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Slip behavior in liquid films on surfaces of patterned wettability:

Comparison between continuum and molecular dynamics simulations

Nikolai V. Priezjev, Anton A. Darhuber, and Sandra M. Troian∗

Microfluidic Research & Engineering Laboratory, School of Engineering & Applied Science,

Princeton University, Princeton, New Jersey 08544

(Dated: October 27, 2018)

We investigate the behavior of the slip length in Newtonian liquids subject to planar shear bounded
by substrates with mixed boundary conditions. The upper wall, consisting of a homogenous surface
of finite or vanishing slip, moves at a constant speed parallel to a lower stationary wall, whose
surface is patterned with an array of stripes representing alternating regions of no-shear and finite
or no-slip. Velocity fields and effective slip lengths are computed both from molecular dynamics
(MD) simulations and solution of the Stokes equation for flow configurations either parallel or
perpendicular to the stripes. Excellent agreement between the hydrodynamic and MD results is
obtained when the normalized width of the slip regions, a/σ & O(10), where σ is the (fluid) molecular
diameter characterizing the Lennard-Jones interaction. In this regime, the effective slip length
increases monotonically with a/σ to a saturation value. For a/σ . O(10) and transverse flow
configurations, the non-uniform interaction potential at the lower wall constitutes a rough surface
whose molecular scale corrugations strongly reduce the effective slip length below the hydrodynamic
results. The translational symmetry for longitudinal flow eliminates the influence of molecular scale
roughness; however, the reduced molecular ordering above the wetting regions of finite slip for small
values of a/σ increases the value of the effective slip length far above the hydrodynamic predictions.
The strong correlation between the effective slip length and the liquid structure factor representative
of the first fluid layer near the patterned wall illustrates the influence of molecular ordering effects
on slip in non-inertial flows.

PACS numbers: 61.20.Ja, 68.08.-p, 68.35.Af, 83.10.Rs, 83.50.Rp, 83.60.Yz

I. INTRODUCTION

The development of micro- and nanofluidic devices for
the manipulation of films, drops and bubbles requires
detailed knowledge of interfacial phenomena and small
scale flows. These systems, which are distinguished by a
large surface-to-volume ratio and flow at small Reynolds,
capillary and Bond numbers, are strongly influenced by
boundary effects [1]. Liquid affinity to nearby solid
boundaries can be reduced through chemical treatments
[2, 3, 4, 5], substrate topology [6, 7, 8] or the nucleation
of nanobubbles on hydrophobic glass surfaces [9, 10, 11].
Weak van der Waals interactions between a polymer melt
and solid wall [12, 13, 14] or between two immiscible
polymers [15] can also lead to significant slippage and
reduced frictional resistance. The degree of slip is nor-
mally quantified through the slip length defined as the
distance from the surface within the solid phase where
the extrapolated flow velocity vanishes [16]. Numerous
experimental and theoretical studies have examined how
the slip length is influenced by such factors as the de-
gree of hydrophobicity [2, 17], the substrate topography
and surface roughness [6, 7, 18, 19, 20, 21, 22, 23, 51],
the presence of interstitial lubricating layers [22, 24, 25],
the polymer molecular weight [14, 26, 27] and the ap-
plied shear rate [5, 28, 29, 30, 31]. In a recent develop-

∗Electronic address: stroian@princeton.edu;

URL: http://www.princeton.edu/~stroian

ment, the large values of the slip length extracted from
experiments involving the pressure-driven flow of water
through hydrophobically coated capillaries have been at-
tributed [32, 33] to the spontaneous nucleation of a dense
and stable layer of nanobubbles in water films adjacent
to hydrophobic glass surfaces [9, 10, 11]. Of special in-
terest is the corresponding reduction in drag achieved
by proportional substitution of liquid-solid contact area
with liquid-gas contact area or equivalently, substitution
of regions of no-slip or finite slip by regions of essentially
no-shear (i.e. infinite slip).

Interest in the hydrodynamic behavior of liquid films
in the vicinity of surfaces with mixed boundary condi-
tions dates back several decades to the work of Philip
[34, 35]. He examined the steady flow of an incompress-
ible and inertia-less Newtonian liquid driven either by
a uniform shear stress or uniform pressure gradient and
subject to mixed wall boundary conditions. These were
represented by surfaces consisting of alternating striped
regions of no-shear and no-slip among other geometries.
Using conformal mapping, Philip [34, 35] derived ana-
lytic expressions for the streamfunction and volumetric
flux for flow perpendicular (transverse configuration) or
parallel (longitudinal configuration) to the striped ar-
ray in the limit of Stokes flow. Recently, Lauga and
Stone [33] investigated the behavior of the effective slip
length for steady Poiseuille flow through a capillary of
circular cross-section whose inner wall consists of period-
ically distributed regions of no-slip and no-shear. Philip’s
earlier treatment was used to extract the slip length for
longitudinal configurations; additional analysis was re-

http://arxiv.org/abs/cond-mat/0405268v3
mailto:stroian@princeton.edu
http://www.princeton.edu/~stroian
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FIG. 1: (Color online) (a) Transverse and (b) longitudinal
flow orientations for a liquid film subject to planar shear in a
cell with wall separation d. Darker stripes of width a signify
regions of finite slip or no-slip. White stripes signify regions of
no-shear (or equivalently perfect slip). The upper wall moves
at constant speed U relative to the lower stationary surface
(z=0). The periodicity of the lower wall pattern geometry is
designed by λ.

quired for transverse configurations. Comparison of their
results with available experimental measurements sug-
gests what model parameter values would reproduce the
experimental slip lengths. For slip lengths in the nanome-
ter range, one might ask whether a hydrodynamic anal-
ysis can correctly predict these values or whether the
molecular aspects of the fluid can strong influence the slip
behavior causing deviations from the continuum theory.
Molecular dynamics (MD) simulations provide an ideal

tool for investigating the conformation and behavior of
fluid molecules adjacent to chemically or topologically
textured substrates. The boundary conditions which es-
tablish the flow profile are not specified a priori, but arise
naturally from the wall-fluid contrast in density and the
fluid-fluid and wall-fluid interaction potentials. In recent
years, many groups have examined how various molec-
ular parameters characterizing the wall and fluid prop-
erties affect the degree of slip at liquid-solid interfaces.
In particular, it has been demonstrated that the struc-
ture factor and contact density representative of the first
fluid layer adjacent to a wall significantly influence the
degree of slip in Newtonian and non-Newtonian fluids
[23, 28, 29, 36, 37, 38, 39]. The results of this current
study confirm the importance of these molecular param-
eters for flow on heterogeneous substrates.
In this work, we investigate the behavior of the slip

length in viscous films under planar shear bounded by
substrates with mixed boundary conditions using both
molecular dynamics (MD) simulations and Stokes flow
computations. The upper wall, consisting of a homoge-
nous surface of finite or no-slip, moves at a constant
speed, U , a distance d above a lower stationary wall,
whose surface is patterned with an infinite array of stripes
representing alternating regions of no-shear and finite
or no-slip. As shown in Fig. 1, we consider transverse
and longitudinal flow configurations and compute the
corresponding velocity fields and effective slip lengths
for a wide range of stripe widths, periods and liquid-
solid affinities. Excellent agreement between the hy-
drodynamic and MD results is obtained when the nor-
malized width of the slip regions, a/σ & O(10), where

σ is the (fluid) molecular diameter characterizing the
Lennard–Jones interaction. For surface patterns ap-
proaching molecular size, the degree of fluid ordering near
the patterned wall, as quantified by the in-plane struc-
ture factor and contact density in the first liquid layer,
plays a dominant role causing significant deviations from
the hydrodynamic predictions. These deviations can be
explained in the context of effective surface roughness
and molecular ordering effects.

II. HYDRODYNAMIC ANALYSIS

In the limit of vanishingly small Reynolds number
Re=ρUd/µ, where ρ and µ denote the (constant) liquid
density and viscosity, inertial effects are negligible. The
velocity profile is then governed by the Stokes equation,
∇2

u = ∇p/µ, where the velocity field, u, satisfies the
condition of incompressibility, ∇·u=0, and p denotes the
pressure distribution which in this study is induced by the
patterned substrates. Application of the divergence oper-
ator to the Stokes equation shows that the pressure field
satisfies the equation∇2p=0. It then follows that the ve-
locity field satisfies the biharmonic equation ∇2∇2

u = 0
[40].
In the next section, we derive the boundary conditions

(BCs) corresponding to transverse [Fig. 1(a)] and longi-
tudinal [Fig. 1(b)] flow orientations. These conditions are
used to compute numerical solutions of the streamfunc-
tion, velocity field and effective slip length as a function
of the dimensionless stripe width of the finite slip regions,
a/λ, and the dimensionless surface period λ/d. The ŷ-
axis is oriented parallel to the stripe edges for either
configuration. All numerical calculations were performed
with the finite element software FemLab 2.3 [41, 42] using
triangular elements with quadratic basis functions. The
solutions reported converged upon mesh refinement.

A. Transverse configuration

The two dimensional velocity field corresponding to
the transverse configuration shown in Fig. 1(a) is rep-
resented by u(x, z) = (u, 0, w) = (∂ψ/∂z, 0,−∂ψ/∂x),
where ψ(x, z) denotes the streamfunction, which implic-
itly satisfies the continuity equation ∇·u=0. The vortic-
ity vectorΩ=∇×u=(0, ω, 0), where ω = ∂u/∂z−∂w/∂x,
has only one non-zero component. According to these
definitions, it follows that

ω =
∂2ψ

∂z2
+
∂2ψ

∂x2
= ∇2ψ and ∇2ω = 0. (1)

1. Boundary Conditions

Solutions of the equations for the vorticity and stream-
function given by Eq. (1) require the specification of eight
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BCs. The computational domain sketched in Fig. 2(a) is
defined by the region bounded by the upper and lower
walls (0≤z≤d) and the dashed lines (0≤x≤λ/2) corre-
sponding to the midplanes of neighboring stripes. White
surfaces designate shear-free boundaries (i.e. surfaces of
perfect slip); dark surfaces designate boundaries of finite
or no-slip. Throughout, partial derivatives are denoted
by letter subscripts e.g. ∂ψ/∂x ≡ ψx.

The top and bottom walls represent impenetrable sur-
faces where w(x, z =0) = w(x, z = d) = 0, or in terms of
the streamfunction, ψx(x, z =0)=ψx(x, z = d) = 0. The
tangential component of the velocity field must satisfy
mixed slip and shear conditions at the upper and lower
walls of the cell. The no-shear BC is given by uz(0 ≤
x ≤ λ−a

2
, z = 0) = 0. Slip surfaces are characterized by

the Navier [16] slip condition u
[
λ−a
2

≤x≤ λ
2
, z=0

]
= buz

and u[x, z= d]=U−buz. The Navier slip length b is as-
sumed constant, i.e. independent of the shear rate γ̇.

The lateral boundary conditions for the scalar field
u are derived from the following symmetry considera-
tions. The biharmonic equation ∇2∇2u = 0 involves
x-derivatives of even order only. The lower wall com-
prises an infinite number of mirror symmetry planes lo-
cated at the at the stripe centers x = nλ/2, for all in-
tegers n. Since the upper surface is homogeneous and
translationally invariant, the mirror symmetry imposed
by the lower surface determines which symmetry applies
throughout the entire Couette cell. The scalar field, u,
therefore also assumes mirror symmetry about the stripe
centers such that u(x, z) = u(−x, z) and ux(x, z) = 0 for
all x= nλ/2 and integers n. From the continuity equa-
tion, it then also follows that wz(x=nλ/2) = 0, i.e. w is
independent of the coordinate z within any mirror plane.
Since the upper and lowers walls are impenetrable, i.e.
w(x, z = 0) = w(x, z = d) = 0, this constraint reduces to
the BC ψx(x=0) = 0 = ψx(x=λ/2).

The continuity equation requires ux + wz = 0. To-
gether with the condition u(x, z) = u(−x, z), this im-
plies w(x, z) = −w(−x, z) such that w(x, z) = 0 and
wxx(x, z) = 0 at all x = nλ/2 where n = 0, 1, 2 . . .. Sub-
stitution of this last relation and ux(x = 0, z) = 0 into
the expression for ωx leads to ωx(x= nλ/2, z) = 0. Re-
gions of no-shear at the lower wall are represented by the
condition ω(x, z=0) = 0.

Along the top and bottom walls, the scalar compo-
nent w is independent of the coordinate x and there-
fore wx(z = 0) = wx(z = d) = 0. Consequently,
the vorticity at the top and bottom walls reduces to
ω = uz and the Navier slip conditions can be rewritten as
ψz

(
λ−a
2

≤x≤ λ
2
, z=0

)
= bω and ψz(x, z= d) = U − bω.

The relation w(x, z = 0) = w(x, z = d) = ψx = 0 also
implies that the streamfunction is constant in the planes
z = 0 and z = d, whose values we denote by ψtop and
ψbottom. The difference in the streamfunction value be-
tween the top and bottom walls is equal to the volumetric

,  w = 0

= 0
∂u

∂z

∂u

∂z
u = b

w = 0

w = 0 w = 0

= 0
∂u

∂x
= 0

∂u

∂x

∂u

∂z
u = U - b

= 0
∂v

∂z

∂v

∂z
v = b

= 0
∂v

∂x
= 0

∂v

∂x

∂v
∂z

v = U - b

(a) (b)

z=0

z=d

x=0 λ/2(λ-a)/2 x=0 λ/2(λ-a)/2

∂

∂

∂

∂

∂

∂

∂
∂

FIG. 2: (Color online) Computational domain and bound-
ary conditions used for solution of the Stokes equation corre-
sponding to the (a) transverse and (b) longitudinal flow ori-
entation shown in Fig. 1. The computational domain consists
of the region bounded by the upper and lower walls (z=0 and
z=d) and the lateral dashed lines (x=0 and x=λ/2), which
are positioned at neighboring midplanes of the no-shear and
finite-slip regions.

flux per unit length along the y-axis [40] since

Q =

z=d∫

z=0

u(x, z) dz =

z=d∫

z=0

ψz dz = ψtop − ψbottom . (2)

Because the streamfunction can only be determined
within an arbitrary constant, we set the value of ψbottom

in these studies to zero without loss in generality. The
complete set of BCs for the vorticity and streamfunctions
are therefore given by:

ψ(x, z=0) = 0 (3)

ψ(x, z=d) = ψtop (4)

ω(x, z=0) = 0 for 0 ≤ x < λ−a
2

(5)

ψz(x, z=0) = bω for λ−a
2

≤ x ≤ λ
2

(6)

ψz(x, z = d) = U − bω (7)

ψx(x=0, z) = 0 = ψx(x=λ/2, z) (8)

ωx(x=0, z) = 0 = ωx(x=λ/2, z) . (9)

2. Solution procedure

The value of ψtop is determined from the pressure field
as follows. The Stokes equation for the vertical compo-
nent of the velocity field is given by wxx+wzz=pz/µ. As
argued in a previous section, however, wxx(x=nλ/2, z)=
0, and since w is independent of z along any mirror sym-
metry plane, wzz(x=nλ/2, z)=0. The pressure is there-
fore independent of the vertical coordinate z in all planes
x=nλ/2. Furthermore, in the absence of any externally

applied pressure gradient, as is the case here, and be-
cause of the flow periodicity, p(x=0) = p(x=λ). Since
it was previously argued that u exhibits mirror symme-
try about the planes x = nλ/2, it must also be true of
px since uxx + uzz = px/µ. Consequently, the pressure
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is equal at the lateral boundaries of the computational
cell, i.e. p(x= 0) = p(x= λ/2). For convenience we set
p(x= 0)= 0. This constraint, coupled with the relation
px/µ=−(∇×Ω)· êx = ωz, was used to adjust the numer-
ical value of ψtop by requiring that the following integral
vanish identically:

∫ λ/2

0

px dx = µ

∫ λ/2

0

ωz dx = 0 . (10)

The value of the effective slip length, Ls, corresponding
to the overall flow within a patterned cell was obtained
from linear extrapolation of the averaged velocity profile

〈u〉 = (2/λ)
∫ λ/2

0
u(x, z) dx to zero. Since at planes of

mirror symmetry, ux=0 and p(x=0) = p(x=λ/2), the

integral µ
∫ λ/2

0
∇2u(x, z)dx =

∫ λ/2

0
pxdx= 0, reduces to

〈u〉zz=0. The averaged velocity field, 〈u〉, is therefore a
linear function of z and geometric similarity establishes
the relation for the effective slip length, namely

Ls

d
=

〈u(z=0)〉

〈u(z=d)〉 − 〈u(z=0)〉
. (11)

For the numerical analysis, the equations for the vorticity
and streamfunction given by Eq. (1) and the BCs given
by Eqs. (3-9) were non-dimensionalized according to the
rescaled variables

x̃ = x/λ z̃ = z/d (12)

ũ = u/U w̃ = w

/(
U
d

λ

)
(13)

ψ̃ = ψ

/(
Ud

2

)
ω̃ = ω

/(
U

d

)
, (14)

leading to

d2

λ2
∂2ψ̃

∂x̃2
+
∂2ψ̃

∂z̃2
= 2ω̃ and

d2

λ2
∂2ω̃

∂x̃2
+
∂2ω̃

∂z̃2
= 0 . (15)

In Section II A 4 we present numerical solutions to
Eqs. (15) and the extracted values of Ls as a function
of the local slip length b and pattern geometry. Ana-
lytic expressions are derived in the limits λ/d → 0 and
λ/d→ ∞.

3. Perturbative analysis for b = 0

In order to enhance the numerical precision of solu-
tions corresponding to small values of Ls, the velocity
and pressure fields were decomposed into two contribu-
tions, u=u0+u1 and p=p0+p1. Here, u0=(Uz/d, 0, 0)
and p0=0 correspond to the velocity and pressure fields
for planar shear flow subject to no-slip at both solid
boundaries. The Stokes equation then reduces to the
form µ∇2

u1 = ∇p1, where the perturbed velocity field
satisfies the continuity equation ∇·u1 = 0. The follow-
ing BCs for the perturbed streamfunction and vorticity

fields were determined in similar fashion as those in Sec-
tion II A 1:

ψ1(x, z=0) = 0 (16)

ψ1(x, z=d) = ψ1,top (17)

ψ1,z(x, z = d) = U (18)

ω1

(
0≤x< λ−a

2
, z=0

)
= −U/d (19)

ψ1,z

(
λ−a
2

≤x≤ λ
2
, z=0

)
= 0 (20)

ψ1,x(x=0, z) = 0 = ψ1,x

(
x= λ

2
, z
)
(21)

ω1,x(x=0, z) = 0 = ω1,x

(
x= λ

2
, z
)
(22)

where ψ1,z =u1, ψ1,x =−w1 and ω1 =u1,z − w1,x. Non-
dimensionalization of the vorticity and streamfunction
perturbations ω1 and ψ1 as in Section IIA 2 leads to:

d2

λ2
∂2ψ̃1

∂x̃2
+
∂2ψ̃1

∂z̃2
= 2ω̃1 (23)

d2

λ2
∂2ω̃1

∂x̃2
+
∂2ω̃1

∂z̃2
= 0 . (24)

4. Numerical results and limiting cases

In Fig. 3(a) is plotted the numerical results for the
normalized effective slip length, Ls/d, as a function of
the aspect ratio, λ/d, for the transverse configuration.
Over the range shown, Ls/d increases monotonically with
λ/d, saturating at a constant value beyond λ/d ∼ O(10).
When λ/d→ ∞, any significant variation in the veloc-
ity and pressure fields will be localized near the plane
x = (λ− a)/2, where the BCs change from no-shear
to finite slip. Since p(x = 0) = p(x = λ/2), the longi-
tudinal average of the lateral pressure gradient within
the cell must vanish (i.e. 〈px〉 = 0) and any pressure
gradient above the surface of no-shear will be canceled
by an opposing gradient above the surface of finite slip.
Since the transition region in the vicinity of the the plane
x = (λ−a)/2 does not contribute significantly in the limit
λ/d→∞, the condition 〈px〉=0 is equivalent to the con-
dition

λ− a

2
(px)1 = −

a

2
(px)2 , (25)

where the subscripts 1 and 2 refer to the regions above
the surface of no-shear (1) and finite slip (2).
Now we first consider the case b/d=0. Since the flux

must remain constant,

∫ d

0

u1dz =

∫ d

0

u2dz , (26)

where

u1 = U +
(px)1
2µ

(z2 − d2) and (27)

u2 = U
z

d
+

(px)2
2µ

z(z − d) . (28)
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It follows that (px)2 = 4(px)1 − 6µU/d2, which when
coupled with Eqs. (11) and (25), yields the limiting value

lim
b/d=0

λ/d→∞

Ls

d
=

〈u(z=0)〉

U − 〈u(z=0)〉
=
λ− a

4a
. (29)

The same analysis can be extended to the case b/d 6= 0
with the general result:

lim
λ/d→∞

Ls

d
=
λd2 + 8λbd+ 12λb2 − ad2 − 4abd

4ad(d+ 3b)
. (30)

The horizontal asymptotes (dotted lines) shown in
Fig. 3(a) for λ/d > 10 represent solutions to Eq. (30)
for the designated values of b/d and a/λ.
In the opposite limit λ/d→ 0, i.e. where the upper

and lower walls are essentially infinitely far apart, the
deviation of the flow field from pure shear flow over a
homogeneous surface with slip length Ls is limited to a
thin layer whose thickness scales with λ. As a conse-
quence, the effective slip length should be independent
of the cell depth d and independent of the particular
mechanism used to generate the flow, i.e. the same slip
length should result for pressure-driven or shear-driven
flow. Lauga and Stone [33] determined the asymptotic
behavior of the effective slip length for pressure-driven
flow in a cylindrical tube of radius R with periodically
distributed (transverse) rings denoting alternating sur-
faces of no-shear or no-slip (b = 0):

lim
b/R=0

λ/d→0

Ls

R
=

λ

2πR
ln

(
1

cos
(
π
2
λ−a
λ

)
)
. (31)

The solutions to Eq. (31), obtained by replacing the cap-
illary radius R with the cell depth d, superimpose per-
fectly (sloped dashed lines) onto the full numerical solu-
tions shown in Fig. 3(a). In this limit, the slip length
increases linearly with λ/d up to a limit λ/d ≈ 1.
The effective slip length in the limit λ/d→ 0 for the

case b 6= 0 can be derived as follows. When the array
period λ is much smaller than the local slip length b,
the slip velocity u(x, z = 0) should saturate towards a
constant value, us0, over the entire interval 0 ≤ x ≤ λ/2.
Since u(z = 0) = buz(z = 0), it is also expected that the
velocity gradient, uz(z=0), will assume a constant value
in the region [λ−a)/2 ≤ x ≤ λ/2, z = 0]. Consequently,

∂〈u〉

∂z
(0) =

us0
Ls

=
λ−a

λ
0+

a

λ

us0
b

⇒
Ls

d
=
λ

a

b

d
, (32)

i.e. the effective slip length becomes independent of λ/d
for fixed a/λ. The term proportional to (λ−a)/λ accounts
for the vanishing contribution of the no-shear regions to
∂〈u〉/∂z(z = 0). The horizontal dashed lines shown in
Fig. 3(a) for λ/d<0.1 represent solutions to Eq. (32) for
the designated values of b/d and a/λ.
In Fig. 3(b) is plotted the effective slip length, Ls/d,

versus a/λ for b/d = 0 and λ/d = 1.0 and 14.3. The

FIG. 3: (Color online) (a) Normalized slip length, Ls/d, ver-
sus normalized pattern period, λ/d, derived from the Stokes
solutions for the transverse flow orientation. The parameters
values shown are b/d=0, 0.048 and 0.098 and a/λ=0.25 and
0.50. The straight lines superimposed on the numerical solu-
tions for b/d=0 correspond to the analytic limit Ls/d ∼ λ/d.
(b) Normalized slip length Ls/d versus normalized stripe
width a/λ for λ/d = 1 and 14.3 in the limit b/d = 0. The
dashed lines correspond to the function Ls/d = A ln[a/λ]+B,
with fitting parameters A and B. The data points for the
case λ/d = 14.3 (A = −2.245, B = −3.952) are scaled by a
factor 0.3 for convenience. (c-d) Streamlines corresponding
to the transverse Stokes flow solutions for (c) λ/d=1 and (d)
λ/d= 20 where b/d= 0.048 and a/λ= 0.5. The cell domain
size is λ/2× d; the thin vertical lines designate the boundary
between surfaces of no-shear (left) and finite slip (right).

data points for λ/d=14.3 are scaled by a factor 0.3 for
convenience. The effective slip vanishes as a/λ→1 since
the surface coverage by regions of perfect slip decreases
to zero. The numerical results were compared to a Taylor
expansion of Eq. (31) in the limit of a/λ→0

Ls

d
= −

λ

2πd

[
ln
(a
λ

)
+ ln

(π
2

)]
. (33)

The dashed line shown in Fig. 3(b) for λ/d = 1.0 per-
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fectly superimposes on the results of the full numerical
solutions. The numerical solution for λ/d = 14.3 can
also be approximated by a fit-function A log[a/λ]+B for
a/λ≪ 1, as shown by the dashed line; however, Eq. (33)
no longer holds because λ/d � 1.
Streamlines of the flow field, corresponding to the con-

tour lines (i.e. constant values) of the streamfunction,
are shown in Figs. 3(c,d). The left and right panels rep-
resent the solutions for b/d = 0.048 and a/λ = 0.5 for
(c) λ/d = 1 and (d) 20. The vertical line denotes the
transition in boundary condition at the lower wall from
no-shear (left) to finite slip (right). For small values of
λ/d ≤ 1.0, the streamlines are essentially horizontal in
the larger portion of the cell and the deviation of the
streamfunction from pure Couette flow over a homoge-
neous surface is confined to a small distance from the
patterned wall. As λ/d increases, the perturbation ex-
tends further away from the lower boundary. For large
λ/d the streamlines are horizontal above the individual
stripes except for a step-like vertical displacement in the
vicinity of the transition point x = (λ−a)/2.

B. Longitudinal configuration

The velocity field corresponding to the longitudinal
configuration shown in Fig. 1(b) is unidirectional and
given by u(x, z) = (0, v, 0). There is no pressure gra-
dient in this configuration and the numerical solutions
are derived directly from the Stokes equation ∇2v = 0.
The computational cell is shown in Fig. 2(b), where the
direction of motion of the upper wall is indicated by the
white concentric circles. Only four BCs are required for
solution of the velocity field v. Aside from the obvious
constraints of finite slip, vx must vanish at x = 0 and
x = λ/2 because these are planes of mirror symmetry.
The complete set of BCs is given by:

v
(
0≤x≤ λ

2
, z=d

)
= U−bvz(x, z=d) (34)

vz
(
0≤x≤ λ−a

2
, z=0

)
= 0 (35)

v
(
λ−a
2

≤x≤ λ
2
, z=0

)
= bvz(x, z=0) (36)

vx(x=0, z) = 0 = vx
(
λ
2
, z
)
. (37)

Eq. (37) and a lateral average of the Stokes equa-
tion across the computational cell i.e. 〈v(z)〉 =

(2/λ)
∫ λ/2

0
v(x, z) dx, leads to 〈v〉zz =0. As in the trans-

verse case, the averaged velocity profile, 〈v〉, is therefore
a linear function of z. Geometric similarity determines
the equation for the effective slip length, namely

Ls

d
=

〈v(z=0)〉

〈v(z=d)〉 − 〈v(z=0)〉
. (38)

Figure 4(a) represents numerical results for the normal-
ized effective slip length, Ls/d, as a function of λ/d. Over
the range shown, Ls/d increases monotonically with λ/d.
As with the transverse geometry, there is no significant

FIG. 4: (Color online) (a) Normalized slip length Ls/d ver-
sus normalized pattern period λ/d derived from the Stokes
solutions for the longitudinal flow orientation. The parame-
ter values shown are b/d=0, 0.048 and 0.098 and a/λ=0.5.
The straight line superimposed on the data for b/d= 0 cor-
responds to Eq. (39) where Ls/d∼λ/d. (b) Normalized slip
length Ls/d versus normalized stripe width a/λ for λ/d= 1
and b/d=0 and 0.098. The straight line superimposed on the
numerical solutions corresponds to Eq. (41). The data points
for b/d=0.098 are scaled by a factor 0.5 for convenience. (c-
d) Velocity contours corresponding to the longitudinal Stokes
flow solutions for (c) λ/d=0.35 and (d) 10, where b/d=0.048
and a/λ = 0.5. The domain size is λ/2 × d; the thin verti-
cal lines designate the boundary between surfaces of no-shear
(left) and finite slip (right).

increase in slip length beyond λ/d ∼ O(10). The ab-
solute values of Ls/d are larger than in the transverse
case. This is due to the fact that for unidirectional flow,
the liquid above the region of no-shear always remains in
line with the frictionless stripes and is never subject to
any deceleration caused by the regions of finite slip. The
functional dependence of Ls/d on λ/d, however, is iden-
tical to the transverse orientation. As λ/d→ 0, the slip
length should be independent of the cell depth, d, and in-
dependent of the type of flow (whether pressure- or shear-
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driven). Using the analytical solutions of Philip [34, 35]
for the longitudinal configuration, Lauga and Stone [33]
extracted the effective slip length for pressure driven flow
in a cylindrical tube of radius R in the presence of alter-
nating stripes of no-shear and no-slip (b=0):

lim
b/R=0

λ/R→0

Ls

R
=

λ

πR
ln

(
1

cos
(
λ−a
λ

π
2

)
)
. (39)

The solutions to Eq. (39), obtained by replacing the cap-
illary radius, R, with the planar cell depth, d, are almost
indistinguishable from the results of the full numerical
solutions in Fig. 4(a). In this limit, the slip length Ls/d
is exactly twice that of the transverse configuration [see
Eq. (31)] and scales linearly with λ/d.
An analytic expression for the effective slip, Ls/d, can

be derived in the limit λ/d→∞, by examining the flow
field above the patterned substrates. The velocity profile
above the no-shear surface (1) is plug-like and given by
v1(z) = U . Above the surface of finite slip, v2(z) =
U(z+ b)/(2b+d). The latter result is obtained by noting
that the shear rate, uz, is constant throughout the gap
depth and equal to U/(2b + d). Calculating the average
flow speed, 〈v〉, at the upper and lower boundaries and
substituting these into Eq. (38) leads to the expression:

lim
λ/d→∞

Ls

d
=
λ− a

a
+

2λ− a

a

b

d
. (40)

The horizontal dashed line for b/d = 0.098 and λ/d & 10
corresponds to Eq. (40).
In Fig. 4(b) is plotted the numerical solutions for Ls/d

versus a/λ for λ/d = 1 and b/d = 0 and 0.098. The
data points for b/d = 0.098 have been scaled by 0.5 for
convenience. For b/d=0 and small values a/λ, a Taylor
expansion of Eq. (39) gives

lim
b/d=0

λ/d→0

Ls

d
= −

λ

πd

[
ln
(a
λ

)
+ ln

(π
2

)]
. (41)

The straight line superimposed on the data in Fig. 4(b)
represents the asymptotic values given by Eq. (41). The
agreement with the analytical limit for a/λ. 0.3 is very
good.
Velocity contours, corresponding to constant values of

v, are shown in Figs. 4(c,d). The left and right panels
represent solutions for (c) λ/d = 0.35 and (d) λ/d = 10
where b/d= 0.048 and a/λ = 0.5. The vertical line de-
notes the position corresponding to the change in bound-
ary condition at the lower wall from no-shear (left) to
finite slip (right). For λ/d≤ 0.35, the velocity contours
are horizontal throughout almost the entire cell and the
deviations from pure shear flow over a homogeneous sur-
face are confined to a small distance from the patterned
wall. For λ/d= 10, the perturbation extends vertically
across the cell. For large λ/d, the velocity distribution
varies from plug–like above the region of perfect slip to
Couette–like above the region of finite slip, as assumed
in the derivation leading to Eq. (40) for λ/d→ ∞.

III. MD SIMULATIONS AND PARAMETER

VALUES

We have previously used MD simulations to investigate
what equilibrium parameters control the degree of slip in
simple and polymeric fluids and how the slip length de-
pends on shear rate [28, 29]. In these previous studies,
the wall–fluid potential was spatially homogeneous. In
this current work, we examine the behavior of the effec-
tive slip length for a fluid subject to planar shear in the
presence of a heterogeneous bottom wall for the two flow
configurations shown in Fig. 1. The wall–fluid interac-
tions are adjusted to mimic alternating stripes of finite
slip and no–shear by adjusting the attractive part of the
potential to simulate more attractive and less attractive
regions. The MD simulations described next were con-
ducted with the LAMMPS numerical code [43]. In what
follows, we refer to the more attractive surface as wetting
and the less attractive surface as non–wetting.
The simulation cell consisted of 30720 fluid molecules

interacting through a Lennard–Jones (LJ) potential,

VLJ (r) = 4ε

[(
σ

r

)12

− δ

(
σ

r

)6 ]
, (42)

where ε and σ represent the energy and length scales
characteristic of the fluid phase. The cut-off radius was
set to rc=2.5 σ. The parameter δ, which controls the at-
tractive part of the potential for fluid–fluid interactions,
was held fixed at δ=1. The wall–fluid (wf) parameters
were chosen to be σwf = 0.75 σ and εwf/ε = 0.8, 0.9 or
1.0. Surfaces of finite slip in the hydrodynamic analy-
sis corresponded to the parameter value δwf = 1.0 (i.e.
wetting); surfaces of no-shear (or likewise perfect slip)
corresponded to the value δwf = 0.1 (i.e. non-wetting).
For the MD simulations, we restricted our study to the
case a/λ = 1/2 such that the wetting and non-wetting
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a = 133.48 σ

a = 1.04 σ

FIG. 5: (Color online) Average normalized fluid density,
ρ(z)σ3, above the wetting (δwf = 1.0: triangles) and non–
wetting stripes (δwf = 0.1: circles). The parameter values
shown are (a) a=1.04σ and (b) a=133.48 σ for εwf/ε=0.8.
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FIG. 6: (Color online) Average normalized velocity profile,
〈u〉 τ/σ corresponding to the transverse flow configuration for
εwf/ε=0.8 and a/σ = 1.04, 4.17 and 133.48. The nearly hori-
zontal profile shown in (4), which designates a plug-like profile
representative of surfaces with large slip lengths, was obtained
by setting the wall-fluid potential parameter to δwf = 0.1
along both walls. This choice effectively reproduces non-
wetting bounding walls.

portions of the substrate occupy equal areas.

The upper and lower walls of the simulation cell each
consisted of 12288 molecules distributed between two
(111) planes of an FCC lattice with density ρw = 4ρ,
where ρ=0.81 σ−3 is the density of the fluid phase. The
fluid was confined to a fixed height d = 20.15 σ; the cell
volume was 266.96 σ × 7.22 σ × d for the transverse ge-
ometry. To eliminate any finite size effects for the lon-
gitudinal geometry, the system size along the ŷ-axis was
doubled in length to 14.45 σ, requiring simulations with
61440 fluid molecules. For either configuration, periodic
BCs were enforced along the x̂ and ŷ axes. The fluid was
held at a constant temperature T = 1.1 ε/kB by means
of a Langevin thermostat [44] with a friction coefficient
τ−1. Here, kB is the Boltzmann constant. This damping
term is only applied to the coordinate equation perpen-
dicular to the direction of flow [28, 36]. The equations
of motion were integrated using the Verlet algorithm [45]

with a time step △t= 0.005 τ , where τ =
√
mσ2/ε rep-

resents the characteristic time set by the LJ potential
and m is the monomer mass. The fluid was subject to
steady planar shear by translating the upper wall at a
constant speed U ; the lower, patterned wall remained
stationary. In all the simulations, the speed of the upper
wall was held fixed at U = 0.5 σ/τ . After an equilibration
period exceeding 104τ , the fluid velocity profile was ob-
tained by averaging the instantaneous monomer speeds
in slices ∆z = 0.1 σ for a time interval ∆t ≈ 3 · 104τ .
The Reynolds number, based on the upper wall speed U ,
the wall separation d and the fluid shear viscosity (de-
termined previously [28, 29] to be µ = 2.2 ± 0.2ǫτ/σ3

for comparable shear rates) was estimated to range from
2−5, indicative of negligible inertial effects and laminar
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FIG. 7: (Color online) Average normalized velocity profile,
〈v〉 τ/σ, corresponding to the longitudinal flow configuration
for εwf/ε=0.8 and a/σ = 1.04, 4.17 and 133.48.

flow conditions. In fact, this estimate provides only an
upper bound on the Reynolds number, since the actual
fluid velocity for surfaces comprising regions of finite and
infinite slip is significantly smaller than the upper wall
speed. In our studies, use of the fluid flow speed further
reduces Re by a factor of up to 2. We conclude that
the small Reynolds numbers characterizing the MD sim-
ulations are consistent with the theoretical restriction for
the Stokes flow solutions obtained in the limit Re=0. We
also note that the numerical solutions to the Stokes equa-
tion for the longitudinal geometry are valid irrespective
of the value of the Reynolds number because the unidirec-
tional flow causes the inertial term in the Navier-Stokes
equation to vanish identically.

IV. RESULTS OF MD SIMULATIONS FOR

TRANSVERSE AND LONGITUDINAL FLOW

The two sets of curves in Fig. 5 show the average
normalized fluid density, ρ(z)σ3, for the transverse flow
configuration in the region above the wetting and non–
wetting stripes for εwf/ε=0.8 and a/σ = 1.04 and 133.48.
The choice a=133.48 σ represents the accommodation of
only two stripes at the lower wall within the Couette cell.
The oscillations near the upper and lower boundaries re-
flect the molecular layering caused by the presence of
dense walls [36]. Increasing the attractive part of the
LJ potential generates larger peak maxima and more os-
cillations. Above either type surface, the density oscilla-
tions persist for about 4−6 molecular diameters from the
wall. Decreasing the strength of the attractive interac-
tion shifts the first peak maximum away from the lower
wall. Also, the fluid density above the wetting stripes
is found to increase with a/σ. The density profiles cor-
responding to longitudinal flow configurations are quite
similar to the ones shown here.
Figure 6 shows representative velocity profiles across
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FIG. 8: (Color online) Comparison of the effective slip length,
Ls, as extracted from the MD simulations (symbols), with nu-
merical solutions of the Stokes equation (continuous lines) for
transverse flow. The local slip length, b, as extracted from the
MD simulations, decreases with increasing wall–fluid attrac-
tion energy, namely b/σ=1.97, 1.36 and 0.95 for εwf/ε=0.8
(◦), 0.9 (⋄) and 1.0 (▽), respectively. The dashed horizontal
lines for a/σ & 100 correspond to Eq. (30). Inset: MD re-
sults showing collapse of the effective slip length Ls/σ when
rescaled by the quantity ε2wf , versus a/σ.

the cell depth for transverse flow with εwf/ε = 0.8 and
a/σ = 1.04, 4.17 and 133.48. Shown for comparison
is the velocity profile corresponding to the case of uni-
formly non-wetting walls where δwf = 0.1 holds for both
surfaces. Decreasing the wall–fluid interaction leads to
a high degree of slip and a plug–like velocity field. The
remaining three profiles increase linearly with z/σ, as ex-
pected for a fluid subject to planar shear, except in the
vicinity of the lower wall. Significant deviations from
linearity occur for large stripe widths. These oscillations
are caused by the difference in the positions of the fluid
density maxima above the wetting and non–wetting re-
gions [see Fig. 5(b)]. As evident from the velocity profile,
the degree of slip increases with increasing values of a.

Figure 7 shows the computed velocity profiles for lon-
gitudinal configurations. The behavior is similar to that
shown in Fig. 6 for the transverse orientation, but the
amplitude of the oscillations near the lower wall is sig-
nificantly larger. In this case, the degree of slip does not
increase monotonically with a. The smallest stripe width
generates the second largest slip velocity in Fig. 7. As
the stripe width increases, it is found that the wetting re-
gions induce stronger molecular ordering in the first fluid
layer adjacent to the wall, causing a reduction in the slip
length, as noted in Fig. 10.

For direct comparison to the hydrodynamic predic-
tions, it was necessary to extract the actual values of the
local slip length, b, representative of the surfaces char-
acterized by δwf = 1.0, for input values to the boundary
conditions used in computing the solutions to the Stokes
equation. This was accomplished in the MD simulations

1 10 100
a / σ
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s / 

σ

εwf = 0.8

Continuum

εwf = 0.9

εwf = 1.0

FIG. 9: (Color online) Direct comparison of the effective slip
length extracted from the MD simulations (symbols) with the
numerical solutions of the Stokes equation (continuous lines)
for longitudinal flow. The local slip length, b, as extracted
from the MD simulations, varies with the LJ wall–fluid inter-
action energy, εwf as b/σ=1.97, 1.36 and 0.95 for εwf/ε=0.8
(◦), 0.9 (⋄) and 1.0 (▽), respectively. The local slip lengths
are observed to be independent of the flow orientation.

by extrapolating the average velocity profile at the top

wall to a speed U for different values of a imposed on
the lower wall. The extrapolated distance b was found to
depend on the wall–fluid interaction energy but not the
shear rate in the fluid nor the flow orientation. As ex-
pected, the values of b decreased with increasing value of
the wall–fluid interaction energy, namely b/σ=1.97, 1.36
and 0.95 for εwf/ε = 0.8, 0.9 and 1.0, respectively. By
contrast, the local slip length for the flat velocity profile
shown in Fig. 6 for uniformly non-wetting walls was found
to be (362±10)σ. Given that this slip length significantly
exceeds the wall separation, the choice δwf =0.1 approx-
imates very well the behavior of surfaces of perfect slip
(i.e. no–shear) assumed in the continuum calculations.
The composite or effective slip length, Ls, was deter-

mined in the MD simulations by linear extrapolation be-
low the stationary lower surface of the velocity profile to
the value zero. Figure 8 represents a plot of Ls/σ with
increasing normalized stripe width, a/σ, and increasing
wall–fluid interaction strength, εwf , for transverse flow
configurations. The MD results (symbols) show a sharp
increase in slip length for a/σ . 10 and saturation to a
constant value beyond a/σ & 100.

V. DISCUSSION

As described in Section IIA and for fixed values of
a/λ, the effective slip length derived from hydrodynamic
considerations depends only on the ratios λ/d and b/d.
The molecular length scale, σ, plays no part in the anal-
ysis. For direct comparison to the MD results, it was
therefore necessary to multiply the numerical values of
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Ls/d, λ/d and b/d from the Stokes solutions with the
value of the wall separation, d = 20.15 σ, used in the
MD simulations. The largest ratio, a/d = 6.62, acces-
sible to the MD simulations was only limited by com-
putational resources. The solid lines shown in Fig. 8
represent solutions of the Stokes flow equation for trans-
verse flow, as discussed in Section II A. The agreement
between the continuum predictions and the MD simula-
tions is excellent for a/σ & O(10); significant deviations
occur for a/σ . O(1). The asymptotic predictions given
by Eq. (30) for λ/d = 2a/d→∞ are designated by the
dashed horizontal lines in Fig. 8.

The Green-Kubo type analysis of Barrat and Boc-
quet [23, 39] for homogeneous surfaces characterized by
a single wall–fluid interaction energy predicts that the
slip length scales as ε−2

wf provided the in–plane structure
factor, fluid contact density, and in–plane diffusion coef-
ficient characteristic of the first fluid layer remain rela-
tively constant. The results shown in the inset of Fig. 8
for the transverse geometry confirm this prediction for
the range a . 10 σ, even for the case of a composite
potential where the wall–fluid interaction alternates be-
tween two values of δwf . This collapse fails above a&10 σ
where the continuum solutions show excellent agreement
with the molecular simulations. This behavior suggests
that for a/σ .O(10), the effective slip length is mostly
determined by the molecular scale frictional properties
between the first fluid layer and the lower wall. For
a/σ & O(10), however, the effective slip length is set
by the wall separation d, the pattern lengthscales a and
λ and the local slip length b. The transition region
8 . a/σ . 30 therefore contains mesoscopic information
from both the molecular and hydrodynamic descriptions.

The deviation between the MD simulations and the
Stokes solutions below a/σ . O(10) can be understood
as follows. The lower wall is comprised of a potential
whose interaction strength alternates between wetting
and non–wetting values with a periodicity set by the
stripe width a, which approaches the molecular scale.
The fluid molecules no longer experience uninterrupted
stretches of wetting and non-wetting regions; instead, the
fluid molecules are exposed to an effectively roughened
surface with molecular scale corrugations. These corru-
gations trap the fluid molecules, thereby suppressing slip
at the wall–fluid interface. The commensurability be-
tween the fluid molecular size and the wall corrugation
size can in fact lead to a no-slip condition for slightly
larger values of εwf [46]. It is therefore not surprising that
the effective slip length for the transverse configuration,
as shown in Fig. 8, decreases sharply with decreasing val-
ues of a. This effect also explains why for the smallest
values of a the slip length Ls is even smaller smaller than
the local slip length obtained for a fluid confined between
two identical walls both characterized by the same value
δwf = 1.0. For example, for εwf/ε = 0.8 and a/σ=1.04,
we find that b/σ=1.97 but Ls/σ=0.5!

Figure 9 shows the behavior of Ls/σ as a function of
stripe width, a/σ, and increasing interaction strength,

εwf , for longitudinal flow configurations. The results of
the MD simulations (symbols) show a sharp decrease in
slip length below a/σ∼ 10 followed by a rapid rise. The
effective slip lengths have similar magnitudes for very
small and very large values of a. Once again, there is ex-
cellent agreement between the Stokes flow solutions and
the MD simulations for a/σ & O(10) but strong devi-
ations below this value. In contrast to the transverse
configuration, however, the MD results predict much
larger effective slips than the continuum solutions for
a/σ . O(10). Because of the translational invariance of
the flow inherent in this case, the molecular scale rough-
ness set by the composite potential at the bottom wall
cannot diminish the slip length. The reduction in molec-
ular ordering above the wetting regions with decreasing
stripe width, however, leads to an increase in the slip
length which exceeds the slip lengths obtained for the
transverse configuration as well as the continuum predic-
tions.

Previous MD simulations of Newtonian and non-
Newtonian fluids have demonstrated that the slip length
for surfaces characterized by a single wall–fluid poten-
tial correlates strongly with the degree of molecular
ordering in the first fluid layer adjacent to the wall
[23, 28, 29, 36, 37, 38, 39]. The more orderly the molec-
ular organization, as reflected by the maximum value of
the in-plane structure function, Smax, the smaller the slip
length. To test these predictions for the case of patterned
walls in a longitudinal orientation, we computed the max-
imum value of the in-plane structure function within the
first fluid layer above the wetting and non-wetting re-
gions separately. The thickness of the first fluid layer
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FIG. 10: (Color online) The dominant peak in the in–plane
fluid structure factor evaluated separately above the wetting
(⋄) and non–wetting (◦) regions for longitudinal flow and
εwf/ε = 0.8. Inset: MD results showing the strong correla-
tion between the effective slip length Ls/σ (circles: data from
Fig. 9) and the quantity A(Smaxρcσ

2)−1 (triangles), which
characterizes the degree of molecular ordering within the first
fluid layer above the wetting stripes. The value of the fitting
parameter A is 92.4.
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was estimated from the position of the first minimum in
the density profile above a wetting stripe. The contact
density ρc was identified with the maximum of the fluid
density within the first fluid layer. The structure func-

tion was computed according to S(q)= |
∑Nℓ

1 eiqy|2/Nℓ,
whereNℓ is the number of molecules in the first fluid layer
adjacent to either a wetting or non–wetting surface. As
shown in Fig. 10, the molecular ordering adjacent to a
wetting region is far stronger and increases with increas-
ing stripe width, a. By contrast, the molecular ordering
adjacent to the non–wetting region is unaffected by the
stripe width, a, except for the smallest value shown. The
inset in Fig. 10 demonstrates the correlation between the
effective length and the parameter (Smaxρcσ

2)−1 as es-
timated above the wetting regions. Here, the values of
Ls/σ versus a/σ from Fig. 9 are plotted alongside the
quantity A (Smaxρcσ

2)−1, where A=92.4 is a fitting pa-
rameter. In the limit a/σ.O(10), the strong correlation
between Ls and A (Smaxρcσ

2)−1 establishes that the in-
crease in effective slip length for narrow stripe widths
is mainly caused by the reduction in molecular ordering
within the first fluid layer above the wetting zones.
The BCs used in the continuum analysis correspond to

stripes of finite (or no) slip and no shear (i.e. b = ∞).
We repeated the analysis in Section II by replacing the
no-shear BC with a second slip BC to define surfaces
comprising alternating stripes of small (b/σ = 1.97) and
large slip (b/σ = 362, as extracted from case (4) shown
in Fig. 6). For the transverse configuration, the curve
corresponding to b/σ = 1.97 in Fig. 8 showed a slight
decrease in Ls of about 3% for a/σ > 30, whereas the
longitudinal configuration generated a decrease of up to
9% with respect to the values shown in Fig. 9.

VI. SUMMARY

We have investigated the behavior of the slip length
in Newtonian liquids subject to planar shear in a Cou-
ette cell with mixed surface boundary conditions. The
upper wall is modelled as a homogenous surface with fi-
nite or no-slip moving at a constant speed above a lower
stationary wall patterned with alternating stripes repre-
senting regions of no-shear and finite or no-slip. The ve-
locity fields and effective slip lengths are computed both
from molecular dynamics (MD) simulations and solution
of the Stokes equation for flow parallel (longitudinal case)
or perpendicular (transverse case) to the stripe pattern.
Detailed comparison between the results of the hydro-
dynamic calculations and MD simulations shows excel-
lent agreement when the length scale of the substrate
pattern geometry is larger than O(10 σ), where σ de-
notes the fluid molecular diameter as set by the Lennard-

Jones interaction. The effective slip length then increases
monotonically with a/σ to a saturation value. For the
transverse case, the Stokes flow solutions predict an effec-
tive slip larger than the MD results when a/σ ∼ O(10).
This discrepancy is understood from a molecular point
of view since a narrowing of the regions subject either
to no-shear or no-slip essentially establishes a roughened
surface. The molecular scale corrugation created by the
composite wall potential strongly reduces the effective
slip length below the hydrodynamic results. This surface
roughening effect is not present for the longitudinal flow
configuration since the fluid molecules are transported
along homogeneous stripes representing regions of either
no-shear or finite slip. In this case, however, the 2D
fluid structure factor above the non-wetting stripes (re-
gions of perfect slip or equivalently no-shear) decreases
for a/σ . O(10), which enhances the effective slip lengths
above the values predicted by the hydrodynamic solu-
tions. On the molecular level, the strong correlation ob-
served between the effective slip length and the product
(ρcSmax)

−1 confirms that a reduction in molecular order-
ing within the first fluid layer generates an increase in the
effective slip length.

Detailed comparison between continuum computations
and molecular dynamics simulations is of increasing im-
portance to the development of hybrid computational
schemes [47, 48, 49, 50]. These algorithms are de-
signed to stitch together hydrodynamic solutions ob-
tained from continuum equations with the molecular
scale solutions obtained from MD simulations or other
microscopic solvers. It has been demonstrated that the
spatial coupling across this wide range in length scales
can be achieved by implementation of constraint dynam-
ics within an overlap region. We hope that our studies
of shear driven flow along surfaces with mixed boundary
conditions will complement ongoing efforts using hybrid
codes. The system and results described here offer an
interesting test case for better understanding of the in-
termediate region bridging the behavior of fluids from the
nanoscale to microscale dimensions.
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