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Abstract

Deformable surfaces have many applications in surface reconstruction, tracking and seg-
mentation of range or volumetric data. Many existing deformable surfaces connect control
points in a predefined and inflexible way. This means that the surface topology is fixed
in advance, and also imposes severe limitations on how a surface can be described. For
example a rectangular grid of control points cannot be evenly distributed over a sphere,
and singularities occur at the poles.

In this paper we introduce a new (G1 continuous) deformable surface. In contrast to
other methods this method can represent a surface of arbitrary topology, and do so in
an efficient way. The method is based on a generalization of biquadratic B-splines, and
has a comparable computational cost to methods based on traditional tensor product
B-splines.

1 Introduction

Deformable surfaces are a useful tool in surface reconstruction. They provide a
convenient way to reconstruct continuous surfaces from 3-dimensional data ob-
tained from range or volumetric images.

In this paper we argue that the underlying representation of a deformable
surface should ideally have several properties. They are as follows:

(i) The ability to efficiently represent curved surfaces.

(ii) The ability to represent a single open or closed surface of any surface topology
(Euler characteristic), e.g. sphere, torus, sphere with two handles, etc.

(iii) The ability to adaptively distribute control points according to surface detail.

(iv) The ability to insert a C° discontinuity (step edge) or Cl discontinuity (roof
edge) along any curve embedded in the surface.

(v) Low computational complexity.

(vi) Cut and Paste operations, e.g. can two incomplete surfaces be fused easily?

In addition we will obviously need algorithms to make effective use of these prop-
erties. Sometimes the two issues are connected: some algorithms only work when
particular representations are available.

We believe that all existing methods fail on one or more of the above. The
objective of this paper is to introduce a new deformable surface. We exploit a
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sophisticated new representation developed by Loop and De Rose [2, 3] for use
in computer graphics. Our contribution is to add the dynamics that make it a
deformable surface, and suggest a seeding algorithm.

Deformable surfaces with fixed mesh topology are similar to elastic membranes
or flexible plates. They may deform but cannot restructure their topology. The
surface in this paper allows for considerable scope to build algorithms in which
mesh topology changes. Such a surface has properties analogous to a liquid surface
film in addition to the usual elastic and stiffness properties of deformable surfaces.
For this reason we call the surface 'slime'. In this paper we demonstrate a basic
surface reconstruction algorithm, including a seeding algorithm based on voxel
occupancy. Further work remains, but we believe that 'slime' has the potential to
satisfy all the above criteria.

1.1 Existing work

It is surprising that one of the most widely used representations of 3-dimensional
shape on a computer fails immediately on (i). In many practical applications in
CAD and graphics the representation used is a polygonal (usually triangular) mesh.
It has the advantage of being easy to render and export to numerically controlled
machines. It can also represent an arbitrary topology, so it satisfies points (ii)-
(iv) and (vi). However in order to represent curved surfaces the polygons must
be small and therefore the number of polygons can be very large.

Splines or finite elements typically represent curvature much more efficiently.
Two representations in widespread use for geometric modelling, computer aided
geometric design and deformable surfaces are tensor product finite elements [9]
and tensor product B-splines. B-splines have been widely used in vision as active
contour models or snakes. They have several very useful characteristics, as well
as being fast and robust. Tensor product approaches are always based on an
underlying rectangular grid of finite element nodes or spline control points. The
(parametric) surface is usually a mapping from a rectangular domain to r(u, v).

An inevitable consequence of this is the limited number of topologies that can
be modelled. The programmer must choose the topology a priori and is restricted
thereafter to only that topology. The user may be forced to distribute control
points unevenly over the surface, for example the lines of longitude on a sphere all
converge at the poles. It is clear that rectangular grid (connection) topologies fail
on (ii), (iii), (iv), (vi). Despite this, their simplicity, combined with the large
number of approximately cylindrical objects in our environment, ensures that they
will always be useful. Rectangular grids are frequently used for spherical objects,
with a disc cut out from each pole.

In a CAD (Computer Aided Design) environment it is common to synthesize
complicated objects from a set of tensor product spline patches. The industry
standard parametric surface is NURBS (Non-Uniform Rational B-Splines). This
includes tensor-product B-splines and the conic sections as a subset. In CAD the
topology is supplied by the user during the design process. In vision applications
we would prefer not to supply topological information by hand. It is also preferable
to avoid the algorithmic complexity of maintaining all the joins, and difficult to
ensure that the joins are smooth.
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Some authors have attempted to overcome these limitations by moving to a tri-
angulated domain. A triangular tesselation of the domain immediately solves (iii)
and (iv). It does not automatically solve (ii). In fact, so long as one maintains G1

continuity one cannot model a surface of arbitrary topology without singularities.
For example, when mapping a square domain to a sphere the partial derivatives
are singular at the poles.

There is already a considerable Finite Element literature based on triangu-
lar elements [8]. It should be noted that there is an obscure but deep-rooted
difficulty1 in maintaining G1 continuity for triangular elements [7], which leads
to the distinction between conformal and non-conformal finite elements. Two
attempts have been made to build deformable surfaces based on G1 continuous
triangular elements. Mclnerney and Terzopolous [11] solve the problem by using
conformal finite elements with all partial derivatives up to 2nd order as nodal
variables. We have implemented this scheme and find that it is very slow. Also,
the mass matrix is non-diagonal and has negative eigenvalues. This means that it
it has convergence problems. An alternative solution [10] is to use non-conformal
finite elements which have their own drawbacks. Both these methods have the
inevitable topology problems associated with maintaining G1 continuity.

One final method that does comprehensively solve all the topological difficulties
is Szelski's oriented particles [4]. The disadvantage is that it does not contain a
surface representation. It contains only positions and normals at a finite set of
points in space.

1.2 G
1 Continuity

We wish to model free form surfaces made up of small patches or elements which
join smoothly. In practice many deformable surfaces enforce G1 continuity across
element boundaries, whereas we argue that it is sufficient to enforce the weaker
requirement of G1 continuity. For a detailed discussion of G1 continuity see Farin
[5] and references therein. In this section we briefly explain what we mean by G1

continuity.

Consider a curve given in parametric form {r(u)\ueD}. It is a mapping from a
domain D = [0,1] to a 3-dimensional curve. The tangent vector t is given by df/du.
When a composite curve is formed from two pieces, G1 continuity is enforced by
requiring that the tangent vector be continuous across the join. However, for
a given curve, the magnitude of the tangent vector is not invariant under re-
parameterization, whereas its direction i is. G1 continuity is a requirement that
i varies continuously across the join. In the case of surfaces, G1 continuity is a
requirement that the tangent plane varies continuously across the join.

To summarize, G1 continuity relates to the parametric continuity of a curve
or surface, whereas G1 continuity relates to geometric continuity. We argue that
only geometric properties are of importance in computer vision.

1 This also causes problems for triangle based splines. We recommend careful consideration of
this difficulty to anyone using triangles! In our method exactly 4 patches meet at each internal
vertex, avoiding the problem.
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2 S-Patches

In this section we present a very brief introduction to Bezier curves, Bezier surfaces
and a generalization of Bezier surfaces called S-patches. The reader is referred to
standard texts [1] for more details on Bezier curves and surfaces, and to Loop and
De Rose [2] for more details on S-patches.

When discussing Bezier curves it is useful to replace the usual single parameter
w with two parameters u\ and u2 and a constraint that u\ + u2 = 1. This is a
notational convenience and makes more explicit the link between Bezier curves and
barycentric variables. A depth d Bezier curve C = {r(u\, «2)|wif[0,1], u\+u2 = 1}
is denned in terms of d + 1 control points fj as

riBf(uuU2), ui + u2-l (1)
i=o

(We use the term depth to avoid confusion with other quantities.) The order d
polynomials Bf (111,112) are called the Bernstein-Bezier polynomials and given by

S ( )
 ' ' " '

 ( 2 )

It is easy to verify that the first derivative at w0 = 0 depends only on the first two
control points. Bezier curves also have the useful property that the tangent vector
at Uo — 0 points in the direction ri — fb.

A depth d tensor product Bezier surface S = {f(ui,U2, vi, v2)\(ui, vi)eD, u\ +
u2 = 1, vi + v2 = 1} may be constructed as

d

f(uuu2,vuv2) = J2
ir
ii

B
f(

u
u

u
2)Bf(v1,v2) (3)

i,3=0

Here the mapping is from a (unit) square domain D in («i, vi) space to a 4-cornered
surface patch. Each edge is a Bezier curve of depth d.

The Bezier curve maps a one dimensional parameter space (represented by two
variables) to 3 scalars, i.e. position. The Bezier curve admits an elegant gener-
alization called a B-form that maps a {(k + l)-variate] fc-dimensional parameter
space onto any number of scalars. The vertices of the domain are called a Bezier
simplex, and must be an affinely independent set of points i.e. 2 points in ID, a
triangle or 3 points in 2D, a tetrahedron or 4 points in 3D, and so on.

Firstly we must define multivariate Bernstein-Bezier polynomials. For these we
will need a notation for multi-indices i — {t'1,1'2, ...»t+i}. The symbol ij denotes
a multi-index whose components are all zero except for the j component which is
1. It is useful to define a modulus of a multi-index as |i| = ii + i2 + ... + ik+i-
The k-variate depth d Bernstein-Bezier polynomials are a simple generalization of
equation (2).

Bf(Ul,u2,...uk+1) = fl!|-a,^ |-t+i,"i1."2a,---"lyi. \A = d (4)
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When k = 2 we get the familiar Bezier triangle, which maps 3 barycentric variables
on a 3-sided domain in 2 dimensions to a surface.

Our interest is parametric surfaces, i.e. mappings from a 2-dimensional domain
to a 3-vector position. Above we have presented mappings for 3-sided and 4-sided
domains. How do you generalize to a mapping from an n-sided domain? This
is a more difficult problem and an elegant solution was recently developed called
the S-patch [2]. It both unifies and generalizes the Bezier triangle and the tensor
product 4-sided Bezier patch.

The trick is to map the coordinates of a domain point p = (u,v) in an n-sided
domain D onto a Bezier simplex. Typically the n-sided domain is chosen as a
regular n-gon with n vertices p,-, i = l..n. Define the fractional areas a,(p) as the
area of a triangle enclosed by points p, p,-, and p , + 1 divided by the total area of
D. Now form n new variables ir,(p) by

x ...ai_2(p)ai+i(p)...an(p) (5)

Then form normalized variables /,(p)

The variables /,(p) have very special properties. They are invariant under affine
transformations. By construction they partition unity, i.e. they are barycentric
variables. They equal 1 at the vertex i and are zero at all other vertices. They are
non-zero only on edges adjacent to vertex i. In the case of a triangular domain
the li reduce to exactly the usual area-based barycentric variables.

The S-patch is now simply defined in terms of the variables /,(p). It is a
mapping S — {r(u, v)\(u, v)eDn} where Dn is a n-sided domain polygon and

/ / ! , /2 , . . . /n) (7)
\i\=d

S-patches, like Bezier triangles, have several very useful properties. They satisfy
the de Casteljau recurrence relation [5], which can be used to compute position,
and also perform depth elevation [i.e. generating a new set of control points of
higher depth that gives the identical surface]. The boundary is a Bezier curve.
The tangent plane on the boundary depends only on boundary control points and
the adjacent layer of control points. The surface is contained in the convex hull
of the control points. The vertex control points are interpolated. The surface is
affine invariant.

3 Generalized Biquadratic B-splines

Bezier curves or surfaces are useful in their own right, but in vision problems
B-splines are often more convenient. A major advantage of the B-spline is that
by construction it joins together a number of Bezier curves or surfaces with C

n

continuity.
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Loop and De Rose [3] used the S-patch to build a generalization of the bi-
quadratic B-spline surface that can describe arbitrary topology and is G

1 con-
tinuous everywhere. Due to space limitations it is not possible to include a full
description of their surface, and the reader is referred to their papers. However we
will give a short overview, starting with a construction of an ordinary biquadratic
B-spline surface in terms of 4-sided tensor product Bezier surface patches. For
this we need a recipe to obtain the Bezier control points for the component Bezier
patches from the B-spline control points.

The B-spline control points are connected as a rectangular mesh. Each face is
4-sided, and each vertex has 4 edges (except at boundaries). Each B-spline control
point corresponds to a 4-sided tensor product Bezier patch. There are 9 Bezier
control points for the patch, 4 are constructed as the midpoints of edges, 4 as
centroids of faces, and the 9th is identical to the B-spline control point. It can be
shown [5] that the tangent plane is continuous at all inter-patch boundary points
in this construction. In other words the bi-quadratic tensor product B-spline is
C

1 continuous.
Loop and De Rose [3] show how to generalize the tensor product quadratic B-

spline. In their scheme the control points form a mesh in which each vertex may
have any number of edges coming from it, but all faces must have 4 sides. An n
edged vertex (spline control point) corresponds to an n-sided S-patch. They give
a recipe to compute all the n-sided S-patch control points ?•? from the generalized
spline control points.

Firstly we make up a Sabin net for each patch. This consists of 2n + 1 points,
the central control point v = q~j, the centroids of each adjacent face //,/ = l..n,
and the midpoints of each adjacent edge p},/ = l..n. The Sabin net for a 4-gon
is identical to the 4 sided Bezier patch control points. The S-patch control points
are depth 5, and are given as linear combinations of the Sabin net control points
in [3]. This paper also contains a proof that the overall surface is G

1 continuous.
The control mesh has another two less obvious requirements. The edges around

each node must be sorted into a cyclic order in order to be passed to the stiffness
or rendering routines. In addition some rendering software requires information on
the sign of the normal for each surface patch. In practice this is achieved by sorting
the neighbour list with respect to an outward normal. This last requirement is
impossible for non-orientable surfaces, e.g. a Moebius strip.

4 Deformable surfaces

The generalized biquadratic B-spline is a useful G
1 surface representation. The

next step is to construct a deformable surface. The idea of deformable surfaces is
that they should find a compromise between smoothness and a fit to data. More
precisely they should minimize a cost E which is a weighted sum of the smoothness
cost E, and the data cost Ed, i.e. minimize

E = E, + \Ed (8)

The data cost should be the distance squared from a data point to the closest point
on the surface. However to simplify the computation it is at present computed as
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the distance squared from a data point to the nearest control point. For coarse
grids this can lead to significant bias. A frequently used smoothness cost is the
thin plate

wHgfH&ri£r}
The smoothness cost may be reduced to a matrix equation in the B-spline control
points qj and the stiffness matrix Kjji, i.e.

Es=q
T
Kq (10)

A local minimum of (8) is equivalent to solving the matrix equation Kq = F

where F = —XdEd/dq. Because q is typically a very large vector, and K is sparse
it is often useful to find the minimum by introducing a time-dependence qj (t) and
treating the problem as a dynamical problem:

jq + Kq = F (11)

For convenience the 'drag' matrix j is chosen to be diagonal, and q = dq/dt. After
some time, if q —• 0 then we have found a local minimum of E. This formulation
also has the advantage that it can be used for tracking [6].

We have computed this stiffness matrix for 3- and 4-sided patches and compu-
tation for the 5- and 6-sided patches is in progress. However in the meantime, to
demonstrate the operation of the deformable surface, we have been succesfully us-
ing a much simpler stiffness matrix. It is cheaper to compute, but slightly inferior
(based on qualitative observations) to the thin plate stiffness. In our experience it
has the merit of being very numerically stable.

The alternative stiffness force which replaces Kq is given as follows. Compute
the midpoint of all n neighbours of a control point as rh. The force on the control
point is then proportional to rh — qj. A force in the opposite direction, multiplied
by 1/n, is applied to each of the neighbours. This force is heuristic, but it should
be noted that for the case of a quadratic Bezier curve it is identical to the thin
rod force. In practice this 'stiffness' is very fast, simple and robust.

To solve the dynamical equations of motion of the system we use a quality-
controlled Euler method.

5 Voxel Seeding

The deformable surface approach only finds local mimima. Most deformable sur-
face algorithms include a heuristic mechanism for seeding the surface with an
initial shape that is likely to converge to the desired global minimum. For ex-
ample the data may be surrounded by a spherical 'balloon' that 'deflates' until
it encounters the data. It should be noted that at this point it is almost always
the case that the programmer has built in a predefined topology. The surface
topology and connection topology have been fixed by hand, perhaps incorporating
prior knowledge.

The representation described in this paper offers much potential to develop
algorithms in which no predefined topology is needed. In this section we describe
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a seeding method that works for complete surface data sets from closed (solid)
objects. [ By complete we mean no large unsampled areas of surface. ]

To be a valid surface the seed must consist of a control mesh that is 4-faced
everywhere, and this invites comparison with the surface of a set of voxels. Con-
sider a set of cubes on a regular lattice. Suppose that each cube is either solid or
empty. A surface mesh that encloses any set of solid cubes, with a node at each
vertex, will consist of 4 sided faces. Such a control mesh is a valid seed.

In figure 1 we show an example of this process. A set of voxels was loaded by
hand to generate a chair shape. The seat is a set of 5 x 5 occupied voxels, with
legs of length 4 voxels. The voxel set has been converted to a surface. In order to
render the surface we reduce it to a triangular mesh, as this is acceptable to most
rendering software. This means that 4-gons have been split into 2 triangles. It is
convenient to split 5-gons into 5 triangles, exploiting 5-fold rotational symmetry.
The left hand part of figure 1 shows the coarsest rendering of each S-patch, and
next to it we refine each triangle into 9 subtriangles. This shows the smooth
curvature much better.

We have shown how to seed the surface from voxel occupancy. But where do
we obtain the voxel occupancy from? A simple solution is to divide a rectangular
volume enclosing the data into a regular grid of cubic voxels. Each voxel is marked
as 1 if it contains a data point or 0 if not. A single 26 neighbor dilation followed
by an 6 neighbor erosion usually fills any gaps.

In this paper we assume that the data represents a finite set of solid objects.
We therefore fill the interior of the voxel set. Clearly we require a closed layer of
voxels surrounding our object in order that interior and exterior are well defined.
The surface of the voxel set is then used as a seed, which completes our description
of the seeding process,

In the next example we fit a scattered data set of 6000 (x,y,z) coordinates
taken from a range scan of a foot. The program makes no assumptions about the
ordering of the data. In figure 2 we show the initial voxel seeding, and next to
it the final result. The voxel size was chosen to be l/3rd of the smallest edge of
the smallest rectangular box fully enclosing the data. The surface converged in
about 20 iterations. This took a few seconds on a SUN Sparcstation 2. At present
the slowest part of the algorithm is the geometric sorting necessary to establish
the nearest control point to each data point. Fast standard algorithms exist to
solve this problem, but we have not yet implemented one. For volumetric data
geometric sorting is not necessary.

Although the surface topology of the foot is the same as the sphere, this ex-
ample demonstrates a non-trivial connection topology of the control mesh. The
control mesh is well adapted to the foot shape, as can be seen by the even distri-
bution of the triangles.

6 Conclusion and Future Work

We have demonstrated the feasibility of a new deformable surface called slime. It
has the potential to satisfy all the criteria specified in the introduction. How do we
know that the restricted topology [4-edged faces] of slime is capable of satisfying
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(ii)-(iv)? The answer is simple. Clearly a triangular tesselation satisfies (ii)-
(iv). However every triangular tesselation can be converted to a slime mesh by
the scheme illustrated in figure 3. It therefore follows that a slime mesh always
exists to satisfy (ii)-(iv). It should be noted that we still favour a rectangular
grid where possible, and two adjacent triangles meshed as shown in figure 3 can
be reduced to a 'nicer' mesh by removing two nodes and reconnecting the internal
edges as shown in figure 4.

To realize its potential more work should be done. Work is in progress on
the thin plate stiffness matrix for the 5-gon and 6-gon. This is not a trivial
computation, but has the advantage that it may be done off-line. Once computed
the two stiffness matrices will be available to other workers as 11 x 11 and 13 x 13
matrices of floating point numbers.

Insertion of crease edges should be addressed as well as open surfaces. The
data cost should be enhanced to something that corresponds more closely to the
perpindicular distance to the surface, but is still reasonably fast. In general terms
there is much scope for building topology control algorithms for slime.
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Figure 1: A chair created from a set of voxels

Figure 2: A foot: The voxel based seed, and the final result

Figure 3: A triangle divided into 4-gons

Figure 4: How to convert 2 triangles to a rectangular mesh




