Let ξm = eimτ , p(z) =
N∑
n=0

(γn + iβn)zn, p(z) =
N∑
n=0

(γn − iβn)zn and

q(z) = zN ·
(
p(z) + p

(
1

z

))
.

It follows that q(z) is a non-constant complex polynomial of degree at most 2N ,
and that for m = 0, . . . ,M we have 0 = Re(p(ξm)). This implies that

q(ξm) = (ξm)N
(
p(ξm) + p

(
1

ξm

))
= (ξm)N

(
p(ξm) + p

(
ξm

))
= 2(ξm)N Re

(
p(ξm)

)
= 0

and therefore ξ0, . . . , ξM are roots of q(z). Since Mτ < 2π then ξ0, ξ1, . . . , ξM are
distinct, and we have that

M + 1 ≤ degree
(
q(z)

)
≤ 2N.

�

It is useful to contrast Proposition 5.1 with two important results in signal anal-
ysis: Takens’ theorem from dynamical systems [28], and the Nyquist-Shannon sam-
pling theorem from information theory [27]. Takens’ theorem gives sufficient con-
ditions on the length of a sequence of observation, so that the resulting embedding
recovers the topology of a smooth attractor in a chaotic dynamical system. The
aforementioned condition is that the dimension of the embedding should be greater
than twice (an appropriate notion of) that of the attractor. The Nyquist-Shannon
sampling theorem, on the other hand, contends that a band-limited signal can be
recovered (exactly) from a sequence of observations whenever the sampling fre-
quency is greater than twice the position, in the frequency domain, of the limiting
band. The conclusion: In the case of trigonometric polynomials and the sliding
window construction, the usual sufficient condition on dimension of the embedding
and maximum frequency is also necessary.

Important Assumption: Unless otherwise stated, given N ∈ N we will always
set M = 2N , and require τ > 0 to be so that Mτ < 2π.
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5.2. Window Size and Underlying Frequency. As we saw in the Motivation
Section 2, the sliding window point cloud for cos(Lt) describes a planar ellipse
which is roundest when ‖u‖ − ‖v‖ = 〈u,v〉 = 0, or equivalently, when

L(M + 1)τ ≡ 0 (mod π).

This uncovers a fundamental relation between window size, 1-dimensional persis-
tence and underlying frequency: The maximum persistence of the sliding window
point cloud from cos(Lt) is largest when the window size Mτ is proportional to the
underlying frequency 2π

L , with proportionality constant M
M+1 .

For the case of the truncated Fourier series SNf from a periodic function f , we
will see shortly that if the same proportionality relation between window size and
underlying frequency holds then

SWM,τSNf(t) =

N∑
n=0

cos(nt)
(
anun + bnvn

)
+ sin(nt)

(
bnun − anvn

)
(3)

is a linear decomposition into mutually orthogonal vectors. We begin with the now
familiar case of the restriction to Span{un,vn}.

Proposition 5.2. For n ≥ 1, 〈un,vn〉 = ‖un‖2 − ‖vn‖2 = 0 if and only if

n(M + 1)τ ≡ 0 (mod π).

Proof.

〈un,vn〉 =

M∑
m=1

cos(nmτ) sin(nmτ) =
1

2

M∑
m=1

sin(2nmτ)

=
1

2
Im

(
M∑
m=1

zm2nτ

)
, where zθ = eiθ

=
1

2
Im

(
1− z2n(M+1)τ

1− z2nτ
− 1

)
=

1

2
Im

(
1− z2n(M+1)τ

1− z2nτ

)
‖un‖2 − ‖vn‖2 =

M∑
m=0

cos2(nmτ)− sin2(nmτ)

= Re

(
1− z2n(M+1)τ

1− z2nτ

)
and therefore

4〈un,vn〉2 + (‖un‖2 − ‖vn‖2)2 =

∥∥∥∥1− z2n(M+1)τ

1− z2nτ

∥∥∥∥2

.

It follows that 〈un,vn〉 = ‖un‖2 − ‖vn‖2 = 0 if and only if z2n(M+1)τ = 1, which
holds true if and only if n(M + 1)τ ≡ 0 (mod π). �

It can be checked that nMτ ≡ 0 (mod π) also yields 〈un,vn〉 = 0, but letting
n(M+1)τ ≡ 0 (mod π) implies that anun+bnvn is perpendicular to bnun−anvn for
all an, bn ∈ R. Now, in order to extend the perpendicularity results to components
from different harmonics, we will use the following:
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Definition 5.3. We say that a function f is L-periodic on [0, 2π], L ∈ N, if

f

(
t+

2π

L

)
= f(t)

for all t.

Remark 5.4. If f is an L-periodic function, an and bn are its n-th real Fourier
coefficients (see equation 2), and we let an + ibn = rne

iαn , with αn = 0 whenever
rn = 0; then rn 6= 0 implies n ≡ 0 (mod L). Indeed, g(t) = f(t/L) is a 1-periodic
function and therefore has a Fourier series expansion

g(t) =

∞∑
r=0

a′r cos(rt) + b′r sin(rt)

with equality almost everywhere. Thus

f(t) = g(tL) =

∞∑
r=0

a′r cos(rLt) + b′r sin(rLt) =

∞∑
n=0

an cos(nt) + bn sin(nt)

for almost every t, and the result follows from the uniqueness of the Fourier expan-
sion in L2(T).

We are now ready to see that the potentially non-zero terms in the linear decom-
position of SWM,τSNf (equation 3), can be made mutually orthogonal by choosing
the window size proportional to the underlying frequency, with proportionality con-
stant M

M+1 .

Proposition 5.5. Let f be L-periodic, and let τ = 2π
L(M+1) . Then the vectors in

{un,vn | 0 ≤ n ≤ N, n ≡ 0 (mod L)}

are mutually orthogonal, and we have ‖un‖ = ‖vn‖ =
√

M+1
2 for n ≡ 0 (mod L).

Proof. Let k = pL and n = qL. If k = n, it follows from Proposition 5.2 that
〈un,vn〉 = 0 and

‖un‖2 = ‖vn‖2 =
‖un‖2 + ‖vn‖2

2
=

1

2

M∑
m=0

cos(nmτ)2 + sin(nmτ)2

=
M + 1

2
.

Let us assume now that p 6= q. If we let zθ = eiθ, θ ∈ R, then

〈un,uk〉 =

M∑
m=0

cos(nmτ) cos(kmτ)

=
1

2

M∑
m=0

cos((n− k)mτ) + cos((n+ k)mτ)

=
1

2
Re

(
1− z(n−k)(M+1)τ

1− z(n−k)τ
+

1− z(n+k)(M+1)τ

1− z(n+k)τ

)
=

1

2
Re

(
1− z(q−p)2π

1− z(n−k)τ
+

1− z(q+p)2π

1− z(n+k)τ

)
= 0.
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Notice that

0 < min{|n− k|, |n+ k|} ≤ max{|n− k|, |n+ k|} ≤ 2N ≤M <
2π

τ
implies that the denominators are never zero. Similarly

〈un,vk〉 =

M∑
m=1

cos(nmτ) sin(kmτ)

=
1

2

M∑
m=1

sin((n+ k)mτ)− sin((n− k)mτ)

=
1

2
Im

(
1− z(q+p)2π

1− z(n+k)τ
−

1− z(q−p)2π

1− z(n−k)τ

)
= 0

〈vn,uk〉 =
1

2
Im

(
1− z(p+q)2π

1− z(k+n)τ
−

1− z(p−q)2π

1− z(k−n)τ

)
= 0

〈vn,vk〉 =
1

2
Re

(
1− z(q−p)2π

1− z(n−k)τ
−

1− z(q+p)2π

1− z(n+k)τ

)
= 0.

�

When computing persistent homology it is sometimes advantageous to pointwise
center and normalize the set of interest. The next theorem describes the result
of such operations on the sliding window point cloud for SWM,τSNf , when f is
L-periodic and L(M + 1)τ = 2π.

Theorem 5.6 (Structure). Let C : RM+1 −→ RM+1 be the centering map

C(x) = x− 〈x,1〉
‖1‖2

1 where 1 =

1
...
1

 ∈ RM+1.

If f is L-periodic, L(M + 1)τ = 2π and φτ = SWM,τSNf , then

(1)

φτ (t) = f̂(0) · 1 + C(φτ (t))

(2) ∥∥C(φτ (t)
)∥∥ =

√
M + 1

(
‖SNf‖22 − f̂(0)2

)1/2

(3) There exists an orthonormal set{
x̃n, ỹn ∈ RM+1

∣∣∣ 1 ≤ n ≤ N, n ≡ 0 (mod L)
}

such that

ϕτ (t) =
C (φτ (t))

‖C (φτ (t)) ‖
=

N∑
n = 1

n ≡ 0 (mod L)

r̃n
(

cos(nt)x̃n + sin(nt)ỹn
)

(4)

where

r̃n =
2
∣∣∣f̂(n)

∣∣∣√
‖SNf‖22 − f̂(0)2
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Proof. If f is an L-periodic function on [0, 2π] and L(M + 1)τ = 2π, then Remark
5.4 and Proposition 5.5 imply that for all t ∈ R

φτ (t) =

N∑
n = 0

n ≡ 0 (mod L)

cos(nt)
(
anun + bnvn

)
+ sin(nt)

(
bnun − anvn

)

=

N∑
n = 0

n ≡ 0 (mod L)

rn
(

cos(nt)xn + sin(nt)yn
)

is a linear combination of the mutually orthogonal vectors xn = cos(αn)un + sin(αn)vn
and yn = sin(αn)un − cos(αn)vn.

Moreover, from Proposition 5.5 we have that if n ≥ 1 is so that n ≡ 0 (mod L)

then ‖xn‖ = ‖yn‖ =
√

M+1
2 . It follows that if

x̃n =
xn
‖xn‖

, ỹn =
yn
‖yn‖

then

φτ (t) =
(
a0

√
M + 1

) 1

‖1‖
+

N∑
n = 1

n ≡ 0 (mod L)

√
M + 1

2
rn
(

cos(nt)x̃n + sin(nt)ỹn
)

is a linear decomposition of φτ (t) in terms of the orthonormal set{
1

‖1‖
, x̃n, ỹn

∣∣∣ 1 ≤ n ≤ N, n ≡ 0 (mod L)

}
.

Hence C
(
φτ (t)

)
=

N∑
n = 1

n ≡ 0 (mod L)

√
M+1

2 rn
(

cos(nt)x̃n + sin(nt)ỹn
)

and therefore

ϕτ (t) =
C
(
φτ (t)

)∥∥C(φτ (t)
)∥∥

=

N∑
n = 1

n ≡ 0 (mod L)

rn√
r2
1 + · · ·+ r2

N

(
cos(nt)x̃n + sin(nt)ỹn

)
which we write as

ϕτ (t) =

N∑
n = 1

n ≡ 0 (mod L)

r̃n
(

cos(nt)x̃n + sin(nt)ỹn
)

,

N∑
n=1

r̃2
n = 1.

The result follows from the identities rn = 2
∣∣∣f̂(n)

∣∣∣ =
∣∣∣f̂(n)

∣∣∣+
∣∣∣f̂(−n)

∣∣∣, n ≥ 1. �

Theorem 5.6 allows us to paint a very clear geometric picture of the centered
and normalized sliding window point cloud for SNf (see equation 4). Indeed, if
S1(r) ⊂ C denotes the circle of radius r centered at zero, then t 7→ ϕτ (t) can be
regarded as the curve in the N -torus

T = S1(r̃1)× · · · × S1(r̃N )
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which when projected onto S1(r̃n), r̃n > 0, goes around n times at a constant
speed. Another interpretation, in terms of flat (polar) coordinates, is as the image
through the quotient map

RN = R× · · · × R −→ (R/r̃1Z)× · · · × (R/r̃NZ)

of the line segment in RN joining (0, 0, . . . , 0) and (r̃1, 2r̃2, . . . , Nr̃N ). Figure 2
depicts ϕτ (t) inside T for N = 3.

Figure 2. The curve ϕτ (t), in colors, with respect to its flat co-
ordinates (t, 2t, 3t) ∈ (R/r̃1Z) × (R/r̃2Z) × (R/r̃3Z). Please refer
to an electronic version for colors. Bottom Right: ϕτ (t) in the
fundamental domain [0, r̃1) × [0, r̃2) × [0, r̃3). Top Left: Projec-
tion onto the xy-plane. Top Right: Projection onto the xz-plane.
Bottom left: Projection onto the yz-plane.

6. The Persistent Homology of ϕτ and SWM,τf

The structural observations from the previous section, as well as the approxima-
tion results from Section 4, set the stage for understanding the persistent homology
of the image of φτ (or rather of ϕτ ) and how it relates to that of SWM,τf .

6.1. Some convergence results. Let T ⊂ T, and let SWM,τf(T ) and φτ (T ) be
the images of T through SWM,τf and φτ respectively. An immediate consequence
of Proposition 4.2 is that as N (and thus M = 2N) gets larger, φτ (T ) gets closer
to SWM,τf(T ) with respect to the Hausdorff metric on subspaces of R∞. Here
R∞ denotes the set of sequences x = (xk)k∈N, xk ∈ R, so that xn = 0 for all
n ≥ N0, and some N0 = N0(x) ∈ N. We endow R∞ with the L2 metric, and regard
SWM,τf(t), t ∈ T , as an element of R∞ by identifying it with(

f(t), f(t+ τ), . . . , f(t+Mτ), 0, 0, . . .
)
∈ R∞.
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Notice, however, that while increasing the dimension M + 1 of the sliding window
embedding yields better approximations

SWM,τSNf(T ) ≈ SWM,τf(T ),

the object being approximated, SWM,τf(T ), is changing. Since (R∞, ‖ · ‖2) is not
complete there is no reason to believe this process converges or stabilizes, even with
a sensible way of comparing, say, SWM,τf(t) and SW2M, τ2

f(t). This is the case,
since they are samplings at different rates from the same window. Perhaps consid-
ering the Gromov-Hausdorff distance instead of the Hausdorff distance would yield
such comparison, but at least at the moment we do not have a natural embedding
to make this case. In addition, even when the metric completion R∞ = `2(R),
the space of square-summable sequences, is well understood, it is also big enough
so that tracking global geometric features requires some work. It is in situations
like this that a succinct and informative summary, such as persistence diagrams, is
critical.

It is known that the space of persistence diagrams is not complete with respect
to the Bottleneck distance, but that it can be completed by allowing diagrams with
countably many points with at most countable multiplicity, satisfying a natural
finiteness condition. See [2, Theorem 3.4] and [19, Theorem 6]. Moreover, features
such as maximum persistence can be easily tracked, and there is no ambiguity on
how to compare the diagrams from, say, SWM,τf(T ) and SW2M, τ2

f(T ).

Proposition 6.1. Let f be L-periodic, N < N ′, M = 2N , M ′ = 2N ′ and

τ =
2π

L(M + 1)
, τ ′ =

2π

L(M ′ + 1)
.

If T ⊂ T is finite, Y = SWM,τSNf(T ) and Y ′ = SWM ′,τ ′SN ′f(T ), then

dB

(
dgm(Y )√
M + 1

,
dgm(Y ′)√
M ′ + 1

)
≤ 2
∥∥∥SNf − SN ′f∥∥∥

2

where λ · dgm(Z) is defined as {(λx, λy) | (x, y) ∈ dgm(Z)}, for λ ≥ 0.

Proof. Let us fix the notation un = un(M, τ), vn = vn(M, τ), u′n = un(M ′, τ ′)
and v′n = vn(M ′, τ ′), in order to specify the dependencies of un and vk on M and
τ . Then we have linear maps

P : RM ′+1 −→ RM ′+1

N ′∑
n=0

xnu′n + ynv′n 7→
N∑
n=0

xnu′n + ynv′n

Q : Img(P ) −→ RM+1

u′n 7→
√

M ′+1
M+1 un

v′n 7→
√

M ′+1
M+1 vn

which are well defined by Proposition 5.1. Moreover, Proposition 5.5 implies that
P can be interpreted as an orthogonal projection when restricted to Y ′, and that
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Q is an isometry on P (Y ′). Notice that for every y′ ∈ Y ′

‖y′ − P (y′)‖ =

√√√√M ′ + 1

2

N ′∑
n=N+1

r2
n

where rn is as defined in Remark 5.4, and therefore

dH(Y ′, P (Y ′)) ≤

√√√√M ′ + 1

2

N ′∑
n=N+1

r2
n.

Finally, since Q ◦P (Y ′) =
√

M ′+1
M+1 Y and dgm( · ) is invariant under isometries then

√
M ′ + 1 · dB

(
dgm(Y ′)√
M ′ + 1

,
dgm(Y )√
M + 1

)
= dB

(
dgm(Y ′), dgm(Q ◦ P (Y ′))

)
= dB

(
dgm(Y ′), dgm(P (Y ′))

)
≤ 2dH(Y ′, P (Y ′))

≤

√√√√2(M ′ + 1)

N ′∑
n=N+1

r2
n

and the result follows from the identity rn = 2
∣∣∣f̂(n)

∣∣∣ =
∣∣∣f̂(n)

∣∣∣+∣∣∣f̂(−n)
∣∣∣, n ≥ 1. �

This result, paired with the fact that ‖f − SNf‖2 → 0 as N → ∞, and the
Structure Theorem 5.6(1,2), imply the following:

Corollary 6.2. Let f ∈ L2(T) be L-periodic, N ∈ N, τN = 2π
L(2N+1) , T ⊂ T finite,

and let Y N be the set resulting from pointwise centering and normalizing the point
cloud

SW2N,τNSNf(T ) ⊂ R2N+1.

Then for any field of coefficients, the sequence dgm(Y N ) of persistence diagrams is
Cauchy with respect to dB.

Completeness of the set of (generalized) diagrams [2, Theorem 3.4], allows one
to make the following definition:

Definition 6.3. Let w = 2π
L and denote by dgm∞(f, T, w) the limit in the Bottle-

neck distance of the sequence dgm(Y N ).

We hope the notation dgm∞(f, T, w) is suggestive enough to evoke the idea
that there exists a limiting diagram from the sequence of pointwise-centered and
normalized versions of SWM,τf(T ), as M → ∞, and while keeping the window

size Mτ = M
M+1w ≈ w. The First Convergence Theorem (6.6) bellow, asserts the

validity of this notation. Before presenting the proof, we start with a technical
result:

Proposition 6.4. Let f ∈ C(T) be L-periodic, N ∈ N and τN = 2π
L(2N+1) . Then

lim
N→∞

∥∥C(SW2N,τN f(t)
)∥∥

√
2N + 1

=
∥∥∥f − f̂(0)

∥∥∥
2

(5)

uniformly in t ∈ T.
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Proof. Since the result is trivially true if f is constant, let us assume f 6= f̂(0) and
let

g(t) =
f(t)− f̂(0)∥∥∥f − f̂(0)

∥∥∥
2

It follows that g ∈ C(T) is L-periodic,

ĝ(0) =
1

2π

∫ 2π

0

g(t)dt = 0 and ‖g‖2 =
1√
2π

(∫ 2π

0

|g(t)|2dt
)1/2

= 1.

Using the identity L(2N + 1)τN = 2π, a Riemann sums argument, and the fact
that g is L-periodic, it follows that if

cN (t) =
g(t) + g(t+ τN ) + · · ·+ g(t+ 2NτN )

2N + 1

then for all t ∈ T

lim
N→∞

cN (t) = lim
τN→0

L

2π

(
τNg(t) + τNg(t+ τN ) + · · ·+ τNg(t+ 2NτN )

)
=

L

2π

∫ t+ 2π
L

t

g(r)dr

=
1

2π

∫ 2π

0

g(r)dr

= 0.

We contend that the convergence cN (t) → 0 is uniform in t ∈ T. Indeed, the
fact that g is uniformly continuous implies that the sequence cN (t) is uniformly
equicontinuous. This means that for every ε > 0 there exists δ > 0 independent of
N such that for every t, t′ ∈ T and all N ∈ N

|t− t′| < δ implies |cN (t)− cN (t′)| < ε

2
.

Let Nt ∈ N, for t ∈ T, be such that N ≥ Nt implies |cN (t)| < ε
2 . These two

inequalities together imply that if N ≥ Nt and |t− t′| < δ then |cN (t′)| < ε.
By choosing a finite open cover of [0, 2π] with intervals of length δ and letting

N0 be the maximum of the Nt’s corresponding to their centers, we get that N ≥ N0

implies |cN (t)| < ε for all t ∈ T. Thus the convergence cN (t) → 0 is uniform. A
similar argument shows that

lim
N→∞

∥∥C(SW2N,τN g(t)
)∥∥2

2N + 1
= lim

τN→0

L

2π

2N∑
n=0

τN
(
g(t+ nτN )− cN (t)

)2
=

1

2π

∫ 2π

0

g(r)2dr = 1

uniformly in t ∈ T, and replacing g by f−f̂(0)

‖f−f̂(0)‖
2

yields the result. �

Remark 6.5. Notice that an alternative proof of Proposition 6.4 follows from
combining the Structure Theorem 5.6(2), Parseval’s Theorem, and the fact that

‖SNf‖22 − f̂(0)2 =
∥∥∥SN (f − f̂(0)

)∥∥∥2

2
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Theorem 6.6 (Convergence I). Let f ∈ C1(T) be an L-periodic function, N ∈ N,
τN = 2π

L(2N+1) , T ⊂ T finite, and let Y N be as in Corollary 6.2. Let XN be the set

resulting from pointwise centering and normalizing the point cloud

SW2N,τN f(T ) ⊂ R2N+1.

Then for any field of coefficients, the sequence dgm(XN ) of persistence diagrams is
Cauchy with respect to dB, and

lim
N→∞

dgm(XN ) = lim
N→∞

dgm(Y N ) = dgm∞(f, T, w).

Proof. To prove Theorem 6.6 we will use the Approximation Theorem 4.5 to show
that

lim
N→∞

dB

(
dgm(XN ), dgm(Y N )

)
= 0

and combine this with Corollary 6.2 to obtain the result.

Assume without loss of generality that f satisfies f̂(0) = 0 and ‖f‖2 = 1.
Let XN and YN be the resulting sets from pointwise centering the point clouds
SW2N,τN f(T ) and SW2N,τNSNf(T ), respectively. Using the uniform convergence
in equation 5 we get that

lim
N→∞

dH

(
XN ,

XN√
2N + 1

)
= 0

and moreover, since lim
N→∞

‖SNf‖2 = ‖f‖2 = 1 then

lim
N→∞

dH

(
XN√

2N + 1
,

XN√
2N + 1‖SNf‖2

)
= 0.

Now, from the Structure Theorem 5.6(2) we have the identity

Y N =
YN√

2N + 1‖SNf‖2
and using the Approximation Theorem 4.5(1), along with the fact that C is distance
non-increasing, we conclude that

lim
N→∞

dH

(
XN√

2N + 1‖SNf‖2
, Y N

)
≤ lim
N→∞

√
2 · ‖RNf ′‖2

‖SNf‖2 ·
√
N + 1

= 0.

The triangular inequality then implies that lim
N→∞

dH(XN , Y N ) = 0 and the result

follows from combining the stability of dB with respect to dH , and Corollary 6.2. �

The first convergence theorem asserts that for each choice of discretization T ⊂ T
one obtains a limiting diagram dgm∞(f, T, w), by letting N →∞ in the pointwise
centered and normalized versions of either SW2N,τNSNf(T ) or SW2N,τN f(T ). Next
we will show that there is also convergence when T tends to T, with respect to the
Hausdorff distance on subspaces of T.

Theorem 6.7 (Convergence II). Let T, T ′ ⊂ T be finite, and let f ∈ C1(T) be
L-periodic with modulus of continuity ω : [0,∞] −→ [0,∞]. If w = 2π

L then

dB
(
dgm∞(f, T, w), dgm∞(f, T ′, w)

)
≤ 2

∥∥∥f − f̂(0)
∥∥∥

2
ω
(
dH
(
T, T ′

))
and thus there exists a persistence diagram dgm∞(f, w) so that

lim
T→T

dgm∞(f, T, w) = dgm∞(f, w).
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Proof. Fix t ∈ T and t′ ∈ T ′. If we let xN = SW2N,τN f(t), x′N = SW2N,τN f(t′),

τN = 2π
L(2N+1) and λ =

∥∥∥f − f̂(0)
∥∥∥

2
then∥∥∥∥ C(xN )

‖C(xN )‖
− C(x′N )

‖C(x′N )‖

∥∥∥∥ ≤
∥∥∥∥ C(xN )

‖C(xN )‖
− λC(xN )√

2N + 1

∥∥∥∥ +
λ ‖C(xN )− C(x′N )‖√

2N + 1

+

∥∥∥∥ C(x′N )

‖C(x′N )‖
− λC(x′N )√

2N + 1

∥∥∥∥
It follows from Proposition 6.4 that both the summand∥∥∥∥ C(xN )

‖C(xN )‖
− λC(xN )√

2N + 1

∥∥∥∥ =
‖C(xN )‖√

2N + 1
·
∣∣∣∣√2N + 1

‖C(xN )‖
− λ

∣∣∣∣
and its version with x′N , go to zero as N → ∞. Thus given ε > 0 there exists
N0 ∈ N so that N ≥ N0 implies∥∥∥∥ C(xN )

‖C(xN )‖
− C(x′N )

‖C(x′N )‖

∥∥∥∥ ≤ ε

2
+
λ ‖C(xN )− C(x′N )‖√

2N + 1

≤ ε

2
+
λ‖xN − x′N‖√

2N + 1

=
ε

2
+ λ

(
2N∑
n=0

∣∣f(t+ nτN )− f(t′ + nτN )
∣∣2

2N + 1

)1/2

≤ ε

2
+ λω(|t− t′|).

Let XN and X ′N be the sets resulting from pointwise centering and normaliz-
ing SW2N,τN f(T ) and SW2N,τN f(T ′), respectively. Since the estimates above are
uniform in t and t′ (by Proposition 6.4), it follows that whenever N ≥ N0 then

dH
(
XN , X ′N

)
≤ ε

2
+ λω

(
dH(T, T ′)

)
.

Notice that the Hausdorff distance on the left hand side is for subspaces of R2N+1,
while the one on the right is between subspaces of T.

Applying the Stability Theorem for persistence diagrams yields

dB
(
dgm(XN ), dgm(X ′N )

)
≤ ε+ 2λω

(
dH(T, T ′)

)
which by lettingN →∞ and applying the First Convergence Theorem (6.6), implies

dB
(
dgm∞(f, T, w), dgm∞(f, T ′, w)

)
≤ ε+ 2λω

(
dH(T, T ′)

)
.

Since this is true for any ε > 0, letting ε ↓ 0 yields the first part of the theorem. The
existence of dgm∞(f, w) follows from the fact that the set of generalized persistence
diagrams is complete with respect to dB . �

6.2. A lower bound for maximum persistence. The Structure Theorem 5.6(3)
and the fact that orthogonal projections are distance non-increasing, allow us to
now prove the following:
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Theorem 6.8. Let f ∈ C1(T) be an L-periodic function, N ∈ N, M ≥ 2N ,
L(M + 1)τ = 2π and let T ⊂ T be finite. Furthermore, assume that dH(T,T) < δ
for some (see Theorem 5.6(3))

0 < δ < max
1≤n≤N

√
3r̃n
κN

, where κN =
2
√

2 ‖SNf ′‖2∥∥∥SN (f − f̂(0)
)∥∥∥

2

Let Y = Y N be the set resulting from pointwise centering and normalizing the point
cloud

SWM,τSNf(T ) ⊂ RM+1,

and let p > N be a prime. If dgm(Y ) denotes the 1-dimensional Fp-persistence

diagram for the Rips filtration on Y , then ϕτ yields an element xϕ ∈ dgm(Y ) with

(1) birth(xϕ) ≤ δκN

(2) death(xϕ) ≥
√

3 max
1≤n≤N

r̃n

and therefore

mp
(
dgm(Y )

)
≥
(√

3 max
1≤n≤N

r̃n

)
− δκN (6)

Proof. Given the linear decomposition

ϕτ (t) =

N∑
n = 1

n ≡ 0 (mod L)

r̃n
(

cos(nt)x̃n + sin(nt)ỹn
)

of ϕτ (t) with respect to the orthonormal set
{
x̃n, ỹn | 1 ≤ n ≤ N, n ≡ 0 (mod L)

}
described in the proof of Theorem 5.6(3), it follows that

Pn : Y −→ C
ϕτ (t) 7→ r̃ne

int

can be regarded as the restriction to Y of the orthogonal projection from RM+1 onto
Span{x̃n, ỹn}. Since orthogonal projections are linear and norm-non-increasing,
then ‖Pn(x)− Pn(y)‖ ≤ ‖x− y‖ for every x,y ∈ Y . Thus, if

S1(r̃n) = {r̃neint | t ∈ T}

it follows that Pn induces simplicial maps

Pn] : Rε
(
Y
)

−→ Rε
(
S1(r̃n)

)
[x0, . . . ,xk] 7→ [Pn(x0), . . . , Pn(xk)]

for every ε > 0, which in turn yield homomorphisms

Pn∗ : Hk

(
Rε
(
Y
)

;Fp
)
−→ Hk

(
Rε
(
S1(r̃n)

)
;Fp
)

of Fp-vector spaces at the homology level. What we contend is that, via the ho-

momorphisms Pn∗ , the maximum 1-dimensional persistence of Y can be bounded
below by that of S1(r̃n). Indeed, let ε1, ε2 > 0 be so that

δκN < ε1 < ε2 <
√

3r̃m

where m = arg max {r̃n | 1 ≤ n ≤ N}. If we write

T = {t0 < t2 < · · · < tJ}
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it follows from dH(T,T) < δ that |tj − tj−1| < 2δ for all j = 1, . . . , J , and therefore

‖ϕτ (tj)− ϕτ (tj−1)‖2 =

N∑
n = 1

n ≡ 0 (mod L)

2r̃2
n

(
1− cos

(
n(tj − tj−1)

))

≤
N∑

n = 1
n ≡ 0 (mod L)

r̃2
n

(
n(tj − tj−1)

)2

= (tj − tj−1)2
N∑
n=1

4n2
∣∣∣f̂(n)

∣∣∣2
‖SNf‖22 − f̂(0)2

=
(tj − tj−1)2∥∥∥SN (f − f̂(0)

)∥∥∥2

2

∑
1≤|n|≤N

2
∣∣∣f̂ ′(n)

∣∣∣2

≤ 8δ2 ‖SNf ′‖22∥∥∥SN (f − f̂(0)
)∥∥∥2

2

= (δκN )2

The first inequality is a consequence of the Taylor expansion for cos(x) around zero,
and f ′ denotes the first derivative of f . Therefore

ν = [ϕτ (t0), ϕτ (t1)] + · · ·+ [ϕτ (tJ−1), ϕτ (tJ)] + [ϕτ (tJ), ϕτ (t0)]

is a 1-dimensional cycle on Rε1(Y ), and we obtain the homology class

Pm∗([ν]) ∈ H1

(
Rε1

(
S1(r̃m)

)
;Fp
)
.

Let {θ0 < θ1 < · · · < θJm} =
{
t mod 2π

m | t ∈ T
}

and let cj = r̃me
imθj . It

follows from a similar calculation that

‖cj − cj−1‖2 ≤ (θj − θj−1)2
4
∣∣∣f̂ ′(m)

∣∣∣2∥∥∥SN (f − f̂(0)
)∥∥∥2

2

≤ (δκN )2

and therefore the 1-cycle

µ = [c0, c1] + · · ·+ [cJm−1, cJm ] + [cJm , c0]

is so that its homology class [µ] ∈ H1

(
Rε1

(
S1(r̃m)

)
;Fp
)

satisfies i∗([µ]) 6= 0, where
i∗ is the homomorphism induced by the inclusion

i : Rε1
(
S1(r̃m)

)
↪→ Rε2

(
S1(r̃m)

)
.

Since Pm∗([ν]) = m[µ], and given that 1 ≤ m ≤ N < p implies that m is invertible
in Fp, then i∗ ◦ Pm∗([ν]) 6= 0. From the commutativity of the diagram

H1(Rε1(Y );Fp) H1(Rε2(Y );Fp)

H1

(
Rε1

(
S1(r̃m)

)
;Fp
)

H1

(
Rε2

(
S1(r̃m)

)
;Fp
)

//
i∗

��

Pm∗
��

Pm∗

//
i∗
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we conclude that i∗([ν]) 6= 0, and thus [ν] yields an element xϕ ∈ dgm(Y ) so that

birth(xϕ) ≤ ε1 and death(xϕ) ≥ ε2.

Given that this is true for every ε1 > δκN and every ε2 <
√

3r̃m, letting ε1 ↓ δκN
and ε2 ↑

√
3r̃m concludes the proof. �

Remark 6.9. It is worth noting that in the proof of Theorem 6.8 one can replace
Fp, p > N , by the field of rational numbers Q. That is, the estimated bound for
maximum persistence is valid for all N ∈ N and homology with Q coefficients.

Equation 6, together with the Convergence Theorems I (6.6) and II (6.7), imply:

Corollary 6.10. Let f ∈ C1(T) be an L-periodic function so that f̂(0) = 0 and
‖f‖2 = 1. Let T ⊂ T be finite and so that dH(T,T) < δ for some

0 < δ <

√
3√

2‖f ′‖2
max
n∈N

∣∣∣f̂(n)
∣∣∣

Then with Q coefficients, the 1-dimensional persistence diagram dgm∞(f, T, w) sat-
isfies

1

2
mp
(
dgm∞(f, T, w)

)
≥
√

3 max
n∈N

∣∣∣f̂(n)
∣∣∣−√2δ‖f ′‖2

and therefore

mp
(
dgm∞(f, w)

)
≥ 2
√

3 max
n∈N

∣∣∣f̂(n)
∣∣∣ .

6.3. The field of coefficients. One question worth asking is whether the lower
bound for maximum persistence presented in Theorem 6.8, is in fact dependent
on the field of coefficients. More generally, one would like to determine if the full
persistence diagram has such dependency. To this end, let us consider the functions

g1(t) = 0.6 cos(t) + 0.8 cos(2t)

g2(t) = 0.8 cos(t) + 0.6 cos(2t).

We construct their associated sliding window point clouds, SWM,τg1(T ) and

SWM,τg2(T ), using M = 4, τ = 2π/5 and T =
{

2πk
150 | k = 0, 1, . . . , 150

}
. After

pointwise centering and normalizing, we compute their 1-dimensional persistent
homology with coefficients in F2 and F3. For this, we use a fast implementation
of 1-dimensional persistent homology, based on the Union-Find algorithm and the
work of Mischaikow and Nanda [20]. Details of this implementation will appear in
[23]. We summarize the results in figure 3.
This example shows that, at least in low dimensions, the persistent homology of
sliding window point clouds is coefficient-dependent. Let us see why this is the case.
If (r1, r2) ∈ R2 is so that r2

1 + r2
2 = 1 and r1r2 6= 0, it follows from the Structure

Theorem 5.6(3) that if α1, α2 ∈ [0, 2π] and

g(t) = r1 cos(t− α1) + r2 cos(2t− α2)

then for every t ∈ [0, 2π] and M ≥ 4 ,τ = 2π
M+1 , one has that

ϕτ (t) =
C (SWM,τg(t))

‖C (SWM,τg(t)) ‖
can be isometrically identified with

ϕ̃(t) =
(
r1e

it, r2e
2it
)
∈ C2.



26 JOSE PEREA AND JOHN HARER

Figure 3. 1-dimensional Fp-persistence diagrams for the centered
and normalized sliding window point clouds on gi. Here the
columns correspond to p = 2, 3 and the rows to i = 1, 2.

Let us use ϕ̃ instead of ϕτ for the persistent homology computation. The first thing
to notice is that the image of ϕ̃ can be realized as the boundary of a Möbius strip.
Indeed, consider the map

M : [0, π]× [−1, 1] −→ C2

(t, s) 7→
(
−sr1e

it, r2e
2it
)
.

It follows that M is a continuous injection on [0, π) × [−1, 1), since r1r2 6= 0, and
that it descends to an embedding of the quotient space

M̃ :
(
[0, π]× [−1, 1]

/
∼
)
−→ C2

where (0, s) ∼ (π,−s) for every s ∈ [−1, 1]. Notice that [0, π]× [−1, 1]/ ∼ serves as

the usual model for the Möbius strip, and that ∂
(
Img(M̃)

)
= Img(ϕ̃).

Let T = {t0 < t2 < · · · < tJ} be a δ-dense subset of [0, 2π], X = ϕ̃(T ), and let

[ν] ∈ H1

(
Rr(X);F2

)
for r > 4δ, be the homology class of the 1-cycle

ν = [ϕ̃(t0), ϕ̃(t1)] + · · ·+ [ϕ̃(tJ−1), ϕ̃(tJ)] + [ϕ̃(tJ), ϕ̃(t0)].

It can be readily checked that if we let

V =
{

(t, s)
∣∣∣ (t, s) ∈

(
T ∩ [0, π)

)
× {−1} or (t+ π, s) ∈

(
T ∩ (π, 2π]

)
× {1}

}
,
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then there exists a triangulation of Img(M̃) having M̃(V ) as vertex set, and so
that if we take coefficients in F2, then the formal sum of its triangles yields a 2-chain
Σ with ∂2(Σ) = ν. Moreover, since T is δ-dense in [0, 2π] and for all t ∈ [0, π]∥∥∥M̃(t,−1)− M̃(t± δ, 1)

∥∥∥2

= 2
[
r2
1(1 + cos(δ)) + r2

2(1− cos(2δ))
]

≤ 2

[
r2
1

(
2− δ2

2

)
+ 2r2

2δ
2

]
= r2

1(4− 5δ2) + 4δ2

if δ > 0 is small, then we can choose Σ so that

Σ ∈ C2

(
Rr′(X);F2

)
, r′ = r1

√
4− 5δ2 + 2δ.

In summary, if

r1

√
4− 5δ2 + 2δ <

√
3 r2 (7)

then the death-time of the class [ν] is less than or equal to r1

√
4− 5δ2 + 2δ with

coefficients in F2, but larger than
√

3 r2 (by Theorem 6.8) with coefficients in Fp
for any prime p ≥ 3. Moreover, with coefficients in F2 and provided equation 7
holds (e.g. for g1), the first edge across the Möbius band prompts the birth of a
new class corresponding to the equator

t 7→ M̃(t, 0) = (0, r2e
2it)

of the embedded Möbius strip. This class, in turn, survives up to
√

3r2. With
coefficients in F3, on the other hand, the equatorial and boundary classes will be in
the same persistence class once all the 2-simplices in the Möbius band have been
added. This results in the death of the class which was born later, i.e. the one
represented by the equator.

7. Examples: Quantifying Periodicity of Sampled Signals

We present in this section two experiments to test our ideas: First, the ranking of
signals by periodicity alone, in a way which is invariant to the shape of the periodic
pattern; and second, the accurate classification of a signal as periodic or non-
periodic at different noise levels. A detailed description of our methods is provided
below, but roughly speaking, we associate to each sampled signal S = [s1, . . . , sJ ]
a real valued function fS by cubic spline interpolation, construct its centered and
normalized sliding window point cloud XS , and let

mp
(
dgm(XS)

)
√

3
= Score(S)

be its periodicity score. We then compare it to those obtained with the JTK CYCLE
[15], Lomb-Scargle [13, 18, 24] and Total Persistent Homology [7] algorithms.

7.1. Shape Independence. For this experiment we construct ten different shapes:
A 2-periodic pure cosine-like curve, a 2-periodic cosine-like function plus three
levels of gaussian noise (variances at 25%, 50%, and 75% of the signal’s amplitude),
a noisy saw-tooth (noise level at 25% of the signal’s amplitude), a function of
the form cos(φ(t)) for φ(t) = eat+b, a noisy and damped cosine-like curve with
three periods, a spiky signal with three periods, a noisy square wave with two
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periods, and a 1-periodic function of the form Re

(
5∑

n=1
f̂(n)e2int

)
for f̂(n) drawn

randomly and uniformly from the unit disk in C. Each function is then evaluated
at 50 evenly spaced time points, yielding the sampled signals [s1, . . . , s50] which we
input into the algorithms. For constructing the sliding window point clouds we use
N = 10, coefficients in F11, L = 2, 3, 4 and report the best score. In all the other
algorithms we set the parameters to their suggested or default values. The results
are summarized in figure 4.

 JTK_CYCLE

Score Norm Plot

1.77E-30

4.23E-22

2.55E-16

1.46E-05

8.40E-04

6.52E-03
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3.70E-01

1.00E+00

 Lomb-Scargle

Score Norm Plot

1.46E-07

8.95E-07

2.39E-05
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9.98E-01
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Score Norm Plot
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0.8810

0.8810

0.8132

0.7455

0.6777

0.6770

0.4066

0.4066

Figure 4. Ranking of signals by periodicity. For each algorithm
we provide the score and a normalized plot of the signal. The
ranking goes from top (highest score) to bottom (lowest score).

Two things are worth noting: First, except for the Sliding Windows method
(SW1PerS), all other algorithms have clear preferences for the type of shape they
consider to be most periodic. These biases are of course part of the wiring of the
algorithms, and were to be expected. The second thing to notice has to do with
the distribution of scores and their relative differences. Methods such as JTK or
Lomb-Scargle define their periodicity score in terms of p-values, which are extremely
difficult to interpret. Our scoring method, by way of contrast, has a clear geometric
interpretation and a reasonable distribution.

7.2. Classification Rates. We compare the different algorithms by their ability
to separate periodic from non-periodic signals. The performance of this type of
binary classification can be visualized using a Receiver Operator Characteristic
(ROC) plot, which compares the True Positive Rate (TPR) to the False Positive
Rate (FPR) as a cutoff on the scores is varied. Here the TPR is the proportion of
correctly identified positive cases out of all positives, and FPR is the proportion of
negative cases incorrectly identified as positives out of all the negatives. The line
TPR=FPR is the performance of random guessing; the higher the ROC curve is
above this line, the better its classification performance. An algorithm that is able
to perfectly separate all positive from negative test cases would have a ROC curve
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that passes through the point TPR=1 and FPR=0. It follows that a reasonable
measure of classification success for a particular method, is the area under its ROC
curves.

The synthetic data is generated as follows: The periodic signals (positive cases)
span two periods and include a cosine, cosine with trending, cosine with damping,
and cosine with increased peak steepness. The non-periodic signals (negative cases)
include a constant and a linear function. We generate 100 profiles from each shape
by adjusting its phase. For instance, in the case of the cosine shape we let

fi(t) = cos

(
2t− jπ

50

)
, j = 0, . . . , 99

be the profiles. We sample each of the 600 profiles at 50 evenly spaced time points
t ∈ [0, 2π], and add gaussian noise with standard deviation at 0%, 25% and 50% of
the signal’s amplitude. Please refer to Figure 5 for examples.

Figure 5. Examples of signals in the synthetic data. We show
one signal from each profile type at noise levels 0%, 25% and 50%.

Remark 7.1. There are two reason why we regard constant functions as non-
periodic. On the one hand, the intended application for SW1PerS (Sliding Windows
and 1-Persistence Scoring) is to identify genes that are both relevant and exhibit
a periodic expression pattern with respect to time. Relevance in this case means
that changes in expression-level translate into physiological phenomena. The sec-
ond reason has to do with the philosophy of the proposed method: We quantify
periodicity as the prominence of 1-homology classes in the sliding window point
cloud. Since this point cloud for a constant function is only a point, it does not
have 1-homology and hence is interpreted as coming from a non-periodic function.

For the Sliding Windows + 1D Fp-Persistence computation we let N = 10, L = 2
and p = 11. In order to address noise, we include a layer of (simple) moving average
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at the sampled signal level, and one iteration of mean-shift [8] at the sliding window
point cloud level. For the moving average we fix a window size with 7 data points,
and use a cubic spline of this denoised signal to populate the point cloud. Mean-
shift on a pointwise centered and normalized point cloud XS was implemented as
follows: Given a point x ∈ XS , we let x be the mean of the set

{y ∈ XS : 1− (x · y) < ε}

where ε = cos
(
π
16

)
and x · y denotes the Euclidean inner product of x and y. In

other words, x is the mean of the ε-neighbors of x if distance is measured with
cosine similarity. We obtain the mean-shifted point cloud

XS =

{
x

‖x‖
: x ∈ XS

}
which we now use for the persistent homology computation. We report our results
in figure 6.
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Figure 6. ROC curves: True Positive Rate vs False Positive Rate.
We compare the classification success of each algorithm on the
synthetic data set using the area under its ROC curves. Curves
are colored according to the type of periodic shape, and the area
under the curve (AUC) is reported. Please refer to an electronic
version for colors.



SLIDING WINDOWS AND PERSISTENCE 31

The Lomb-Scargle periodogram is considered to be one of the best methods for
detecting periodicity, and its ROC curves support this belief. The fact that it is
attuned to favoring cosine-like curves makes it very resilient to dampening, trending
and noise. It was thus a great surprise to see that our method performs comparably
well in all cases, except for trended cosines and cosines, and that outperforms it for
peaked and damped profiles at high noise levels.

A final point we would like to make, is that denoising really is a crucial element
of the SW1PerS pipeline. We show in Figure 7 the results of quantifying periodicity
on the raw synthetic data, i.e. without applying denoising. As one can see, in the
absence of pre-processing, the results degrade considerably.

Figure 7. ROC curves for the SW1PerS analysis on the raw syn-
thetic data. That is, we do not apply moving average or mean-
shift. For a comparison on the effect of denoising, please refer to
the rightmost column in Figure 6.

8. Final Remarks

We prove in this paper results which describe the structure of persistence dia-
grams obtained by sliding window embeddings of time series. The main tools for the
analysis were a Fourier series approximation argument and the Stability Theorem
for persistence diagrams. These results we obtained, provide explicit information
about how diagrams from sliding window point clouds depend on the embedding
dimension, window size and field of coefficients. We then present examples of the
effectiveness of our method for quantifying periodicity of time series data. The
experimental side of this framework will be explored more in depth in future work.

This paper also presents the first full theoretical analysis of the use of persistent
homology to find structure in time series data. Time delay embeddings as a means
to analyze signals is not new, rather it is a well-established method in dynamical
systems and in image analysis. And the use of computation topology methods
to find structure in transformed data has already been considered experimentally
before, notably in [4] and [10]. This paper, however, is the first to provide a
theoretical analysis of the dependency of persistence on embedding dimension and
window size.
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There are some interesting new aspects of the use of persistence in this method.
It provides one of the first examples where persistent homology with coefficients
other than F2 is required. Other notable examples include [4], where coefficients
in F3 were essential to discover the embedded Klein bottle, and [9, 10] where the
authors start with a 1D persistent cohomology class mod Fp, and lift it to an
integer 1D class to get a map to the circle. They do this by choosing p so that
the relevant homomorphism in the Bockstein long exact sequence is surjective.
Their approach for real data is to choose a prime p at random, and evaluate if
H2(X,Z) has p-torsion. If it does, they then choose another prime. By contrast,
we have established exactly which primes could be problematic and can avoid them
in advance.

It was highlighted in Remark 4.4 that maximum persistence, the main feature
for periodicity we study in this paper, satisfies mp(dgm) = 2dB(dgm, dgm∆). This
is in fact part of a bigger picture: Indeed, the q-Wasserstein distance between two
persistence diagrams dgm1 and dgm2 is defined by

Wq(dgm1, dgm2) = min
φ

( ∑
x∈dgm1

||x− φ(x)||q∞
) 1
q

where φ : dgm1 → dgm2 is a matching of dgm1 with dgm2. As with the Bottleneck
distance (Remark 4.4) one can show that

Wq(dgm, dgm∆) =
1

2

( ∑
(x,y)∈dgm

(y − x)q
) 1
q

and since Wq → dB as q → ∞, then 2Wq(dgm, dgm∆) can be regarded as a
smoother version of mp(dgm). When dgm comes from a sliding window point cloud,
2Wq(dgm, dgm∆) can be interpreted as a sequence of signatures, or features, for pe-
riodicity and other phenomena at the signal level. Here the parameter q serves as
the level of smoothing, and as it gets lager, the emphasis in what Wq(dgm, dgm∆)
measures shifts from topological noise and fine attributes to large topological events.

The ring of algebraic functions on persistence diagrams, as a source of features
for machine learning purposes, has been recently studied by Adcock et. al. [1].
We believe these and other signatures such as Wq(dgm, dgm∆) should uncover non-
trivial signal properties captured by their sliding window point clouds. We have
devoted this paper to exploring the use of mp(dgm), but we hope that in future
work the list of useful features from persistence diagrams on sliding window point
clouds can be extended.

We also mention that Section 6.3 is the first explicit computation of the per-
sistence diagram of a parametrized space. The method of Fourier Approximation
presented here is one of the first in a much needed toolbox for explicit computations
of persistence diagrams.

Our final comment is to point out that the fact that the size of the sliding
window should match the period searched for was not obvious in advance. Knowing
this provides powerful information on sampling density to scientists planning an
experiment that looks for periodic data, and lays the ground work for the use of
SW1PerS as a filter for time series data.

In future work we plan to establish our conjecture that mp(dgm) is maximized by
our choice of window size, and the main ingredient will be strengthening the lower
bound presented in Theorem 6.8. We also plan to establish the filtering properties
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of SW1PerS and apply it to a variety of data, including biological data like that
from gene expression and physiology, astronomical data, and weather. Finally, we
plan to extend these methods by using other tools from Topological Data Analysis
to find structure and features in time series.
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