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ABSTRACT

The effect of turbulence on the collision rate between droplets in clouds is investigated. Because of their
inertia, water droplets can be shot out of curved streamlines of the turbulent airflow. The contribution of
such a “sling effect” in the collision rate of the same-size water droplets is described and evaluated. It is
shown that already for turbulence with the dissipation rate 103 cm2 s�3, the sling effect gives a contribution
to the collision rate of 15-�m droplets comparable to that due to the local velocity gradient. That may
explain why the formulas based on the local velocity gradient consistently underestimate the turbulent
collision rate, even with the account of preferential concentration.

1. Introduction

There is growing evidence that cloud turbulence in-
creases the collision rate between water droplets, thus
enhancing the creation and growth of raindrops. How-
ever, both qualitative understanding and quantitative
treatment are far from satisfactory (see, e.g., Jonas
1996; Vaillancourt and Yau 2000; Shaw 2003; and ref-
erences therein). In particular, the role of turbulence in
inducing collisions of equal-size droplets is very impor-
tant for the evolution of narrow droplet distribution
that may be produced by condensation in cloud cores.

The collision rate N(a, a�) between the droplets or
particles with the radii a, a� is the product of mean
concentrations n(a)n(a�) times half the area of the col-
lision sphere 2�(a � a�)2 times the modulus of the rela-
tive radial velocity of droplets before the contact ��
and times the radial distribution function P(a � a�),
which accounts for nonuniformities of the concentra-
tion field [i.e., mutual correlations between droplets
(Sundaram and Collins 1997; Wang et al. 1998, 2005)]:

N�a, a�	 
 2��a � a�	2n�a	n�a�	��P�a � a�	. �1	

Since the aerosols vary in sizes from submicron to thou-
sands of microns and cloud conditions vary widely
(Grabowski and Vaillancourt 1999), collisions can be
induced by different physical mechanisms. The relative
velocity, ��, can be due to Brownian motion, gravita-
tional settling, and airflow gradients while the radial
distribution P is influenced by hydrodynamic interac-
tion between approaching droplets and preferential
concentration due to the airflow.

Here we focus on the contributions of the airflow to
the collision rate. Specifically, we consider collisions of
equal-size droplets that fall with the same velocity in a
still air.1 We consider droplet sizes exceeding a few
microns and neglect Brownian motion. For such drop-
lets, the airflow is the sole source of relative velocity ��
and it also influences P(2a) because of droplet inertia
(called the effect of preferential concentration).

In spite of these simplifying assumptions, the prob-
lem remains very complicated since the collision rate
depends on four dimensionless numbers. The first one
is the ratio �/a, where � is the viscous scale of turbu-
lence. The other three parameters characterize air tur-
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1 There is a common misconception that the gravitational col-
lision rate is zero for equal-size droplets. This is not so since
hydrodynamic interaction changes settling velocities (e.g., a pair
of close droplets falls faster). For a dilute set of droplets, such
effects can be neglected though.
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bulence, droplet inertia, and gravity—Reynolds,
Stokes, and Froude numbers, respectively:

Re 
 �L��	4�3, St 
 ����2 
 	�, F 
 	��g�. �2	

Here L is the integral length scale (on the order of the
size of the largest turbulent eddies, i.e., hundreds of
meters or more), � is the air viscosity, g is the accelera-
tion of gravity,  is the rms air-velocity gradient, and
� 
 (2/9)(�0/�)(a2/�) is called the response (Stokes) time
with �, �0 being the air and water density, respectively.

The simplest limit to describe is that of small droplets
when St K 1 and F k 1 (for the turbulence dissipation
rate � 
 �2 � 102 � 103 cm2 s�3, such a limit takes
place for a 
 5 �m). In this case, droplets move with the
airflow. Therefore, they are distributed uniformly so
that P(2a) 
 1 while their relative velocity is deter-
mined locally by the air velocity, which is spatially
smooth at such scales (since a K �) so that (Saffman
and Turner 1956)

�� � 	a. �3	

Such a contribution to the collision rate is noticeable
only for very energetic turbulence (� � 2 � 103 cm2 s�3).
However, it has been realized relatively recently that
droplet inertia makes both P and �� grow very fast with
St in some interval of sizes. This can be attributed to the
following two effects.

First, inertial particles cluster in random flows, which
increases P. This effect of preferential concentration
has been identified long ago and is still the subject of
intensive study (see Maxey 1987; Squires and Eaton
1991; Wang and Maxey 1993; Sundaram and Collins
1997; Reade and Collins 2000; Kostinski and Shaw
2001; Jaczewski and Malinowski 2005; McFarquhar
2004; Franklin et al. 2005; Grits et al. 2006; and the
references therein). Generally, the dimensionless quan-
tity P(2a) depends in a complicated way on all four
dimensionless parameters so the proper quantification
of this effect and of its role in the collision rate en-
hancement remains to be done. However, for distances
l much less than �, it has been inferred from the data
(Sundaram and Collins 1997) that P(l) has a power-law
dependence and has been argued theoretically (Bal-
kovsky et al. 2001) that the dependence must be of the
form P(2a) � (�/a)�. The dimensionless quantity � de-
pends on the three dimensionless parameters listed in
(2). The behavior of � is well understood for small St
where the fast growth �� b(Re, F)St2 was predicted by
Balkovsky et al. (2001), Falkovich et al. (2002), and
confirmed by Falkovich and Pumir (2004), Chun and
Koch (2005), and Chun et al. (2005) for moderate Re.
Gravity is expected to reduce preferential concentra-
tion by diminishing the value of � (Falkovich et al.

2002), an effect also confirmed numerically by Falko-
vich and Pumir (2004). In this context, our goal in this
work is to establish � for larger St and Re than before
and to find out at which droplet sizes the fast growth
�(St) saturates.

Second, it has been predicted that already at small St
there is a contribution to �� that does not depend lin-
early on the distance between droplets and is not de-
termined by a local airflow gradient. Such contribution
is expected to grow with a much faster than linearly.
Indeed, the Stokes number is the mean velocity gradi-
ent times the droplet response time. Even in a turbulent
flow with a small St, there is a finite probability of
velocity gradients comparable with 1/�. A droplet that
encounters such a gradient can acquire a velocity that
differs significantly from the air velocity and that of
other droplets. Figure 1 illustrates this (so-called sling)
effect: the right droplet passed through an intense vor-
tex and had been thrown away as if by a sling. As a
result, the relative velocity of the droplets at the point
of collision may be determined not by the airflow gra-
dient at this point [as in (3)] but rather by a distant
vortex. As was first noticed by Falkovich et al. (2002),
such events give an extra contribution to the collision
rate not captured by the Saffman–Turner formula
(even corrected for geometrical factors, inertia, and
gravity by Wang et al. 1998, 2005, 2006; Dodin and
Elperin 2002). The growth of this contribution with the
Stokes number is expected to be of an activation form

FIG. 1. Sketch of the sling effect. Dotted lines show the trajec-
tories of the droplets while broken lines show the streamlines of
the vortex in the airflow.
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�� � exp(�A/Sta) [i.e., extremely fast (Falkovich et al.
2002; Wilkinson and Mehlig 2005; Derevyanko et al.
2006)]. Here we show that such activation dependence
indeed takes place in realistic flows and that a 
 1. Let
us give here some numbers adopted from the calcula-
tions to be described below. Consider turbulence with
 
 80 s�1 (� � 960 cm2 s�3). For droplets with a 
 10
�m, St
 0.08 and sling effects are negligible; for a
 15
�m, St 
 0.2 and the frequency of sling effects is �/
1000 while their contribution into the collision rate is
about 20%; for a 
 20 �m, St 
 0.35 and the frequency
of sling effects is �/50 while their contribution into the
collision rate is about 35% (the numbers correspond to
Figs. 3, 5, 6 below). An independent confirmation that
the Saffman–Turner formula (which disregards sling
events) consistently underestimates the collision rate
even at relatively small Stokes numbers has been ob-
tained recently by direct numerical simulations (Fran-
klin et al. 2005).

The main focus of this work is thus on the collision
rate of the same-size droplets at small and moderate
Stokes numbers. It corresponds, in particular, to the
problem of rain initiation in warm clouds where � 

10–103 cm2 s�3 and the most interesting interval of sizes
a 
 5–25 �m corresponds to the so-called condensa-
tion–collision bottleneck (growth of smaller droplets is
typically due to condensation while for larger droplets
gravitational collisions dominate already for a� � a � 1
�m). Typical parameters of such clouds can be found in
Grabowski and Vaillancourt (1999). While general ana-
lytic representation of the collision rate as a function of
all four dimensionless variables does not seem to be
feasible, the formulas P(2a) � (�/a)� and �� �
exp(�A/St) do seem to capture the main dependencies
in this region of parameters. Our specific focus is thus
on two dimensionless quantities, � and A, which deter-
mine the fast growth of the collision rate with the
Stokes number in this interval of droplet sizes. We also
wish to quantify the role of gravity, which is expected to
weaken the interaction between droplets and airflow
and to suppress the effects studied here.

Note in passing that a generalization for the differ-
ent-size droplets value, P(a, a�), has been suggested in
Falkovich et al. (2002), Bec et al. (2005), and Chun et al.
(2005), who all conclude that the power law saturates
for small separations. For different-size droplets, inertia
also leads to an extra contribution into the relative ve-
locity [considered at small St by Saffman and Turner
(1956) and not treated here].

2. Modeling approach and numerical methods

The most straightforward way to model the collision
rate is with the discrete finite-size droplets embedded

into a properly modeled flow (see, e.g., Franklin et al.
2005; Wang et al. 2005). Resolution requirements re-
strict the possibility of doing direct numerical simula-
tion (DNS) to limited values of the Reynolds numbers.
Also, because the concentration of droplets is quite
low, obtaining reliable collision rates requires very long
integration times. Moreover, computations with dis-
crete droplets do not allow one to distinguish between
local contributions to collisions (which must be de-
scribed by the Saffman–Turner formula with a proper
preferential concentration correction) and a sling effect
contribution. These constraints impede progress to-
ward a proper parameterization of the collision rate.

a. Formulation of the problem

Here we propose another complementary way of
modeling based on the continuous description of the
flow of droplets. The equation for the droplet velocity v,

dv�dt 
 �u � v	�� � g, �4	

can be considered to define everywhere in space the
field v(r) from the known airflow field u(r).

In this problem, the airflow is incompressible and
smooth; that is, all components of the matrix of the air
velocity derivatives, sij 
 �ui /�rj, are finite and �sii 
 0.
On the contrary, the flow of droplets is generally com-
pressible and contains regions of infinite gradients
(caustics produced by the sling effect). In the continu-
ous description we are able to see clearly the sling
events, which appear in the equations of motion for
droplets as the crossing of trajectories (so the velocity
field becomes multivalued) or as finite-time singulari-
ties of the continuous equations. Differentiating (4),
one gets the equation for the matrix of droplet-flow
gradients, �ij 
 ��i /�rj, in the comoving (Lagrangian)
reference frame:

�̇ij � �ik�kj � �ij �� 
 sij ��. �5	

Nonlinearity (which corresponds to inertia) in the
equation for �̂ leads to the possibility of divergence in
a finite time of �, where some component of �ij turns
into �� in a finite time according to � � (t � t0)�1

(Falkovich et al. 2002).
Because of spatial and temporal nonlocality, the ana-

lytical description of the sling effect contribution into
the collision rate is difficult and has been done only for
the simplest models. Assuming the airflow gradients
are long correlated (i.e., the correlation time of s ex-
ceeding 1/s) and solving (5) for constant s, one con-
cludes that the probability of having � � �1/� is equal
to the probability of having s � �1/�. For Gaussian
statistics of s, P(s) � exp[�(s/2)2], the probability of
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explosion behaves as exp(�1/St2) (Falkovich et al.
2002). In the opposite limit of a short-correlated s, the
probability of such events is found to be exp(�A/St)
(Wilkinson and Mehlig 2003, 2005; Derevyanko et al.
2006). Since real turbulent flow is neither short nor long
correlated, our first task is to find how exactly the prob-
ability of explosions and their contribution to the col-
lision rate grows with St in real flows. We show below
that it behaves as exp[�A(Re, F)/St]. Particularly im-
portant is understanding the dependence of A on the
Reynolds number, which varies by many orders of mag-
nitude in atmospheric flows. In this paper, we perform
direct numerical simulations of the airflow turbulence
at Reynolds numbers Re that were never reached be-
fore in collision rate calculations. We pay the price by
not performing kinetic droplet simulations (i.e., follow-
ing separate droplets), using instead a continuous de-
scription based on (4) and (5) and the equation for
droplet concentration in the Lagrangian reference
frame,

dn�dt 
 �n�ii�t	. �6	

The continuous description is meaningful only at the
scales exceeding droplet sizes. The properties of the
coarse-grained distribution at a given scale r can be
estimated by using the method developed by Balkovsky
et al. (2001), Falkovich et al. (2002), and implemented
numerically by Falkovich and Pumir (2004) in the re-
stricted case where the Stokes number was small and
where no sling contribution was expected. That method
requires one to follow, in addition to x, v, �, and n, the
deformation tensor W(t) induced by the velocity field v.
Consider the tensor W(t) that describes how a small line
element, �l (|�l| K �) is transported by the flow: �l(t) 

W(t) · �l(0). The inverse of the tensor W, W�1 therefore
maps the line element �l(t) at time t to its origin at time
t 
 0. The growth of W�1 is thus associated with the
contraction of the line element �l(t) while det(W) de-
termines the contraction rate of the volume along drop-
let trajectories. The evolution equation for W�1 is de-
rived from the evolution equation for �l(t): d�li/dt 

��i/�xj · �lj(t):

dW�1

dt

 �W�1 · �. �7	

To estimate the contribution of a trajectory to the
coarse-grained droplet density at scale r, the integration
is carried out until |W�1| reaches (�/r), where the norm
considered here is the usual Euclidean norm. At this
point, the value of n coarse-grained at scale r is re-
corded. The density n at scale h is taken to be equal to
the mean concentration; that is, we neglect (rather

small) intermittency corrections observed in the inertial
range (Bec et al. 2007). The Eulerian value of the kth
moment is obtained by averaging the values of nk�1

over all the trajectories computed. In our calculation,
the Eulerian quantities are estimated when the value of
|W�1| along a trajectory has grown by a factor �/a. The
quantities to be determined in this way (the parameter
� and the Lyapunov exponent of the droplet flow) de-
pend on the logarithm of that factor so order-unity in-
determinacy in its definition is unimportant.

The occurrence of a sling effect results in a singular-
ity of � in a finite time, � � (t � t0)�1, which in turn
leads to a divergence of the droplet density [n � (t �
t0)�1; see Eq. (6)]. Physically, neither the droplet veloc-
ity gradient nor the droplet density can grow un-
bounded since droplets have a finite size, a, and they
cannot come arbitrarily close to one another. There-
fore, the droplet velocity gradients do not grow more
than by a factor �(�/a). Once the gradient has reached
this predetermined threshold value, the equation is
regularized by flipping the sign of �. This simply cor-
responds to a fast droplet passing a slow one so that
their velocity difference (as well as the gradient)
changes sign. Similarly, the density increases until the
time of the flip and then decreases. This algorithm leads
to a numerically well-posed problem.

In the approach developed here, the collision rate,
resulting from the motion of droplets, evolving accord-
ing to Eq. (4), is modeled by separating explicitly the
“continuous” contributions from the “sling” events.
Such separation is meaningful only at not very large
Stokes numbers when sling events are rare. The “con-
tinuous contribution” is proportional to the local veloc-
ity gradient � (as in the Saffman–Turner approach).
Given the value of n and of � at a given time, the
instantaneous flux of incoming droplets toward a given
droplet is as follows:

�cont�t	 
 �2a	3n�t	�
ê·�·ê0

�ê · � · ê	 d�, �8	

where ê is the unit normal vector to the sphere and d�
is the solid angle that measures the area on the sphere.
The contribution to the collision rate, Kcont, along a
trajectory is simply obtained by averaging �cont over
many trajectories and over time. Because the growth of
n is accounted for in the resulting contribution for the
collision term, the influence of the sling effect on con-
centration (because of caustics left after sling events) is
partially taken into account in this formula. However,
as has been pointed out above, the sling effect also
results in an additional contribution to the velocity dif-
ference, which is not proportional to the local velocity
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gradient. As suggested by Fig. 1, a sling event involves
a number of droplets incoming in a small region with
significantly different velocities, a situation leading to
an outbursts of collisions, which we estimate as follows.
The source term in Eq. (5), necessary to start a blow-up
process, s/�, should be large enough: |s| � 1/�. Based on
the Kolmogorov picture of fully developed turbulence,
the extent of the region where gradients reach the value
s on the order or larger of 1/� is on the order of l �
(��)1/2 
 �St1/2. The time over which the collision takes
place is estimated to be on the order of the droplet
relaxation time, �. Last, the range of droplet velocities
involved during the collision can be estimated as |�v| �
l/�. Based on these estimates, the number of collisions
that occur in the wake of a sling event that have hap-
pened at time ts can be estimated as follows:

Nsling�t	 
 4��2a	2 � n�ts � ��2	 � |�v| � �. �9	

The relaxation time of droplet velocities is � and this is
a typical duration of the time when droplets have sub-
stantially different velocities and sling effect contribu-
tion appears. That is why in estimating Nsling, the den-
sity of droplets is taken at a time �/2 after the sling
event time ts, which provides a reasonable estimate for
the droplet density during the entire process. As is clear
from the heuristic derivation above, the value of Nsling

obtained in such a way is up to a numerical factor of
order unity, whose precise value could be estimated by
kinetic numerical simulations, which is beyond the
scope of this work. In practice, the number of collisions
due to sling effects, divided by (32�a3), is computed by
adding after each blow up along the droplets’ trajecto-
ries, at time ts, a term � n(ts � �/2)St1/2(�/2a). The ratio
St1/2(�/2a) is a number of the order 10 for the range of
physical situations we are interested in. The collision
rate is obtained by dividing the result by the time over
which the droplet is tracked. In the rest of this paper,
we estimate separately the contributions from the con-
tinuous term and the sling contribution, given by Eqs.
(8) and (9), respectively.

b. Numerical methods

To this end, we generate a statistically stationary tur-
bulent flow in a cube with periodic boundary condi-
tions. The equations are solved with a pseudo-spectral
code (see Pumir 1994 for details). All the appropriate
length scales of the flow are adequately resolved. We
work in the range of microscale Taylor–Reynolds num-
ber, R (Pumir 1994) 21 � R � 105. In this turbulent
flow, we follow the motion of inertial droplets by solv-
ing the equation for the position, dx/dt 
 v, along with
(4). We use the initial condition v 
 u. The Eq. (5) for

the tensor of droplet velocity derivatives is integrated
along the way. The integration of Eqs. (4) and (5) re-
quires the interpolation of the fluid velocity, u, or its
derivative, s, from the numerical mesh to the droplet
position. This is done by using spline interpolation tech-
niques (see Girimaji and Pope 1990). The equations are
solved by using algorithms that are second-order accu-
rate in time, or higher.

The equations of motion were integrated for several
Stokes numbers (ranging from St
 0.05 to St� 5), and
the effect of gravity was explicitly taken into account.
Warm clouds correspond to low latitudes so the accel-
eration of gravity is constant (g � 9.8 m s�2), while the
intensity of turbulence depends on the type of cloud
(Grabowski and Vaillancourt 1999; see also Franklin et
al. 2005). One can characterize the relative importance
of gravity versus turbulence by the parameter �0 St�
F, which is the ratio of respective accelerations. Note
that �0 does not depend on the characteristics of the
droplet. In our modeling we made two sets of runs
corresponding to two levels of turbulence, one corre-
sponding to � � 600 cm2 s�3, �0 
 0.2 and � � 1500
cm2 s�3, �0 
 0.4. As done in Falkovich and Pumir
(2004), we consider droplets in a fixed environment by
fixing the value of �0 and the Reynolds number. We
study the dependencies of different quantities on the
size of the droplet parameterized by St.

3. Numerical results

The method sketched above to estimate the coarse-
grained properties at a scale r is then used to evaluate
the collision rate as a function of scale. More precisely,
consider the droplets of radius a. To compute the col-
lision rate, the continuous and sling contributions to the
collision rate are computed along trajectories, until the
compression, given by |W�1| [see Eq. (7)], reaches the
value �/a. The various contributions coming from dif-
ferent trajectories are then accumulated, and the mean
value of the collision rate is extracted.

The way the flow leads to the compression of an
ensemble of droplets, described by Eq. (7), plays a cru-
cial importance in the physical processes controlling
droplet collision rates. The numerical results indicate
that the averaged value of ln(|W�1|) grows linearly with
time, with the growth rate 3, defined by !ln(|W�1|)" 

�3t, where the angle brackets denote an averaged
quantity. The growth rate gives direct access to the
most negative Lyapunov exponent 3 that governs the
strongest contraction in the flow. At a given Reynolds
number, the value of �3 � �K has a nontrivial depen-
dence on the Stokes number. It starts at a value �3 �
�K � 0.16 at St 
 0 (Falkovich and Pumir 2004), then
increases up to St� 0.5, leading to a twofold increase of
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3, compared to its value when St 
 0, before decreas-
ing at higher values of St (see Fig. 2). Qualitatively
similar dependence has been found for a model short-
correlated flow (Wilkinson and Mehlig 2003). The val-
ues of 3 are not affected much by the gravity in the
range considered in this work (�0 � 0.2); the results for
�0
 5 (not shown) are within 10% from those shown in
Fig. 2 for �0 
 0.4.

Sling events, in our approach, are manifested by di-
vergences of the droplet velocity derivative tensor, �.
The blow-up frequency, fbu, defined as the total number
of sling events divided by the integration time, plays
here a crucial role. Figure 3 shows fbu multiplied by
the Kolmogorov time �K. The blow-up occurrences are
induced by large velocity gradients, of typical size
(� /�)1/2 
 ��1

# . This suggests that the product fbu � �K

should depend mostly on St and � but relatively little on
the Reynolds number. This expectation is confirmed by
our numerical results (see Fig. 3). No blow up is ob-
served at very low values of St (for St 
 0.15). As St
increases, the value of fbu raises to a maximum value for
St � 1.5, then decreases slowly. The recent works on
simple versions of the problem (one-dimensional and
short-correlated flows) suggest the dependence of the
blow-up frequency as a function of St on the form fbu�
exp(�A/St) (Wilkinson and Mehlig 2005; Derevyanko
et al. 2006). Here we find empirically that the curve
could be fit pretty well by the dependence of the form:

fbu � �� 
 St�2 � exp��A�St	 � �B � CStc	. �10	

The coefficient A is found to decrease slightly as the
Reynolds number increases (A 
 2.1 for R 
 45, A 

1.85 for R 
 83, and A
 1.70 for R 
 105), consistent

with the fact that as turbulence becomes more intense,
higher gradients appear in the flow, which are able to
induce the blow up of � at increasingly low values of St.
Yet, at higher values of the Stokes number, the blow-up
frequency seems to decrease as the value of the Rey-
nolds number increases, a somewhat surprising effect.
Upon increasing gravity (decreasing �0), the blow-up
frequency generally goes down, with a similar Stokes
number dependence. This trend can be understood
qualitatively by noticing that as gravity increases, the
source term on the right-hand side of Eq. (5) becomes
decorrelated, resulting in a diminished blow-up fre-
quency.

The dependence of the coarse-grained droplet den-
sity, !n2"r, as a function of �/r is very similar to the one
obtained by Falkovich and Pumir (2004). Namely, !n2"r
has essentially a power-law dependence as a function of
�/r. The exponent � of the exponent is plotted here as
a function of St at R 
 83, and for the values of �0 

0.2 and �0 
 0.4. The value of the exponent increases
sharply as a function of St up to St � 1, where it starts
to saturate and decrease slightly. The qualitative aspect
of the dependence of � as a function of St does not
depend on the precise value of the Reynolds number in
the range of R studied. We find that at values of St �

0.1, the value of the exponent is somewhat higher than
the one found by Falkovich et al. (2002; see Fig. 4). This
difference can be attributed to the fact that the expo-
nent there was computed by studying contraction along
the fluid trajectory, which in the limit St → 0, differs
very little from the droplets trajectories. Quantitative
differences remain even for values of St as small as St�

FIG. 2. The contraction rate along trajectories of particles at
R 
 105 and �0 
 0.4 (� symbols) and �0 
 0.2 (� symbols).

FIG. 3. The blow-up frequency as a function of the Stokes
numbers for several Reynolds numbers: R 
 45 (dotted–dashed
line, � symbols), 83 (dashed line, � symbols), and 105 (full line,
� symbols). The gravity is such that �0 
 0.4.
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0.1. $t moderate values of St, the exponent is larger
when gravity is weaker relative to turbulence (larger
�0), as expected (Falkovich et al. 2002).

Finally, Fig. 5 shows the continuous contribution to
the collision rates, normalized by 32�a3/�K, as a func-
tion of the Stokes numbers. The Saffman–Turner (ST)
formula [which by itself is an upper bound according to
Andersson et al. (2007)] gives in our units �# � KST

cont/
(32�a3) 
 (1/30�)1/2, the value indicated by the hori-
zontal dashed line. The continuous contribution starts
at St → 0, very close to this value, and increases to a
maximum value at St� 1 before decreasing very slowly.
Increasing the relative role of gravity (decreasing �0)
tends to decrease the collision rate. Over the range of
parameters studied here, it was found that the continu-
ous part of the collision rate increases when the Rey-
nolds number increases. Our runs at different values of
R all suggest that the values of Kcont are always larger
than predicted by the Saffman–Turner formula, for
St � 0 (i.e., when inertia plays a role).

The sling contribution to the collision rate, shown in
Fig. 6 at the value of the Reynolds number R 
 105,
starts from essentially zero at very small values of the
Stokes number (the probability of having a sling effect
is practically zero at St K 1). Again, similar to what has
been observed for the continuous contribution to the
collision term, the sling contribution increases to a
maximum at St � 0.8. The phenomenological descrip-
tion of the sling collision rate used in this work is not
expected to hold at values of the Stokes numbers larger

than �1. In fact, our approach is based on the implicit
assumption that droplets can be described by an essen-
tially smooth hydrodynamic representation. This as-
sumption becomes questionable as soon as St � 1. For
this reason, only the part of the curve corresponding to
values of St � 1.0 has been shown. Figure 5 is meant to
show the main trend, at moderate Stokes numbers [the
formula used to define this term, Eq. (9), is defined up
to a constant]. These data do not allow us to test the
simple approximation for the sling contribution sug-
gested by Wilkinson et al. (2006), St�1/2 exp(�A/St),
which fits the data for a synthetic velocity field without

FIG. 4. The St dependence of the exponents � obtained by
fitting !n2"r by a power-law dependence as a function of r : !n2"r �
(�/r)�, at �0 
 0.4 (upper curve, � symbols) and �0 
 0.2 (lower
curve, � symbols). The value of the exponent obtained by Falk-
ovich and Pumir (2004) at small values of St is shown by the
dashed line. The error bars on the data points are less that 5%.

FIG. 5. The St dependence of the continuous component of the
collision rate, normalized by the particle size a and by the Kol-
mogorov time scale, �K, at two values of gravity for Reynolds
numbers of (a) R 
 45 and (b) R 
 105: �0 
 0.4 (upper curve,
the data points are plotted with � symbols) and �0 
 0.2 (lower
curves, the data points are plotted with � symbols). The horizon-
tal dashed line corresponds to the Saffman–Turner formula. The
collision rate peaks at a value St � 1. The errors on the points are
less than 5%.
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gravity well. Last, the limited range of the Reynolds
number available numerically leaves open the question
of the asymptotic limit of the collision rate as the Rey-
nolds number tends to infinity.

Our method to estimate the collision rates, although
based on procedures that can be formally justified for
small Stokes number droplets, is very indirect. It is
therefore appropriate to compare our estimates for the
collision rates with the numerical results obtained by
other groups. Franklin et al. (2005) and Wang et al.
(2005), by using direct numerical simulations, estimated
directly the collision rate among droplets. We ran a
simulation at a value of R 
 45 and �0 
 0.2 (run Fa)
comparable to run 3 of Franklin et al. at R 
 48 and
�0 
 0.21, and simulations at R 
 40 and �0 
 0.142
(run Wa). The geometric collision rate is the rate of
collision per droplet in the flow; it can thus be com-
pared directly with the collision rates computed by the

method of the present work, once the dimensionless
values of % obtained with our method have been made
dimensional with the proper values of �K and a. The
results are shown in Table 1. At the lowest value of St
for run F, no sling contribution is expected, as indicated
in the second line of Table 1. The values of % and Kcont

coincide to within �10%. The most likely source of
differences between the predictions of our method and
the results obtained by Franklin et al. (2005) and Wang
et al. (2005) can be attributed to the fact that we sys-
tematically neglected here intermittency corrections in
the inertial range, thus underestimating slightly the col-
lision rates. This could be in principle easily fixed. For
run F, at the highest value of the Stokes number, one
finds that the continuous part of the collision rate,
Kcont, underestimates the value found in Franklin et al.
On the other hand, a significant sling effect is expected
at this value of the Stokes number. Our method pro-
vides only an order of magnitude estimate of the sling
term, that is, an estimate up to a numerical factor of
order unity. The comparison of the prediction of our
method with the data corresponding to run W also
demonstrates that the sling term leads to a very signifi-
cant contribution to the collision rate. The systematic
comparison of the results obtained by directly counting
the collision rates with the predictions of our method
suggests that our parameterization provides a correct
order of magnitude estimate. For more precision, it
needs to be refined (possibly by an empirical order-
unity factor).

4. Conclusions

In conclusion, we have studied the collision rates in-
duced by turbulent air motion, considering how a ho-
mogeneous, isotropic turbulent flow induces collisions
of inertial droplets. The method used in this work is
essentially Lagrangian. We follow droplets advected in
the flow, compute directly the flux of incoming droplets
(continuous contribution), and estimate the number of
collisions that occur in the aftermath of a “sling” effect.

TABLE 1. Comparison between the numerical estimates of collision rates by Franklin et al. (2005, their Table 5, run 3, denoted “F”
here) and Wang et al. (2005, data from their Table 3, denoted “W”) and the present estimates (runs Fa and Wa).

Run R a St �0 % (cm3 s�1)
Kcont

(cm3 s�1) Ksling (cm3 s�1)

F 48 10 �m 0.08 0.21 1.0 � 10�6

Fa 45 0.08 0.2 0 0.85 � 10�6 0
F 48 20 �m 0.32 0.21 59.0 � 10�6

Fa 45 0.30 0.2 22.0 � 10�6 10.0 � 1.10�6

W 40 20 �m 0.254 0.142 22.2 � 10�6

Wa 40 0.254 0.14 10.0 � 10�6 1 � 1.10�6

W 40 25 �m 0.396 0.142 99.5 � 10�5

Wa 40 0.396 0.14 33.0 � 10�6 11.0 � 10�6

FIG. 6. The St dependence of the sling component of the colli-
sion rate, normalized by the particle size a and by the Kolmogorov
time, �K, at two values of gravity: �0 
 0.4 (upper curve, the data
points are plotted with � symbols) and �0
 0.2 (lower curves, the
data points are plotted with � symbols), at a Reynolds number of
R 
 105. The errors are on the order of 10%–15%.
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The ratio of the collision rate to the Saffman–Turner
formula is found to increase significantly from 1 to �10
when the Stokes number increases from St � 0 to St �
1. The increase becomes more pronounced as the Rey-
nolds number becomes larger.

In the range of Reynolds numbers studied here, sling
contributions are negligible at very small Stokes num-
bers: their probability goes as exp(�A/St) as a function
of St, with a coefficient A of the order 1. In practice,
they become significant for Stokes numbers St � 0.20.

The actual collision rates computed in this work are
consistent, at R � 45, with the recent results obtained
by Franklin et al. (2005). In particular, our results allow
us to disentangle the contributions due to the sling
events, which we find to be quite significant for droplets
of size a 
 20 �m.

This work should help to clarify the origin of the
enhancement of the collision rates of inertial droplets
due to turbulence, and also ultimately, to devise a pa-
rameterization of this collision rate.
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