
SlimChain: Scaling Blockchain Transactions through O�-Chain
Storage and Parallel Processing

Cheng Xu1,2,†, Ce Zhang2,†, Jianliang Xu2, and Jian Pei1
1Simon Fraser University 2Hong Kong Baptist University

{chengxu, cezhang, xujl}@comp.hkbu.edu.hk jpei@cs.sfu.ca

ABSTRACT

Blockchain technology has emerged as the cornerstone of many

decentralized applications operating among otherwise untrusted

peers. However, it is well known that existing blockchain systems

do not scale well. Transactions are often executed and committed

sequentially in order to maintain the same view of the total or-

der. Furthermore, it is necessary to duplicate both transaction data

and their executions in every node in the blockchain network for

integrity assurance. Such storage and computation requirements

put signi�cant burdens on the blockchain system, not only limit-

ing system scalability but also undermining system security and

robustness by making the network more centralized. To tackle

these problems, in this paper, we propose SlimChain, a novel block-

chain system that scales transactions through o�-chain storage

and parallel processing. Advocating a stateless design, SlimChain

maintains only the short commitments of ledger states on-chain

while dedicating transaction executions and data storage to o�-

chain nodes. To realize SlimChain, we propose new schemes for

o�-chain smart contract execution, on-chain transaction validation,

and state commitment. We also propose optimizations to reduce

network transmissions and a new sharding technique to improve

system scalability further. Extensive experiments are conducted to

validate the performance of the proposed SlimChain system. Com-

pared with the existing systems, SlimChain reduces the on-chain

storage requirements by 97% ~ 99%, while also improving the peak

throughput by 1.4X ~ 15.6X.

PVLDB Reference Format:

Cheng Xu, Ce Zhang, Jianliang Xu, and Jian Pei. SlimChain: Scaling

Blockchain Transactions through O�-Chain Storage and Parallel

Processing. PVLDB, 14(11): 2314 - 2326, 2021.

doi:10.14778/3476249.3476283

PVLDB Artifact Availability:

The source code, data, and/or other artifacts have been made available at

https://github.com/hkbudb/slimchain.

1 INTRODUCTION

Blockchain is an emerging technology that is considered to have

the potential to revolutionize database systems [1, 2, 3]. It has

been the cornerstone of many decentralized applications in a wide

range of domains, such as �nance [4], healthcare [5], and supply

†These authors have contributed equally to this work.

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 14, No. 11 ISSN 2150-8097.
doi:10.14778/3476249.3476283

chain [6]. Under the hood, blockchain is a secure append-only data

structure built upon the incoming transactions that are agreed by a

set of untrusted nodes in a P2P network. It utilizes cryptographic

signatures, hash chains, and consensus protocols to create a trusted

distributed system upon a foundation of otherwise untrusted peers.

While �rst-generation blockchain systems such as Bitcoin [4] are

built speci�cally to support cryptocurrencies, second-generation

blockchains such as Ethereum [7] extend their functionality to

support general-purpose transactions in what is known as smart

contracts. Smart contracts are user-de�ned, trusted programs that

allow users to process data in the blockchain. They can be deployed

in the blockchain and triggered for execution by future transactions.

In order to maintain the same total order of transactions, ensure

execution integrity, and support data provenance, existing block-

chain systems often require every node in the network to keep

a full replication of the transaction history and the ledger states.

These ever-growing data structures, however, have become too

large after a while. For example, as of July 2021, the entire block-

chain ledger is around 350GB for Bitcoin1 and has exceeded 7TB for

Ethereum.2 To mitigate this problem, most blockchain nodes usu-

ally maintain only a compact index called validation states, which,

being substantially smaller than the entire ledger, is su�cient for

determining transactions’ validity. However, the validation states

are still in the order of GBs (e.g., Ethereum’s validation states are

around 870GB3). Additionally, blockchain nodes are required to

replay all transactions locally based on the replicated states. Such

cumbersome stateful data poses signi�cant storage and compu-

tation costs, limiting system scalability. Moreover, it undermines

system security and robustness by making the network more cen-

tralized as fewer and fewer nodes are capable of handling such a

large amount of data.

In attempting to solve these problems, it became clear that it

is a huge waste of storage and computation resources to require

every blockchain node to keep the same replica of the data and

repeat the same transaction executions. One solution is sharding [8,

9]. Sharding horizontally partitions the blockchain into multiple

parallel chains, each of which is managed by only a subset of the

nodes. This is an e�ective means of reducing storage and computa-

tion duplications among di�erent shards. However, it is also clear

that this only alleviates the problem by a constant factor (i.e., the

number of shards). Within each shard, it is still necessary for block-

chain nodes to duplicate storage and computation. Furthermore,

existing sharding solutions often introduce new problems, such as

cross-shard transaction processing and attacks by slowly-adaptive

Byzantine adversaries [8]. Another solution is the use of light nodes.

Unlike full nodes, which store full states, light nodes keep only the

1https://www.blockchain.com/charts/blocks-size
2https://etherscan.io/chartsync/chainarchive
3https://etherscan.io/chartsync/chaindefault

2314

https://doi.org/10.14778/3476249.3476283
https://github.com/hkbudb/slimchain
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3476249.3476283
https://www.blockchain.com/charts/blocks-size
https://etherscan.io/chartsync/chainarchive
https://etherscan.io/chartsync/chaindefault

block headers. However, although light nodes are able to follow the

consensus protocols, they alone are unable to verify the validity of

the transactions. Therefore, using light nodes does not address the

issue of centralization due to the state maintenance burden.

More recently, the concept of stateless blockchain has been pro-

posed [10, 11]. This is an o�-chain scaling approach that moves

ledger states and transaction executions o�-chain to a subset of the

nodes, thereby reducing the on-chain load. However, existing state-

less blockchain systems [10, 11, 12] are designed particularly for

cryptocurrencies. Attempting to develop a general-purpose state-

less blockchain that supports smart contracts presents several new

challenges. First, a fundamental issue is that in general applications,

transactions supported by smart contracts may contain arbitrary

logic. This demands novel proof techniques to attest to the integrity

of o�-chain executions. Second, a smart contract transaction would

introduce read and write sets of arbitrary size. This is signi�cantly

more complex than simple cryptocurrency transactions and re-

quires an extra design to support on-chain commitment updates.

Third, the cryptocurrency exchange methods proposed in existing

studies o�er very limited support for parallel transaction execu-

tions. To improve system throughput, new transaction processing

methods are needed to support validating and committing concur-

rent transactions arrived from an asynchronous network despite of

the stateless design.

To address these challenges, in this paper, we present SlimChain,

a stateless blockchain system that scales transactions through o�-

chain storage and parallel processing. The main idea is to leverage

o�-chain storage nodes to store ledger states and simulate the exe-

cution of smart contracts, allowing the blockchain to maintain only

the short commitments of ledger states. We start by designing a

veri�able transaction execution algorithm for the storage nodes. It

executes transactions o�-chain in parallel and computes some aux-

iliary information to attest to the integrity of the execution as well

as to facilitate subsequent transaction commitment by the on-chain

consensus nodes. We then develop a novel on-chain temporary

state, which provides minimal yet enough information to enable

stateless on-chain transaction validation, concurrency control, and

commitment. In particular, a novel partial Merkle trie structure

is proposed to enable stateless consensus nodes to maintain the

root of on-chain states without using a full Merkle trie. Our system

can handle parallel transactions submitted from an asynchronous

network even if they arrive in any arbitrary order and ensure that

the on-chain data can be collectively maintained and perfectly syn-

chronized among all nodes in the blockchain network.

Since the network layer is often a bottleneck in a blockchain sys-

tem [13, 14], we also propose several optimizations for SlimChain to

reduce its network transmissions during node synchronization. To

further improve the scalability of SlimChain, we propose a brand

new way to support sharding under stateless settings, which ad-

dresses many weaknesses of the existing sharding solutions. Our

method is independent of the consensus protocols and can be used

in both permissionless and permissioned settings.

To summarize, this paper’s contributions are as follows:

• We present SlimChain, a novel stateless blockchain system

for scalable transaction processing with smart contract capa-

bilities. To the best of our knowledge, this is the �rst of its

kind in the literature.

• We propose new o�-chain smart contract execution, stateless

key:a12=1

0 1 · · · f=2

0 · · · e f=3 key:e672 E3=4

key:12f E1=5 key:5b2 E2=6

key value
a120012f E1
a120e5b2 E2
a12fe672 E3

ℎ (=1) = ℎ (a12 |ℎ (=2))
ℎ (=2) = ℎ (0 |ℎ (=3) |f |ℎ (=4))
ℎ (=3) = ℎ (0 |ℎ (=5) |e |ℎ (=6))
ℎ (=4) = ℎ (e672 |E3)
ℎ (=5) = ℎ (12f |E1)
ℎ (=6) = ℎ (5b2 |E2)

Extension Node

Branch Node

Leaf Node

Figure 1: Merkle Patrica Trie

on-chain transaction validation, and novel state commitment

schemes to realize SlimChain in both permissionless and per-

missioned settings.

• We further propose optimization techniques for reducing net-

work transmissions during node synchronization and a novel

storage sharding technique to improve system scalability fur-

ther.

• We build an end-to-end prototype and conduct extensive ex-

periments to validate the performance of SlimChain system.

Compared with the existing systems, SlimChain reduces the

on-chain storage requirements by 97% ~ 99%, while also im-

proving the peak throughput by 1.4X ~ 15.6X.

The rest of the paper is organized as follows. We present the

background and related work in Section 2. Section 3 gives a system

overview of SlimChain. Section 4 presents transaction processing

and sharding techniques in our design. Sections 5 and 6 present the

implementation details and the experimental results, respectively.

Finally, we conclude our paper in Section 7.

2 BACKGROUND AND RELATED WORK

In this section, we give some background necessary for introducing

SlimChain, including cryptographic preliminaries, blockchain ba-

sics, and concurrency control methods. We also provide a review of

related blockchain systems and highlight the novelty of SlimChain.

2.1 Cryptographic Preliminaries

CryptographicHash Function.A cryptographic hash function

ℎ(·) accepts an arbitrary-length string as its input and returns

a �xed-length bit string. It is collision resistant and di�cult to

�nd two di�erent messages<1 and<2 such that ℎ(<1) = ℎ(<2).

Classic cryptographic hash functions include the SHA-2 and SHA-3

families.

Merkle Patricia Trie. A Merkle Hash Tree (MHT) [15] is an

authenticated data structure for storing key-value pairs ⟨:8 , E8 ⟩. It

supports veri�able membership testing with logarithmic complex-

ity. The MHT stores the data in an index tree, where each node

is assigned with a digest based on its hashed data value as well

as its child nodes. Subsequently, the root digest of the MHT can

be used to authenticate all the underlying data. For example, in

Fig. 1, a proof to attest to value E1 (resp. E3) consists of the tree

path {=1, =2, =3, =5, ℎ(=4), ℎ(=6)} (resp. {=1, =2, =4, ℎ(=3)}). During

the veri�cation, one can reconstruct the root digest and compare it

with the published value.

In blockchain systems, a trie is often used as the index tree

structure to reduce the storage cost [7]. As shown in Fig. 1, there

are three kinds of nodes in the trie: (i) extension node, which stores

a slice of the search key and a child node; (ii) branch node, which

branches out to a �xed number of child nodes; and (iii) leaf node,

which stores the remaining search key and its corresponding value.

2315

If a search key is not present in the trie, the corresponding value

is de�ned as the default value, such as 0. This enables us to store

the values with a huge key space (e.g., 2256 for address space) in a

compact size. The Merkle Patricia trie is a specialized MHT that

uses the aforementioned trie as the index structure. For brevity,

hereafter we refer to Merkle Patricia trie as Merkle trie.

MerkleMultiproof.When accessingmultiple values in aMerkle

trie, a Merkle multiproof is usually used to reduce the proof size.

Instead of returning a Merkle tree path for each accessed value,

we can combine them based on their common ancestors. For ex-

ample, considering a case where we want to access values E1 and

E3 simultaneously in Fig. 1, the Merkle multiproof will consist of

{=1, =2, =3, =4, =5, ℎ(=6)}. There is no need to return the hash val-

ues ℎ(=3) and ℎ(=4), which can be computed locally during the

veri�cation.

Veri�able Computing. Veri�able computing (VC) is a method

for securing the integrity of computations performed by untrusted

parties. Formally, a VC scheme consists of the following algorithms:

• KeyGen(1_, �) → (� � ,+ �): The key generation algo-

rithm takes the computation task (function) � and the security

parameter _ as input, and outputs an evaluation key � � and

a public veri�cation key + � .

• Compute(� � , D) → (~, c~): The compute algorithm uses

the evaluation key � � and an input D to compute the result

� (D) → ~ and a proof c~ for verifying ~’s integrity.

• Verify(+ � , D,~, c~) → {0, 1}: Given the veri�cation key

+ � , the input D, the result ~, and the proof c~ , the veri-

�cation algorithm outputs 1 if � (D) = ~, and 0 otherwise.

There are two general approaches to implementing a VC scheme:

(i) cryptography-based solutions and (ii) secure-hardware-based so-

lutions. For cryptography-based solutions, pioneered by the SNARKs

scheme [16, 17, 18], a cryptographic proof is generated using a

circuit-based structure derived from the computation task. Owing

to the cryptographic primitives, the proof generation usually su�ers

from high computation overheads. In contrast, secure-hardware-

based solutions are more e�cient. Arbitrary computation tasks can

be executed inside a trusted execution environment (TEE), such as

the Intel Software Guard eXtension (SGX), in an integrity-assured

and privacy-preserving manner [19, 20]. Speci�cally, � � encodes

a private key secretly embedded in the TEE hardware, and + �

encodes the TEE’s public key. The proof is computed as the result’s

attestation signature signed by � � , and the client can verify the

signature using + � , to ensure the computation integrity. There

are several existing works which propose to utilize VC schemes in

blockchain o�-chain transaction execution [21, 22].

2.2 Blockchain Basics

Blockchain Data Structure.A blockchain consists of a chain of

blocks thatmaintain a set of world states and record the transactions

that modify those states. While blockchain nodes are mutually

untrusted, a consensus protocol (e.g., Proof of Work [4], Proof of

Stake [23], and PBFT [24]) is used to order transactions globally so

that each node has the same view of the world states.

Figure 2 shows the block data structure in a classic (stateful)

blockchain system. In a nutshell, the header of each block consists

of four �elds: (i) �prev_blk, which is the hash of the previous block;

(ii) ccons, which is the data corresponding to the consensus proto-

�prev_blk ccons �tx_root �state_root

blocki

CG1 : CG input,1, f1
CG2 : CG input,2, f2

. . . Merkle trie

States · · ·

· · · · · ·

.

Figure 2: Stateful Block Data Structure

col (e.g., =>=24 computed by the miners in Proof-of-Work systems);

(iii) �tx_root, which is the root hash of the transactions in the cur-

rent block; and (iv) �state_root, which is the root hash of the Merkle

trie corresponding to the current world states. In addition to the

block header, each block also stores the original transactions and

the state Merkle trie. These data are replicated in every node in the

blockchain network, which leads to signi�cant storage overheads.

Furthermore, every node needs to replay all the transactions in

order to update the current world states, which incurs a high main-

tenance cost. To alleviate these problems, as mentioned in Section 1,

this paper designs SlimChain to o�oad as much data as possible to

o�-chain nodes. More details will be given in Section 3.

Permissionless vs. Permissioned Blockchain. Blockchains

can be broadly categorized into two types, i.e., permissionless and

permissioned. In a permissionless blockchain (e.g., Bitcoin [4] and

Ethereum [7]), anybody is allowed to participate in the network

and the consensus process. On the other hand, a permissioned

blockchain (e.g., Hyperledger Fabric [13], R3 Corda [25], and Quo-

rum [26]) regulates who can initiate transactions and participate

in the consensus mechanism. Compared to permissionless block-

chains, permissioned blockchains usually achieve higher through-

put and lower consensus latency, but are less decentralized.

2.3 Concurrency Control Methods

Concurrency control is to maintain data consistency and serial-

izability despite concurrent execution of transactions. SlimChain

supports the following two prevalent concurrency control methods.

Optimistic Concurrency Control (OCC). OCC assumes that

multiple transactions can often complete without interfering with

each other. Thus, it simply checks whether other committed trans-

actions have modi�ed the data that the current transaction accessed

(read or wrote). If so, the current transaction is aborted. OCC is

more suitable for workloads with low data contention.

Serializable Snapshot Isolation (SSI). Snapshot Isolation (SI)

executes a transaction in a consistent snapshot of the database. The

commit will be successful only if the values updated by the trans-

action have not been changed externally since the snapshot was

taken. However, the serializability may not be guaranteed due to

SI anomalies [36]. SSI remedies this by constructing a dependency

graph [37]. In the graph, each vertex represents a transaction; an

edge from)1 to)2 indicates that)1 is preceded by)2 in serial order.

There are three types of edges: (i) rw-dependency, (ii)wr-dependency,

and (iii) ww-dependency. In practice, the latter two can be ignored

due to the use of locks during writes. As long as there is no cycle

in the graph, the transactions are serializable. To improve the e�-

ciency of serializability checking, instead of using the graph, each

transaction is augmented with two �ags to track whether there is a

2316

Table 1: Comparison of SlimChain with Existing Blockchain Systems

System Stateless
Transaction Execution Features

Parallel Execution Concurrency Control Serializability1 Smart Contract Permissionless Sharding

Ethereum [7] ✗ ✗ N/A Strongly Serializable ✓ ✓ ✗

Fabric [13] ✗ ✓ OCC Strongly Serializable ✓ ✗ ✗

Fabric++ [27] ✗ ✓ OCC + TX reordering Strongly Serializable ✓ ✗ ✗

AHL [28] ✗ ✓ OCC Strongly Serializable ✓ ✗ ✓

[29] ✗ ✓ SSI Serializable ✓ ✗ ✗

Fabric# [30] ✗ ✓ SSI + TX reordering Serializable ✓ ✗ ✗

FastFabric [31] ✗ ✓ OCC Strongly Serializable ✓ ✗ ✗

XOXFabric [32] ✗ ✓ SSI Serializable ✓ ✗ ✗

[33, 34] ✗ ✗ N/A Strongly Serializable ✓ ✗ ✓

[10, 11, 12] ✓ ✗ N/A Strongly Serializable ✗ ✓ ✗

[35] ✓ ✗ N/A Strongly Serializable ✓ ✓ ✗

SlimChain ✓ ✓ OCC or SSI Strongly Serializable2 ✓ ✓ ✓

1 Strongly serializable means that the on-chain transaction commit order is the same as its serialization order.
2 SlimChain achieves strong serializability when OCC is used and normal serializability when SSI is used.

rw-dependency pointing to or originating from the transaction [38].

If both �ags are set, the transaction is aborted.

2.4 Related Work

Table 1 shows a comparison of several related systems alongside

our own proposed system, SlimChain. In the section below, we

brie�y review these systems in terms of stateless design, support of

concurrent transactions, and other features, such as smart contracts,

permissionlessness, and sharding.

Most existing blockchain systems are based on a stateful design

that stores all state data on-chain. Ethereum [7], the �rst permis-

sionless blockchain that supports smart contracts, does not allow

parallel transaction execution and su�ers from low scalability. To

improve the concurrency of transaction processing, Hyperledger

Fabric [13], a permissioned blockchain with smart contract func-

tionality, employs the execute-then-order paradigm, in which mul-

tiple endorsing peers are allowed to execute transactions in par-

allel, and the execution results are then ordered and committed

sequentially by committing peers. However, this system supports

only optimistic concurrency control (OCC), which su�ers from a

high abort rate when there is a high data contention. To remedy

this, Sharma et al. [27] propose transaction reordering to improve

OCC, and Nathan et al. [29] consider another concurrency control

method, Serializable Snapshot Isolation (SSI). Ruan et al. [30] the-

oretically analyze the execute-then-order paradigm and suggest

SSI with transaction reordering to further boost performance. On

the other hand, FastFabric [31] suggests several novel architectural

optimizations to reduce I/O and computation overheads in Fabric.

It is further enhanced by XOXFabric [32], where a re-execution

phase is introduced to handle aborted transactions. There are also

studies proposing improved consensus protocols [33, 34].

Recently, a stateless blockchain paradigm has been proposed for

permissionless settings, in which the validation states are moved

o� the blockchain [10, 11, 12, 35]. However, [10, 11, 12] all target on

cryptocurrency applications and their methods cannot be applied

to our setting with smart contracts. Speci�cally, they can support

only simple cryptocurrency transfer transactions, but not the arbi-

trary computation logic required by smart contracts. Additionally,

they only consider the state maintenance for account balances,

which is insu�cient for smart contracts as an unbound number of

states may be read or write during smart contract executions. Gor-

bunov et al. [35] propose a scheme called Pointproofs, which can

be used for stateless blockchains with smart contract functionality.

However, all of these works only support sequential transaction

processing in their stateless design. In comparison, in SlimChain,

smart contracts can be concurrently executed by o�-chain nodes

with a VC scheme to ensure execution integrity. They can then be

validated and committed by stateless on-chain nodes even if they

are submitted asynchronously.

Furthermore, sharding is a viable approach to reduce state main-

tenance overheads by partitioning the blockchain ledger into dif-

ferent shards [8, 9, 28, 33]. In existing systems, sharding is often

implemented by creating several parallel sub-chains, where each

chain concerns only a subset of the smart contracts. However, such a

design has at least three disadvantages. First, existing sharding tech-

niques cannot completely address the state maintenance problem

owing to the limited number of shards one can create. Second, han-

dling cross-shard transactions requires a cumbersome two-phase

commit protocol (2PC), which introduces long latency and cannot

well handle forking events. Third, since sharding also partitions the

consensus among the nodes in some existing systems, this actually

leads to degraded security in the consensus layer. For example, in

RapidChain [8], a costly recon�guration protocol needs to take

place to prevent newly joined nodes from breaching the threshold

of faulty nodes in some shard. In contrast, as we will show later, a

brand new sharding method can be integrated with SlimChain to

optimize o�-chain storage performance in a novel way.

In summary, existing blockchain systems do not support state-

less data storage, smart contract functionality, parallel transaction

execution, and sharding techniques all at the same time. SlimChain

is the �rst system that supports all of these desired features.

3 SLIMCHAIN OVERVIEW

In this section, we provide an overview of SlimChain, the proposed

blockchain system for the enabling of scalable transaction process-

ing. We focus on general-purpose blockchain systems with smart

contract capabilities.

3.1 Design Goals

We aim to achieve the following design goals in SlimChain:

2317

Client 1

CG input

Smart Contract

State Database

⟨{A }CG , {F }CG ,

�old, cwrite,

cTEE ⟩

2 Execute TX

Node 1

⟨CGinput, fCG ⟩

1 Send TX

Client 2

CG input

Smart Contract

State Database

⟨{A }CG , {F }CG ,

�old, cwrite,

cTEE ⟩

2 Execute TX

Node 2

⟨CGinput, fCG ⟩

1 Send TX

Storage Nodes

4 Validate & append to ledger

Node 3

4 Validate & append to ledger

Node 4

4 Validate & append to ledger

Node 5

Consensus Nodes

3 Broadcast

5 Synchronize

Figure 3: System Model

• Minimizing the maintenance burden of blockchain nodes. As

discussed in the previous sections, reducing the storage and

computation overheads of blockchain nodes is essential for

improving system scalability and robustness.

• Supporting parallel transaction execution. To maximize system

throughput, we should allow transactions to be executed in

parallel by di�erent nodes. Meanwhile, we should be able to

resolve con�icts and establish a consensus on the order of

transactions among all nodes.

• Supporting e�ective sharding. Sharding has been demonstrated

to be an e�ective solution to maintaining high performance

in classic stateful blockchain systems. We should integrate

sharding into the stateless blockchain design.

• Retaining system security. System security should not be im-

paired. We should follow the same security assumptions that

existing blockchain systems do. For example, for a permis-

sioned blockchain, as long as the ratio of Byzantine nodes

does not exceed the threshold of the underlying consensus

protocol, the integrity of the blockchain should be guaranteed

among the honest nodes. On the other hand, we will allow

o�-chain nodes to behave arbitrarily.

3.2 System Overview

To meet the design goals, SlimChain maintains only the short com-

mitments of ledger states on-chain, whereas the stateful data is

stored o�-chain in dedicated nodes. Figure 3 presents an overview

of the system model, which consists of three types of nodes con-

necting each other in an asynchronous network.

• Clients, which can invoke smart contracts by sending transac-

tion requests to the blockchain network.

• Consensus nodes, which run a consensus protocol and col-

laboratively maintain a consensus view of the blockchain

ledger. They can take two di�erent roles: (i) block proposers,

a.k.a. miners, which are tasked to generate new blocks; and

(ii) block observers, which participate in the consensus by

only observing and validating new blocks.

• Storage nodes, which are o�-chain nodes with relatively high

storage and computation capabilities. In addition to synchro-

nizing on-chain commitments, they are also dedicated to main-

taining o�-chain stateful data as well as executing transac-

tions.

Block Data Structure. To reduce the storage burden of the

consensus nodes and o�oad as much data as possible to the storage

nodes, we design a new stateless block data structure, as shown

�prev_blk ccons �tx_root �state_root

blocki

CG1 : �CG1

CG2 : �CG2

. . .

· · · · · ·

.

CG1 : CG input,1, {A }1, {F }1,
�old,1, cTEE,1

CG2 : CG input,2, {A }2, {F }2,
�old,2, cTEE,2

. . .

Transactions:

Merkle trie

States · · ·

Node 1

Node 2

Node 3

· · ·

On-chain (Consensus Nodes)

O�-chain (Storage Nodes)

Figure 4: Stateless Block in SlimChain

in Fig. 4. Compared to the classic block structure shown in Fig. 2,

there are two main di�erences. First, we replace transactions with

their corresponding digests, �CG8 , as the on-chain transaction data.

The storage nodes are instead responsible for keeping the full trans-

action data. Owing to the cryptographic hash function, anyone

can use the on-chain digests to ensure that the transaction data is

not tampered with when being retrieved from the untrusted stor-

age nodes. Second, the entire world states and the corresponding

Merkle trie are also moved to the storage nodes. We keep only

the root hash of the Merkle trie, �state_root, on-chain for integrity

assurance. Similar to the transaction data, anyone can use this root

hash �state_root to verify the integrity of the state data retrieved

from the storage nodes. In the above design, the consensus nodes

in SlimChain are lightweight and comparable to light nodes in ex-

isting blockchain systems in terms of resource demands. However,

unlike existing systems, the consensus nodes in SlimChain are still

capable of validating the integrity of transaction executions and

maintaining the same level of security guarantee as that of full

nodes in classic blockchains.

Transaction Processing Work�ow. As illustrated in Fig. 3,

the transaction processing in SlimChain generally consists of the

following steps:

• 1 To invoke a smart contract, the client sends the transaction

request to one of the storage nodes. The request is a tuple

⟨CG input, fCG ⟩, where CG input and fCG represent the transaction

input and the corresponding digital signature, respectively.

• 2 Upon receiving the transaction, the storage node simulates

the smart contract execution locally to obtain its read set {A }CG
and write set {F}CG .

• 3 The execution results along with an execution proof cCG
and some other auxiliary data are broadcast to the consensus

nodes (more details will be discussed in Section 4.1).

• 4 After validating the execution results, the consensus nodes

append the transaction and update the state commitment

in the blockchain. This includes proposing a block by block

proposers and validating the block by block observers.

• 5 Finally, the storage nodes will commit to their local state

storage, once they observe that the transaction has been in-

cluded in the blockchain.

2318

In what follows, we propose novel algorithms to enable transac-

tion execution and validation in SlimChain.

4 SLIMCHAIN TRANSACTION PROCESSING

In this section, we discuss how SlimChain processes parallel trans-

actions with stateless blocks. There are three main challenges. First,

transactions can no longer be executed by the consensus nodes

since they do not maintain the ledger states. At the same time,

we cannot simply trust the storage nodes to execute transactions

faithfully. Second, the consensus nodes are not able to update the

on-chain commitments in a straightforward way due to a lack of

necessary information. Third, we need to ensure the ACID prop-

erties of committed transactions, since they are executed by the

o�-chain storage nodes concurrently. We address these three chal-

lenges in Sections 4.1 to 4.3. Afterwards, we discuss how to extend

our SlimChain system to support sharding in Section 4.4.

4.1 O�-chain Transaction Execution

Because the ledger states are not stored on-chain, a smart contract

can only be executed o�-chain with the help of storage nodes. To

ensure that executions are done faithfully, we can leverage forms

of public veri�able systems. That is, the storage nodes are required

to supply some additional proof to attest to the integrity of smart

contract executions. Given such proof, anyone can verify that the

transaction execution results are indeed correct using only publicly

available information. There are three ways to achieve this:

• Cryptography-based solution: Cryptographically veri�able com-

putation techniques such as SNARKs [17] can be used to con-

struct a veri�able Turing machine. Although they are usually

less e�cient, they o�er the strongest security guarantee.

• Secure-hardware-based solution: A trusted execution environ-

ment (TEE) is a special secure area of a processor. A TEE

provides a security-isolated world for trustworthy program

executions on an otherwise untrusted hardware platform. It is

highly e�cient but relies on additional security assumptions

compared with pure cryptography-based solutions.

• Policy-based solution: For permissioned blockchains, a policy-

based approach can also be used. For example, one can assume

that the execution is faithful as long as there are enough en-

dorsers or auditors to digitally sign the results. This approach

o�ers the highest level of performance, though at the expense

of some security protections.

In this paper, we mainly consider using the secure-hardware-based

solution, speci�cally Intel SGX powered TEE [20]. It has the ad-

vantage of both o�ering high performance and requiring less trust.

Nevertheless, it is worth noting that our transaction commitment

and node synchronization schemes proposed in Sections 4.2 and 4.3

can work with either of the three solutions mentioned above.

To support veri�able o�-chain transaction execution and provide

enough information to be used by the consensus nodes for stateless

on-chain transaction commitment, we develop a novel TEE-based

storage node transaction execution algorithm. As shown in Algo-

rithm 1, it accepts two inputs: (i) the transaction request from a

client, and (ii) the state root in the latest block observed by the

current storage node (denoted as �old). �old represents a snapshot

of the current world states. It serves two purposes. On one hand, it

creates a snapshot isolation environment w.r.t. �old for the smart

Algorithm 1: Storage Node Transaction Execution (TEE)

Input: transaction request ⟨CG input, fCG ⟩, state root in the latest

block �old.

1 if verify(CG input, fCG) failed then abort;

2 ⟨{A }CG , {F }CG ⟩ ← execute(CG input, �old);

3 cread ← get_merkle_proof({A }CG);

4 if verify({A }CG , �old, cread) failed then abort;

5 cTEE ← TEE.sign(⟨CG input, {A }CG , {F }CG , �old ⟩);

6 return ⟨{A }CG , {F }CG , cTEE ⟩;

�100

0 1

0 1 0 1

E1 E2 E3 E4

O�-chain State

{r }tx {00 : E1 } 0read �100 0 1 0 1

{w }tx {11 : E7 } 0write �100 0 1 0 1 ℎ (E4)

Transaction CG4

Figure 5: An Example of Transaction Execution

contract execution. On the other hand, as to be shown later, �old

serves as an anchor point to attest to the integrity of the transac-

tion read set. To execute the smart contract, the transaction request

is �rstly veri�ed against its digital signature (Line 1). Then, the

smart contract is executed normally with respect to the input and

the state root. During the execution, we record the read set {A }CG
and the write set {F}CG (Line 2). To ensure that the read values

obtained from outside TEE are correct, a Merkle multiproof with

respect to the read set is generated outside TEE (Line 3). Inside TEE,

the Merkle root is reconstructed using this proof and the recorded

read set {A }CG . The veri�cation passes if this computed Merkle root

matches with the state root from the input �old (Line 4).4 Finally,

TEE signs a digital signature cTEE using the technique known as

remote attestation [20] (Line 5). Note that the signature is created

with respect to the transaction input, the read/write sets, and the

original state root �old to prevent any tampering.

Outside TEE, the storage node also computes an additional

Merkle proof (denoted as cwrite) with respect to the written ad-

dresses in the write set {F}CG . This is needed to facilitate the state-

less consensus nodes to update the on-chain state root. We will

discuss this in more detail in the next section. Putting all these

things together, the o�-chain execution result CGsubmit, which will

be broadcast to the consensus nodes for �nal commitment, has the

following components:

CGsubmit = ⟨CG input, {A }CG , {F}CG , �old, cTEE, cwrite⟩.

Example. Figure 5 shows an example of transaction execution.

Suppose that the current o�-chain state trie is the one shown in the left.

After verifying the signature of the transaction request, the transaction

CG4 is executed with respect to the current state root�100. Assume that

we obtain the read set {00 : E1} and the write set {11 : E7}. A Merkle

proof cread as shown in the �gure is computed from the current o�-

chain state and read set. Using this proof and the read value, the TEE

recomputes the Merkle root �100 to verify the integrity of the transac-

tion reads. After veri�cation, the value in the read set is discarded, leav-

ing the read set to be {00}. Then, TEE signs the execution result in the

form of cTEE = TEE.sign(⟨CG input, {00}, {11 : E7}, �100⟩). Finally,

the storage node computes another Merkle proof cwrite with respect to

4After the veri�cation of cread , we only need to keep track of the read addresses in
the read set {A }CG . In comparison, the write set {F }CG includes both the written
addresses and written values.

2319

the write set as shown in the �gure, and broadcasts the �nal execution

result as CG submit = ⟨CG input, {00}, {11 : E7}, �100, cTEE, cwrite⟩.

4.2 On-chain Transaction Commitment

After collecting a certain number of o�-chain transaction execution

results, the block proposers of the consensus nodes can bundle

them together to generate a new block. In other words, they are

responsible for ordering and committing the transactions on-chain.

4.2.1 Solution Overview. There are two major obstacles for state-

less transaction commitment. On one hand, the consensus nodes

need to validate then commit the transactions despite of being state-

less. In particular, the root of the Merkle trie �state_root needs to

be updated by the consensus nodes without access to the full trie.

On the other hand, due to the nature of the asynchronous network,

transactions from the storage nodes may arrive in any arbitrary

order. This entails us to design algorithms such that they are able

to not only handle concurrency control to ensure ACID proper-

ties among parallel transactions, but also ensure the on-chain data

being collectively maintained and perfectly synchronized among

all nodes in the blockchain network. To this end, we propose to

maintain some minimal yet enough auxiliary information on the

consensus nodes to follow the state of the Merkle trie and track the

dependencies between di�erent transactions.

To make the aforementioned on-chain auxiliary information as

small as possible, we make two important observations. First, the

longer the latency between the transaction execution and the ar-

rival on the consensus nodes, the higher the probability of a con�ict.

Second, there is no need to keep the stateful data forever. Thus, we

only need the information for a few of themost recent blocks.We let

each consensus node keep track of a minimal amount of temporary

stateful data for the most recent : blocks. The setting of on-chain

temporary state length : is a system parameter shared by all parties

in the network. If a transaction received by the consensus nodes

was executed based on a block whose age is more than : blocks,

the consensus nodes simply discard the transaction. Note that the

temporary data serves two purposes: detecting read/write con�icts

and updating the on-chain state root. Furthermore, it should also

support incremental updates since the on-chain transaction com-

mitment happens in sequential order and has a big impact on the

system performance. Therefore, we design the temporary state to

include �ve components: (i) A map between the block height to

the corresponding read addresses set, denoted as"8 ↦→A ; (ii) A map

between the block height to the corresponding written addresses

set, denoted as"8 ↦→F ; (iii) A map between the read addresses to an

ordered list of block heights, denoted as"A ↦→8 ; (iv) A map between

the written addresses to an ordered list of block heights, denoted as

"F ↦→8 ; and (v) A partial Merkle trie which only records the write

set that happened in the past : blocks along with their Merkle paths,

denoted as TF .

Algorithm 2 describes the overall procedure for committing the

transactions. We will go through the pending transactions one by

one. Consider one transaction. First, it checks that the transaction

is indeed recent enough (Line 4) and has a valid TEE signature

(Line 5) as well as a valid write proof cwrite (Line 6). Next, it checks

whether the transaction has any read or write con�ict with other

committed transactions (Line 7). Then, we merge cwrite and {F}CG
into the partial Merkle trie TF (Line 8). At the same time, we can

Algorithm 2: Consensus Node Transaction Commitment

Input: transactions executed by the storage nodes {CG submit },

current block height 8 .

1 for CG ∈ {CG submit } do

2 ⟨CG input, {A }CG , {F }CG , �old, cTEE, cwrite ⟩ ← CG ;

3 9 ← get_block_height(�old);

4 if 8 − 9 > : then continue;

5 if verify(⟨CG input, {A }CG , {F }CG , �old ⟩, cTEE) failed then

continue;

6 if verify(�old, cwrite) failed then continue;

7 if check_conflict({A }CG , {F }CG , 9) failed then continue;

8 Update TF using cwrite and {F }CG ; // See Alg. 3

9 "8 ↦→A [8 + 1].append({A }CG);

10 "8 ↦→F [8 + 1].append({F }CG);

11 for A ∈ {A }CG do"A ↦→8 [A].append(8 + 1);

12 for F ∈ {F }CG do"F ↦→8 [F].append(8 + 1);

13 Compute �state_root from TF , generate new block block8+1;

14 for A ∈ "8 ↦→A [8 − : + 1] do

15 "A ↦→8 [A].remove(8 − : + 1);

16 if "A ↦→8 [A] is empty then"A ↦→8 .remove(A);

17 "8 ↦→A .remove(8 − : + 1);

18 for F ∈ "8 ↦→F [8 − : + 1] do

19 "F ↦→8 [F].remove(8 − : + 1);

20 if "F ↦→8 [F] is empty then

21 "F ↦→8 .remove(F);

22 TF .remove(path associated to F); // See Alg. 4

23 "8 ↦→F .remove(8 − : + 1);

update the four maps stored in the temporary states to include

the new transaction. Upon applying the above algorithm to all the

transactions, a new block is computed. The new block includes a list

of digests of the valid transactions and a new state root computed

from TF (Line 13). This proposed new block will later be passed

to the consensus protocol for ordering. Finally, we remove the

information related to the :-th recent block from the temporary

states. This is done by removing the :-th block from "A ↦→8 and

"F ↦→8 . If an address has no corresponding block in these two maps,

it is removed completely from the maps. For the removed written

addresses, we also remove their associated tree paths from TF
(Line 22).

4.2.2 Partial Merkle Trie Maintenance. The core design of our pro-

posed temporary state is a novel partial Merkle trie TF , which

enables the consensus nodes to update the state root digest without

accessing the full Merkle trie. The partial trie has an identical struc-

ture to the full trie stored by the storage nodes, so they share the

same root digest. However, the majority of tree nodes in TF are sup-

pressed. Instead, only the tree nodes corresponding to the written

values happening in the past : blocks as well as their Merkle paths

are materialized. The partial trie supports two operations, namely

update and tidy. The update operation takes the Merkle proof cwrite
and write set {F}CG to apply the writes from the transaction. Note

that the proof contains the original Merkle trie paths corresponding

to the written addresses when the transaction is executed, whereas

the write set records the written values. A simpli�ed version of the

algorithm is shown in Algorithm 3, which assumes that there are

only branch nodes and leaf nodes without the remaining search

key in the Merkle trie. It traverses both the partial trie and the

2320

Block Height 100 101 102

TX List {CG1 } {CG2 } {CG3, CG4 }

Si→r 100: {10} 100: {10}, 101: {10} 101: {10}, 102: {00, 10}

Si→w 100: {01} 100: {01}, 101: {00} 101: {00}, 102: {10, 11}

Sr→i 10: {100} 10: {100, 101} 10: {101, 102}, 00: {102}

Sw→i 01: {100} 00: {101}, 01: {100} 00: {101}, 10: {102}, 11: {102}

Tw

�100

0 1

0 1 0 1

E0 ℎ (E2) E0 E0

�101

0 1

0 1 0 1

ℎ (E5) ℎ (E2) E0 E0

�102

0 1

0 1 0 1

ℎ (E5) E0 ℎ (E6) ℎ (E7)

Full Merkle Trie
(in storage nodes)

�100

0 1

0 1 0 1

E1 E2 E3 E4

�101

0 1

0 1 0 1

E5 E2 E3 E4

�102

0 1

0 1 0 1

E5 E2 E6 E7

Consensus Node Temporary States

r tx wtx Nold 0write

CG1 {10} {01 : E2 } �99 �99 0 1 0 1 ℎ (E0)

CG2 {10} {00 : E5 } �99 �99 0 1 0 1 ℎ (E1)

CG3 {10} {10 : E6 } �100 �100 0 1 0 1 ℎ (E3)

CG4 {00} {11 : E7 } �100 �100 0 1 0 1 ℎ (E4)

CG5 {00} {10 : E8 } �100 �100 0 1 0 1 ℎ (E3)

Transactions

Pre�x: 1

0 1

ℎ (E3)

+

Pre�x: 1

0 1

ℎ (E4)

⇒

Pre�x: 1

0 1

ℎ (E3) ℎ (E4)

Compressed cwrite for block102

Figure 6: An Example of Transaction Commitment

Algorithm 3: Update Partial Merkle Trie TF (Simpli�ed)

Input: write set Merkle proof cwrite, write set {F }CG .

1 & ← init_queue();

2 & .enqueue(⟨cwrite .root(), TF .root()⟩);

3 while not& .is_empty() do

4 ⟨=c , =T ⟩ ← & .dequeue();

5 for ⟨=1, 8 ⟩ ∈ =c .child_nodes_with_index() do

6 =2 ← =T .2ℎ8;3 [8];

7 if =2 is suppressed then

8 Update =1’s subtree using values from {F }CG ;

9 Replace =2 with =1;

10 else& .enqueue(⟨=1, =2 ⟩);

Algorithm 4: Tidy Partial Merkle Trie TF

Input: address to be removed F, write set map"F ↦→8 .

1 ;4= ← max{common_prefix_len(F, F′) |∀F′ ∈ "F ↦→8 };

2 =>34 ← TF .root(); 34?Cℎ ← 0;

3 while 34?Cℎ < ;4= do

4 =>34 ← =>34.2ℎ8;3 w.r.t. address F; 34?Cℎ ← 34?Cℎ + 1;

5 Replace =>34 with its digest value;

proof in a top-down fashion to �nd the proper places to insert the

missing subtrees and the written values. For normal Merkle trie, the

full version of the algorithm is shown in our technical report [39] .

On the other hand, the tidy operation is used to remove the write

addresses whose age is more than : blocks. This is needed to keep

the size of partial Merkle trie TF small. Its algorithm is shown in

Algorithm 4. We start by comparing the removing address with the

rest of the addresses in the write set map"F ↦→8 to �nd the maxi-

mum common pre�x length (Line 1). Then, we simply remove all

nodes who are on the Merkle path corresponding to the removing

address and have a tree depth larger than the previous found pre�x

length.

Example. Figure 6 shows a full example of transaction commit-

ment. In this example, the on-chain temporary state length : is 2,

which means that the consensus nodes only keep track of the partial

states for the last two blocks. Assume that the current block height is

101, and a consensus node is working to create block 102. There are

three candidate transactions {CG3, CG4, CG5}, all of which are executed

by the storage nodes using block 100 as the starting point.

Suppose that CG3 and CG4 are the only transactions passing both the

validation of cTEE, cwrite and the concurrency control, a consensus

node now needs to commit them into the partial Merkle trie TF for the

purpose to compute the state digest for the new block 102. First, the

consensus node uses cwrite’s of CG3 and CG4 to materialize the missing

tree nodes in the partial trie TF . The missing tree nodes all lie in the

Merkle paths corresponding to keys 10 and 11. Next, the write sets

{10 : E6} and {11 : E7} of these two transactions are applied to update

the written values {E6, E7}. This updated partial trie is then used to

compute the new state root �102 and subsequently to create the new

block 102. Finally, the consensus node removes the unneeded tree path

associated with keys whose age is more than 2 blocks from the partial

trie to keep the trie size small. In our example, it is the path associated

to key 01 (i.e., leaf node ℎ(E2)).

4.2.3 Concurrency Control. Our system supports two methods of

concurrency control, i.e., Optimistic Concurrency Control (OCC)

and Serializable Snapshot Isolation (SSI) using the heuristic from [38].

Both of them only rely on theminimal amount information stored in

the temporary state. When OCC is used, we simply check whether

any read or write set of the transaction has been updated by other

more recently committed transactions. In comparison, we check two

criteria in SSI: (i) whether any part of the write set is also updated

by other transactions; and (ii) whether there are rw-dependencies

both pointing to and originating from the current transaction. Sim-

ilar to traditional DBMS, we do not need to keep track of either

wr-dependency or ww-dependency. This is because the transactions

are committed in a sequence with no concurrent writes. It is also

worth noting that the order of transactions in the blockchain may

not represent their execution order in SSI. Instead, each transaction

is considered to start at the block corresponding to �old and to be

committed in the block where it is stored. The detailed concurrency

control algorithms are shown in Algorithms 5 and 6.

Example. In the previous example shown in Fig. 6, the consensus

node needs to check whether there is any con�ict between candidate

2321

Algorithm 5: Check Read/Write Con�ict (OCC)

Input: read set {A }CG , write set {F }CG , block height 9 which

corresponds to �old.

1 for A ∈ {A }CG do

2 if ∃8 s.t. 8 ∈ "F ↦→8 [A] ∧ 8 ≥ 9 then return failed;

3 for F ∈ {F }CG do

4 if ∃8 s.t. 8 ∈ "F ↦→8 [F] ∧ 8 ≥ 9 then return failed;

5 return success;

Algorithm 6: Check Read/Write Con�ict (SSI)

Input: read set {A }CG , write set {F }CG , block height 9 which

corresponds to �old.

1 5 ;061 ← 5 0;B4, 5 ;062 ← 5 0;B4 ;

2 for F ∈ {F }CG do

3 if ∃8 s.t. 8 ∈ "F ↦→8 [F] ∧ 8 ≥ 9 then return failed;

4 if ∃8 s.t. 8 ∈ "A ↦→8 [F] ∧ 8 ≥ 9 then 5 ;061 ← CAD4 ;

5 for A ∈ {A }CG do

6 if ∃8 s.t. 8 ∈ "F ↦→8 [A] ∧ 8 ≥ 9 then 5 ;062 ← CAD4 ;

7 if 5 ;061 ∧ 5 ;062 then return failed else return success;

transactions (i.e., {CG3, CG4, CG5}) and the transactions already com-

mitted in the last two blocks. It is easy to see that CG3 satis�es the

serializability requirement. For CG4, since it reads a value at key 00

during o�-chain execution (i.e., block100), which is later written by

CG2 committed in block101, it will be aborted when OCC is used. How-

ever, it can still be committed when SSI is used. In this case, CG4 is

considered to be executed before CG2 although it is committed in a

later block. The transaction CG5, on the other hand, is not serializable

under either of the concurrency control methods.

4.3 Node Synchronization

After the consensus nodes create a new block, it needs to be syn-

chronized with the rest of the network. There are three kinds of

nodes to be considered, namely block observers, storage nodes, and

newly joined nodes.

4.3.1 Block Observers. As discussed in Section 3.2, only a subset

of the consensus nodes, known as block proposers, are responsible

for creating the new block. On the other hand, the block observers

merely validate and log the blocks created by the block proposers.

Here, they can simply run the same algorithms introduced in Sec-

tion 4.2 to validate the transactions associated with the new block.

If any of the transactions fails the validation, the proposed block

is considered to be invalid and is discarded. Depending on the un-

derlying consensus protocol, a view change procedure may also

be triggered when an invalid block is observed from the block

proposers.

Since the network transmission plays a big role in blockchain

bottlenecks [14], it is important to reduce the amount of data sent

to the block observers. One idea is to reduce the size of the Merkle

proof cwrite. Instead of using the proof computed by the storage

nodes at the time of transaction execution, the block proposers

can compress it with three means. First, through comparison with

the original proof that is computed based on the Merkle trie corre-

sponding to �old, the compressed one is built based on the latest

block, i.e., the one immediately preceding the current block. This

also has the bene�t of reducing the block observers’ computation

overheads during updating TF . Second, the compressed proof does

not need to start from the root of the Merkle trie. All tree nodes

that are shared with the previous partial trie TF can be omitted

and be replaced with a common pre�x of the search keys to save

bandwidth. Third, instead of returning one proof per transaction

in the block, the block proposers can bundle them together into

one Merkle multiproof. The algorithm to compute this compressed

proof for a single transaction is similar to Algorithm 3. The only

di�erence is that instead of �nding the proper places to insert the

missing subtrees (Lines 8 to 9 in Algorithm 3), it extracts these

subtrees along with their pre�x of the search key to generate the

compressed proof. To produce the compressed proof for multiple

transactions in a block, the block proposer can invoke the above

procedure to create a compressed proof for each individual transac-

tion. Then these proofs can be merged by combining subtrees that

share the same pre�x to create the �nal compressed proof. When

the block observers receive the compressed proof, it is no longer

veri�ed against the old state root �old but against the most recent

partial trie TF . Apart from this, the rest of the algorithm is identical

to Algorithm 2.

Example. In the example shown in Fig. 6, the compressed proof

is illustrated in the bottom right corner. This proof uses the common

pre�x 1 to represent its location in the partial Merkle trie TF . It is

computed by �rst comparing the di�erences between cwrite’s of CG3
and CG4 with the partial trie TF in the previous block then combining

these di�erences into one proof. When received by the block observers,

the Merkle root hash of the subtree in the proof is computed and

compared with the hash value stored locally in the corresponding

node of TF (highlighted by the red rectangle) to ensure the integrity

of the compressed proof.

4.3.2 Storage Nodes. The storage nodes follow similar behaviors to

the consensus nodes. That is, they execute the same procedure de-

scribed in Section 4.2 to commit the transactions ordered by the con-

sensus protocol. At the same time, they also store the relevant data

instead of just their digests. This includes both the transaction data

and the state data. For the transaction data, the storage nodes record

the transaction input CG input, the read/write set ⟨{A }CG , {F}CG ⟩, the

state root �old that the transaction is executed upon, and the sig-

nature cTEE generated by TEE for each transaction. There is no

need to store the Merkle proof for the write set cwrite, because it

can be recomputed on-the-�y from the full Merkle trie. As for the

state data, the storage nodes maintain the full Merkle trie locally.

This is achieved by updating the trie directly during the transaction

commitment instead of using the temporary partial trie TF .

4.3.3 Newly Joined Nodes. When a fresh node joins the network,

it has to synchronize and examine all the blocks as well as their

transactions, starting from the genesis block. This procedure is

quite similar to that of existing blockchain systems, where a newly

joined node invokes Algorithm 2 to validate all the blocks down-

loaded from the blockchain network. Yet, there are two notable

di�erences. First, the newly joined node will retrieve the existing

blocks from the storage nodes instead of the consensus nodes. This

is due to the fact that only the storage nodes keep a whole copy

of the transaction data in our SlimChain design. Second, while it

is still required to maintain the temporary states comprising the

last : blocks for the read/write set maps in order to check the

serializability of the transactions, we can optimize the usage of

the partial trie TF . Instead of invoking the update (Algorithm 3)

2322

Merkle trie

(upper level)

Shard 1 Shard 2 Shard 3

Storage

Layer

Blockchain

Layer

Node 1

Merkle trie

(upper level)

Shard 1 Shard 2 Shard 3

Storage

Layer

Blockchain

Layer

Node 2

Merkle trie

(upper level)

Shard 1 Shard 2 Shard 3

Storage

Layer

Blockchain

Layer

Node 3

Figure 7: Example of Sharding among Storage Nodes

and tidy (Algorithm 4) operations on TF for each block, we can

resort to a batching strategy. Speci�cally, the storage nodes can

compute a mega Merkle multiproof to the addresses which will be

updated in the next< blocks and send it to the newly joined node.

After that, the newly joined node can compute the root state for

the next< blocks by applying the relevant write sets to the afore-

mentioned mega multiproof. The parameter< can be dynamically

chosen based on network conditions and the memory capacity of

the nodes. Clearly, this has the advantage of saving bandwidth by

avoiding transmitting duplicate tree nodes.

4.4 Sharding

Sharding is a common technique employed to improve scalability

and boost performance for distributed systems. The core idea is

to partition the database or states horizontally among di�erent

peers. Here, each individual partition is referred to as a shard and

is maintained by a separate database instance. Sharding not only

has the advantage of reducing the storage cost among individual

nodes in the network, but also bene�ts the transaction execution

by spreading the load. To address the issues of existing sharding

techniques mentioned in Section 2.4, we propose a brand new shard-

ing method. Instead of creating a �xed number of sub-chains, in

SlimChain, sharding only happens among the o�-chain storage

nodes. Owing to the stateless design, the on-chain consensus nodes

are lightweight and thus can forgo the sharding. For the o�-chain

storage nodes, the sharding is highly �exible and completely dy-

namic. The storage nodes can choose to store partial or full states,

on the basis of their storage capacities. An example of sharding

is shown in Fig. 7: Nodes 1 and 2 store only two shards, whereas

Node 3 stores the entire replica of the states. Furthermore, nodes

can expand or shrink their local storage dynamically based on the

needs of the application. For the sake of system e�ciency, each

node may choose to always store the upper layer of the Merkle trie,

which is updated frequently.

During the o�-chain transaction execution, there is no special

treatment needed for cross-shard transactions. When a transaction

involves multiple shards, the client can choose to send it to a stor-

age node that has all the necessary shards; alternatively, multiple

storage nodes can work together to process the transaction. In the

latter case, one of the storage nodes can be chosen to execute the

transaction inside TEE, where the necessary state data is retrieved

either from local storage or from the remote nodes that own other

shards. The rest of the algorithm is identical to the one described

in Section 4.1. Finally, since there is no sharding in the on-chain

layer, sharding is completely transparent to the on-chain trans-

action commitment procedure. As such, not only SlimChain can

maintain the same level of security in the consensus layer with or

without sharding, but also ensures cross-shard transactions to be

committed on-chain in an atomic fashion without any extra latency.

Storage Merkle Trie Network SGX Enclave

Low-level Modules

TX Execution Block Propose Block Synchronization

O�-chain State On-chain State

Consensus TX Engine

SlimChain

Storage Node Block ObserverBlock ProposerTX

Block
Block

Figure 8: System Architecture of SlimChain

5 IMPLEMENTATION

We implement an end-to-end prototype of SlimChain in the Rust

programming language, which consists of around 26,000 lines of

codes. The source codes are available at https://github.com/hkbudb/

slimchain. Figure 8 shows the system architecture, which consists

of three layers.

The bottom layer consists of multiple low-level modules. This in-

cludes: (i) Storage. We use RocksDB as the data storage;5 (ii) Merkle

trie. It o�ers the functionalities of manipulating the Merkle Patricia

Trie. We choose BLAKE2b as the cryptographic hash function used

throughout SlimChain; (iii) Network. Two di�erent network en-

gines are developed. HTTP protocol is used for communication in

the permissioned settings, whereas the libp2p library is used in the

permissionless settings. The latter o�ers the functionalities of node

discovery, gossip broadcast, and P2P RPC messaging;6 (iv) SGX en-

clave. The Rust SGX SDK is used to implement the secure enclave.7

The middle layer implements the essential functions of the block-

chain system. The o�-chain state module manages the states stored

in the storage nodes, including the sharding support. Furthermore,

the on-chain state module manages the blockchain’s temporary

states and associated transaction commitment algorithms as dis-

cussed in Section 4.2. For the consensus, since our proposed algo-

rithms in SlimChain are not involved in the consensus process,

we use a pioneering consensus protocol for permissioned and per-

missionless settings, respectively. Speci�cally, the Raft consensus

protocol is used in the permissioned setting.8 On the other hand,

Proof-of-Work (PoW) is used for the permissionless system whose

mining di�culty is set such that a new block is generated for every

5 ~ 10 seconds. To execute smart contracts, the TX Engine is built

based on a Rust Ethereum Virtual Machine, which interprets smart

contracts written in Solidity.9 The TX Engine runs inside an SGX

enclave and signs the execution results using an ephemeral key

generated inside the same enclave. This ephemeral key is in turn

signed by the Intel SGX attestation services.10 This hierarchical PKI

design can signi�cantly improve the performance of SGX remote

attestation.

The top layer handles the entire transaction and block processing

cycle. Speci�cally, this includes: (i) o�-chain transaction execution,

(ii) block proposing, and (iii) block synchronization.

5https://rocksdb.org
6https://github.com/libp2p/rust-libp2p
7https://github.com/apache/incubator-teaclave-sgx-sdk
8https://github.com/async-raft/async-raft
9https://github.com/rust-blockchain/evm
10https://api.portal.trustedservices.intel.com

2323

https://github.com/hkbudb/slimchain
https://github.com/hkbudb/slimchain
https://rocksdb.org
https://github.com/libp2p/rust-libp2p
https://github.com/apache/incubator-teaclave-sgx-sdk
https://github.com/async-raft/async-raft
https://github.com/rust-blockchain/evm
https://api.portal.trustedservices.intel.com

Table 2: System Parameters

Parameters Permissioned Permissionless

consensus protocol Raft PoW

concurrency control method OCC, SSI

proof compression optimization (Sec 4.3.1) Disable, Enable

of consensus nodes 4, 8, 16

of storage nodes 1, 2, 3, 4

maximum TX per block 1,024 4,096

on-chain temporary state length : 16

6 PERFORMANCE EVALUATION

In this section, we evaluate the performance of our proposed Slim-

Chain system against three baselines:

• Classic: It follows the design of traditional blockchains like

Ethereum [7]. There are only on-chain consensus nodes in

the system. Transactions are executed by block proposers

during block generation, then by block observers during block

validation. All these executions are done sequentially. Since all

nodes are stateful, all transaction and state data are replicated

by every node.

• Stateful: It is a stateful counterpart of SlimChain, which con-

tains all the components of SlimChain except the partial

Merkle trie TF . The transaction processing is similar to that of

SlimChain. However, the entire transaction and state data are

directly stored by all nodes during transaction commitment.

• Fabric#: In the permissioned setting, we also compare our

system with FabricSharp [30]. The transactions are �rst exe-

cuted by the endorsement nodes, who play a similar role as

the storage nodes in SlimChain. For fair comparison, the en-

dorsement policy is set to only require the transaction being

endorsed by a single endorsement node. Then, transactions

are ordered and committed by the consensus nodes. All nodes

are stateful and thus store all ledger information.

For fairness, both Classic and Stateful are implemented using the

same program language and libraries as discussed in Section 5.

6.1 Experiment Setup

We deploy the blockchain network in the Azure cloud in the US-

East region. The consensus nodes are run on the Standard_D2_v2

machines, whereas the storage nodes or endorsement nodes use

the Standard_DC4s_v2 machines.11 The default network topology

consists of 16 consensus nodes and 4 storage nodes or endorse-

ment nodes. The network bandwidth among nodes is 1500 Mbps.

Moreover, we enable multithread computation in the storage nodes,

where three parallel threads are used to drive the TX engine. The

consensus nodes on the other hand run in a single thread. Table 2

lists all the system parameters used in the experiment, where the

default values are highlighted in boldface.

Blockbench [1] is used to evaluate the performance. It o�ers

both micro benchmarks consisting of DoNothing (denoted as DN),

CPUHeavy (denoted as CPU), IOHeavy (denoted as IO), and macro

benchmarks consisting of KVStore (denoted as KV) and SmallBank

(denoted as SB). We measure the following metrics to evaluate the

proposed system: (i) success rate, the ratio between the number

of the committed transactions and the sent transaction requests;

(ii) peak throughput, the maximum number of committed trans-

11https://docs.microsoft.com/en-us/azure/virtual-machines/sizes-general

0

5K

10K

15K

20K

DN CPU IO KV SB

S
to

ra
g
e
 S

iz
e
 (

B
/t
x
)

(a) Smart Contract (Permissioned)

Classic
Fabric#

Stateful
Slimchain

5.1k 5.1k

15.2k

10.9k

9.2k

3.8k 3.8k

8.7k

6.0k
4.8k

3.1k 3.1k 3.5k 3.4k 3.3k

65 65 65 65 65
0

5K

10K

15K

20K

DN CPU IO KV SB

S
to

ra
g
e
 S

iz
e
 (

B
/t
x
)

(b) Smart Contract (Permissionless)

Classic Stateful Slimchain

5.0k 5.1k

15.0k

10.9k

9.2k

3.3k 3.3k

6.9k

5.0k
4.2k

63 63 63 63 63

Figure 9: Consensus Node Storage Size (B/tx) vs. Smart Contract

0

300

600

900

1200

DN CPU IO KV SB

T
h
ro

u
g
h
p
u
t
(t

p
s
)

(a) Smart Contract

Classic
Fabric#

Stateful
Slimchain

790

111
188

387 413

1277
1221

562

753
858

489 487 465 440 462

1284 1259

685

987 1022

0

2

4

6

8

10

DN CPU IO KV SB

L
a
te

n
c
y
 (

s
)

(b) Smart Contract

 3.8

 5.2

 9.5
 9.0

 7.0

 2.2 2.2

 6.4

 3.7 3.4

 6.6

 8.1
 7.4 7.3

 8.2

 2.2 2.2

 3.8

 2.5 2.4

Classic
Fabric#
Stateful

SlimChain
exec

wait-prop

propose
validate
net+raft

Figure 10: Throughput/Latency vs. Smart Contract (Permissioned)

0

100

200

300

400

500

DN CPU IO KV SB

T
h
ro

u
g
h
p
u
t
(t

p
s
)

(a) Smart Contract

Classic Stateful Slimchain

177

29
58

92 102

444 441

299
337

317

462 454

316
342

321

0

50

100

150

200

DN CPU IO KV SB

L
a
te

n
c
y
 (

s
)

(b) Smart Contract

40.3

160.2

84.4

26.2 27.5 32.0 31.4
20.028.3 27.3 35.3

23.9 21.8

Classic
Stateful

SlimChain

exec
wait-prop

mining

propose
validate

net

542.2 236.1

Figure 11: Throughput/Latency vs. Smart Contract (Permissionless)

actions per second. It is measured by performing a binary search

among varying transaction sending rates; (iii) latency, the average

time from sending a transaction request to the transaction commit-

ment in the local consensus node; and (iv) storage size, the average

per transaction storage size. Except for Fabric#, we further break

the latency down to multiple components, including (i) storage

node execution time (denoted as exec); (ii) time of transactions

staying idle in the queue of block proposers before being processed

(denoted as wait-prop); (iii) block proposing time excluding the

consensus process (denoted as propose); (iv) time related to con-

sensus (denoted as ra�/mining); (v) block validation time by block

observers (denoted as validate); and (vi) network communication

time (denoted as net). For each experiment, 300,000 transaction

requests are randomly generated using 100,000 sender accounts.

In the following, we �rst compare the overall performance be-

tween SlimChain and baselines when processing di�erent smart

contracts under the default system parameters. Then, we present

the performance evaluation with varying system parameters. Fi-

nally, we investigate the system performance when the proposed

sharding technique is used. Due to the space limitation, additional

experimental results are presented in our technical report [39].

6.2 Experimental Results

6.2.1 Overall Performance. Figure 9 shows the average per transac-

tion storage size for the consensus nodes in SlimChain and baselines.

We can see that SlimChain reduces the on-chain storage require-

ments for the consensus nodes by 97% ~ 99%. This is because our

stateless design shifts most of the storage burden to the o�-chain

storage nodes. We also observe that the on-chain storage size of

2324

https://docs.microsoft.com/en-us/azure/virtual-machines/sizes-general

Table 3: Success Rate vs. Concurrency Control (Permissioned)

Smart Contract KV SB

OCC Success Rate 90.49% 99.62%

SSI Success Rate 95.34% 99.75%

0

2

4

6

8

10

OCC SSI
0

300

600

900

1200

L
a

te
n

c
y
 (

s
)

T
h

ro
u

g
h

p
u

t
(t

p
s
)

(a) Concurrency Control (KV)

923
987

2.70 2.53

lat-exec
lat-wait-prop
lat-propose

lat-validate
lat-(net+raft)

throughput

0

2

4

6

8

10

OCC SSI
0

300

600

900

1200

L
a

te
n

c
y
 (

s
)

T
h

ro
u

g
h

p
u

t
(t

p
s
)

(b) Concurrency Control (SB)

945
1022

2.95
2.44

lat-exec
lat-wait-prop
lat-propose

lat-validate
lat-(net+raft)

throughput

Figure 12: Performance vs. Concurrency Control (Permissioned)

SlimChain remains constant regardless of the smart contracts.

Figures 10 and 11 report the the peak throughput and respective

transaction commit latency for di�erent smart contracts under the

default system parameters. As shown in Figs. 10a and 11a, Slim-

Chain improves the throughput by 1.6X ~ 11.3X and 2.6X ~ 15.6X

against Classic for all smart contracts. In particular, SlimChain

achieves the best performance improvement for CPUHeavy thanks

to the outsourcing computation and the concurrent execution of

smart contracts. Compared with Fabric#, SlimChain improves the

throughput by 1.4X ~ 2.6X. SlimChain shares similar throughput

with Stateful, although some notable improvement can be observed

in KV and SB in the permissioned setting.

For latency, Figs. 10b and 11b show that SlimChain and Stateful

achieve the lowest latency in comparison with Classic and Fabric#

across almost all smart contracts. Note that the storage node execu-

tion time in SlimChain and Stateful is too small to be visible in the

�gure. Moreover, it can be observed from the latency breakdown

that the biggest contributor to the latency is network communi-

cation and Raft consensus (net+ra�) in the permissioned setting.

In comparison, the transactions spend most of time in the queue

(wait-prop) in the permissionless setting.

Overall, we can observe that SlimChain achieves the lowest

storage requirement with no sacri�ce in terms of performance.

6.2.2 Impact of System Parameters. In this section, we evaluate the

performance of SlimChain under di�erent system parameters to

test their impact. We only test the two macro benchmarks in the

permissioned setting here, i.e., KVStore (KV) and SmallBank (SB).

First, we evaluate the in�uence of two concurrency control meth-

ods, namely OCC and SSI. Their commit success rates are presented

in Table 3, in which SSI yields a higher success rate than OCC for

both smart contracts. The results are aligned with the analysis in

Section 4.2. As shown in Fig. 12, these higher success rates con-

tribute to an increase in throughput by 7% ~ 8% and a decrease in

latency by 6% ~ 21%.

Next, we evaluate how the proposed proof compression optimiza-

tion discussed in Section 4.3.1 impacts the system performance. As

shown in Fig. 13, SlimChain yields a better performance in through-

put by 1.5X ~ 1.6X and a reduction in latency by 36% ~ 38% when

the proof compression optimization is used. This is expected as the

network often contributes to the bottleneck of distributed system

and the proof compression helps reduce transmission overheads

during block synchronization.

0

2

4

6

8

10

Disable Enable
0

300

600

900

1200

L
a

te
n

c
y
 (

s
)

T
h

ro
u

g
h

p
u

t
(t

p
s
)

(a) Proof Compression (KV)

656

987

3.97

2.53

lat-exec
lat-wait-prop
lat-propose

lat-validate
lat-(net+raft)

throughput

0

2

4

6

8

10

Disable Enable
0

300

600

900

1200

L
a

te
n

c
y
 (

s
)

T
h

ro
u

g
h

p
u

t
(t

p
s
)

(b) Proof Compression (SB)

641

1022

3.92

2.44

lat-exec
lat-wait-prop
lat-propose

lat-validate
lat-(net+raft)

throughput

Figure 13: Performance vs. Proof Compression (Permissioned)

0

1

2

3

4

5

1 2 3 4
0

300

600

900

1200

L
a

te
n

c
y
 (

s
)

T
h

ro
u

g
h

p
u

t
(t

p
s
)

(a) # of Shards

987 962 941 972

2.53
2.76 2.77 2.87

lat-exec
lat-wait-prop
lat-propose

lat-validate
lat-(net+raft)

throughput

0

2k

4k

6k

8k

1 2 3 4

S
to

ra
g

e
 S

iz
e

 o
f

 S
to

ra
g

e
 N

o
d

e
 (

B
/t

x
)

(b) # of Shards

5959

5071
4782 4624

Figure 14: Performance vs. # of Shards (KV, Permissioned)

6.2.3 Sharding Performance. Finally, we investigate the perfor-

mance of SlimChain with sharding. We evenly partition the smart

contract world states based on smart contract addresses. Figure 14a

shows KVStore’s peak throughput and latency with storage nodes

being partitioned to di�erent numbers of shards. Here, the number

of shards being equal to 1 means that sharding is disabled. Since our

proposed sharding technique is completely transparent to the con-

sensus nodes, we observe only very small changes in transaction

commit latency and peak throughput. On the other hand, Fig. 14b

shows that with more shards, more storage spaces are saved among

the storage nodes. Because all of the storage nodes need to store

the upper-level Merkle trie, this space saving is however not linear

in terms of the number of shards.

7 CONCLUSION

In this paper, we have designed a novel stateless blockchain sys-

tem, SlimChain, that scales transactions through o�-chain storage

and parallel processing. Speci�cally, the ledger states and transac-

tion executions are moved to o�-chain storage nodes to improve

system scalability. To support stateless transaction commitment,

we designed new o�-chain transaction execution, on-chain trans-

action validation, and node synchronization schemes, along with

a novel partial Merkle trie structure. To further improve system

performance, we proposed optimizations to reduce network trans-

missions and a new sharding technique. Extensive experiments

show that the proposed SlimChain system reduces the on-chain

storage requirements by 97% ~ 99% and improves the peak through-

put by 1.4X ~ 15.6X over the existing systems.

There are many interesting research problems that deserve fur-

ther investigation for stateless blockchain, e.g., how to further re-

duce on-chain states by utilizing more advanced data structures;

how to decrease the operating costs for storage nodes; and how to

support data provenance under the new stateless design.

ACKNOWLEDGMENTS

This work was supported by Research Grants Council of Hong Kong

(Project Nos. 12201520, 12200819) and NSERC Discovery Grants.

Jianliang Xu is the corresponding author.

2325

REFERENCES
[1] T. T. A. Dinh, J.Wang, G. Chen, R. Liu, B. C. Ooi, and K.-L. Tan. 2017. Blockbench:

A framework for analyzing private blockchains. In Proceedings of the 2017 ACM
SIGMOD International Conference on Management of Data, 1085–1100.

[2] C. Xu, C. Zhang, and J. Xu. 2019. vChain: Enabling veri�able boolean range
queries over blockchain databases. In Proceedings of the 2019 ACM SIGMOD
International Conference on Management, 141–158.

[3] C. Zhang, C. Xu, H. Wang, J. Xu, and B. Choi. 2021. Authenticated keyword
search in scalable hybrid-storage blockchains. In Proceedings of the 37th IEEE
International Conference on Data Engineering, 996–1007.

[4] S. Nakamoto. 2008. Bitcoin: a peer-to-peer electronic cash system. https://
bitcoin.org/bitcoin.pdf.

[5] A. Azaria, A. Ekblaw, T. Vieira, and A. Lippman. 2016. Medrec: Using blockchain
for medical data access and permission management. In 2nd International
Conference on Open and Big Data, 25–30.

[6] S. A. Abeyratne and R. P. Monfared. 2016. Blockchain ready manufacturing
supply chain using distributed ledger. International Journal of Research in
Engineering and Technology, 5, 9, 1–10.

[7] G.Wood. 2014. Ethereum: A secure decentralised generalised transaction ledger.
https://ethereum.github.io/yellowpaper/paper.pdf.

[8] M. Zamani, M. Movahedi, and M. Raykova. 2018. Rapidchain: Scaling block-
chain via full sharding. In Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security, 931–948.

[9] M. El-Hindi, C. Binnig, A. Arasu, D. Kossmann, and R. Ramamurthy. 2019.
BlockchainDB: A shared database on blockchains. Proceedings of the VLDB
Endowment, 12, 11, 1597–1609.

[10] A. Chepurnoy, C. Papamanthou, and Y. Zhang. 2018. EDRAX: A cryptocur-
rency with stateless transaction validation. Cryptology ePrint Archive, Report
2018/968. (2018).

[11] D. Boneh, B. Bünz, and B. Fisch. 2019. Batching techniques for accumulators
with applications to iops and stateless blockchains. In Annual International
Cryptology Conference, 561–586.

[12] A. Tomescu, I. Abraham, V. Buterin, J. Drake, D. Feist, and D. Khovratovich.
2020. Aggregatable subvector commitments for stateless cryptocurrencies.
Cryptology ePrint Archive, Report 2020/527. (2020).

[13] E. Androulaki et al. 2018. Hyperledger Fabric: A distributed operating sys-
tem for permissioned blockchains. In Proceedings of the Thirteenth EuroSys
Conference.

[14] C. Fan, S. Ghaemi, H. Khazaei, and P. Musilek. 2020. Performance evaluation
of blockchain systems: a systematic survey. IEEE Access, 8, 126927–126950.

[15] R. C. Merkle. 1989. A certi�ed digital signature. In Conference on the Theory
and Application of Cryptology, 218–238.

[16] B. Parno, J. Howell, C. Gentry, and M. Raykova. 2013. Pinocchio: Nearly practi-
cal veri�able computation. In 2013 IEEE Symposium on Security and Privacy,
238–252.

[17] E. Ben-Sasson, A. Chiesa, E. Tromer, andM. Virza. 2014. Succinct non-interactive
zero knowledge for a von Neumann architecture. In 23rd USENIX Security Sym-
posium, 781–796.

[18] C. Costello, C. Fournet, J. Howell, M. Kohlweiss, B. Kreuter, M. Naehrig, B.
Parno, and S. Zahur. 2015. Geppetto: Versatile veri�able computation. In 2015
IEEE Symposium on Security and Privacy, 253–270.

[19] J.-E. Ekberg, K. Kostiainen, and N. Asokan. 2013. Trusted execution environ-
ments on mobile devices. In Proceedings of the 2013 ACM SIGSAC Conference
on Computer and Communications Security, 1497–1498.

[20] V. Costan and S. Devadas. 2016. Intel SGX explained. Cryptology ePrint Archive,
Report 2016/086. (2016).

[21] O. P. Project. 2020. The oasis blockchain platform. https://oasisprotocol.org/
papers.

[22] J. Teutsch and C. Reitwießner. 2019. A scalable veri�cation solution for block-
chains. arXiv.

[23] F. Saleh. 2020. Blockchainwithout waste: Proof-of-stake. The Review of Financial
Studies, 34, 3, 1156–1190.

[24] M. Castro and B. Liskov. 2002. Practical byzantine fault tolerance and proactive
recovery. ACM Transactions on Computer Systems, 20, 4, 398–461.

[25] R. G. Brown, J. Carlyle, I. Grigg, and M. Hearn. 2016. Corda: An introduction.
https://docs.corda.net/en/pdf/corda-introductory-whitepaper.pdf.

[26] J. P. M. Chase. [n. d.] Quorum: A permissioned implementation of ethereum.
https://github.com/jpmorganchase/quorum.

[27] A. Sharma, F. M. Schuhknecht, D. Agrawal, and J. Dittrich. 2019. Blurring the
lines between blockchains and database systems: the case of hyperledger fabric.
In Proceedings of the 2019 International Conference on Management of Data,
105–122.

[28] H. Dang, T. T. A. Dinh, D. Loghin, E.-C. Chang, Q. Lin, and B. C. Ooi. 2019.
Towards scaling blockchain systems via sharding. In Proceedings of the 2019
International Conference on Management of Data, 123–140.

[29] S. Nathan, C. Govindarajan, A. Saraf, M. Sethi, and P. Jayachandran. 2019. Block-
chain meets database: Design and implementation of a blockchain relational
database. Proceedings of the VLDB Endowment, 12, 11, 1539–1552.

[30] P. Ruan, D. Loghin, Q.-T. Ta, M. Zhang, G. Chen, and B. C. Ooi. 2020. A transac-
tional perspective on execute-order-validate blockchains. In Proceedings of the
2020 ACM SIGMOD International Conference on Management of Data, 543–557.

[31] C. Goren�o, S. Lee, L. Golab, and S. Keshav. 2019. FastFabric: Scaling hyper-
ledger fabric to 20,000 transactions per second. In 2019 IEEE International
Conference on Blockchain and Cryptocurrency, 455–463.

[32] C. Goren�o, L. Golab, and S. Keshav. 2020. XOX Fabric: A hybrid approach
to blockchain transaction execution. In 2020 IEEE International Conference on
Blockchain and Cryptocurrency, 1–9.

[33] M. Al-Bassam, A. Sonnino, S. Bano, D. Hrycyszyn, and G. Danezis. 2017.
Chainspace: A sharded smart contracts platform. arXiv.

[34] S. Gupta, S. Rahnama, J. Hellings, and M. Sadoghi. 2020. ResilientDB: Global
scale resilient blockchain fabric. Proceedings of the VLDB Endowment, 13, 6,
868–883.

[35] S. Gorbunov, L. Reyzin, H. Wee, and Z. Zhang. 2020. Pointproofs: Aggregating
proofs for multiple vector commitments. Cryptology ePrint Archive, Report
2020/419. (2020).

[36] H. Berenson, P. Bernstein, J. Gray, J. Melton, E. O’Neil, and P. O’Neil. 1995. A
critique of ANSI SQL isolation levels. In Proceedings of the 1995 ACM SIGMOD
International Conference on Management of Data, 1–10.

[37] A. Adya, B. Liskov, and P. O’Neil. 2000. Generalized isolation level de�nitions.
In Proceedings of 16th International Conference on Data Engineering, 67–78.

[38] M. J. Cahill, U. Röhm, and A. D. Fekete. 2009. Serializable isolation for snapshot
databases. ACM Transactions on Database Systems, 20–42.

[39] C. Xu, C. Zhang, J. Xu, and J. Pei. 2021. SlimChain: Scaling blockchain trans-
actions through o�-chain storage and parallel processing (technical report).
https://www.comp.hkbu.edu.hk/~db/slimchain.pdf.

2326

https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf
https://ethereum.github.io/yellowpaper/paper.pdf
https://oasisprotocol.org/papers
https://oasisprotocol.org/papers
https://docs.corda.net/en/pdf/corda-introductory-whitepaper.pdf
https://github.com/jpmorganchase/quorum
https://www.comp.hkbu.edu.hk/~db/slimchain.pdf

