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Slip Detection With a Biomimetic Tactile Sensor
Jasper Wollaston James , Nicholas Pestell , and Nathan F. Lepora

Abstract—Slip detection helps to prevent robotic hands from
dropping grasped objects and would thus enable complex object
manipulation. Here we present a method of detecting slip with a
biomimetic optical tactile sensor—the TacTip—that operates by
measuring the positions of internal pins embedded in its compliant
skin. We investigate whether local pin movement is a strong signal
of slip. Accurate and robust discrimination between static and slip-
ping objects is obtained with a support vector machine (accuracy
99.88%). We then demonstrate performance on a task in which a
slipping object must be caught. For fast reaction times, a modified
TacTip is made for high-speed data collection. Performance of the
slip detection method is then validated under several test condi-
tions, including varying the speed at which slip onset occurs and
using novel shaped objects. The proposed methods should apply to
tactile sensors that can detect the local velocities of surface move-
ment. The sensor and slip detection methods are also well-suited
for integration onto robotic hands for deploying slip control under
manipulation.

Index Terms—Force and tactile sensing, biomimetics.

I. INTRODUCTION

W
HEN grasping an object, humans are able to prevent

dropping it by constantly adjusting their grip [1]. This

is possible due to our highly sensitive slip detection capabilities.

Slip causes local movement of the skin surface, activating the

Meissner corpuscles that are densely concentrated in our fin-

gertips [2]. These mechanoreceptors initiate a reflexive action

to minimise unwanted object motion [3]. Replicating this be-

haviour in a robotic hand will yield a more sophisticated sense

of touch and enable complex object manipulation by reducing

the likelihood of an object being dropped [4].

Slip detection has been an active research area since the

1980s when Howe & Cutkosky presented a solution using an

accelerometer embedded in an artificial skin to detect slip [5].
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They also highlighted the importance of slip detection in al-

lowing successful manipulation. Despite many studies being

performed since, slip detection is yet to be commonplace on

commercially available robotic hands [6]–[9]. The development

of a slip detection method with minimal data preprocessing and

fast classification speed would allow for slip to be checked with

each data collection cycle, which means processing power could

be dedicated to computationally intensive tasks such as in-hand

manipulation. Ideally, such a method would require minimal

training and be robust to changes in experimental conditions, so

individual tactile sensors could be easily calibrated to perform

slip detection accurately.

The aim of this study is to develop a simple, fast and robust

classification method to detect slip using a biomimetic opti-

cal tactile sensor—the TacTip [10], [11]. Previous work with

the TacTip has focused mainly on object perception and explo-

ration [12]–[14], and thus the addition of slip detection capa-

bilities will enable more applications, particularly in relation to

its integration with robotic hands [11]. The TacTip operates by

measuring the positions of internal pins embedded in its com-

pliant skin surface, analogous to mechanoreceptors embedded

around the dermal papillae in our fingertip skin. Here we pro-

pose that pin motion is a strong signal of slip. We validate this

proposition by showing accurate and robust discrimination be-

tween static and slipping objects using a support vector machine

(SVM) applied to pin velocity data.

To ensure the sensor is suited for rapid slip detection, we

modify the existing TacTip [11] to utilize a high-speed camera

system capable of recording at 120 FPS. A rig is also designed to

allow data collection and testing to occur autonomously (Fig. 1).

The performance of the method is validated under several test

condition, including varying the speed at which slip onset occurs

(as in real slip scenarios). Several differently shaped objects are

used to demonstrate generalisation to different object geome-

tries. A simple procedure to measure the slipping distance and

determine whether a test is successful is also presented. The

conclusion is that an SVM applied to pin velocities from the

TacTip optical tactile sensor is a robust method of detecting

slip. Thus, we can detect slip in real time, react to secure the

object and minimise the slipping distance.

II. BACKGROUND AND RELATED WORK

The focus of this study is to detect in real time when an ob-

ject is slipping and react to prevent it from being dropped, so

minimising slipping distance. Since Howe & Cutkosky’s early

work many other sensors of slip have been developed. Mel-

chiorri (2000) combined the data from a force/torque sensor

and a tactile sensor to detect slip and only required knowledge
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Fig. 1. The rig used to collect data of a slipping object. An object is secured
to a clear perspex rectangle which moves inside a low friction rail.

of the coefficient of friction [15]. Hirai et al. (2010) used a

simulated sensor consisting of virtual cantilevers connected by

springs to model how slip would cause the sensor to behave [16].

They then made a sensor which consisted of a series of ridges on

semicyclindrical surface to test the model and detect slip. Kondo

et al. (2011) created a fabric of woven electroconductive yarns

whose electrical resistance depends on the yarn stretch [17].

At the moment immediately prior to slip, the extension is at a

maximum; therefore, slip is detected when a sudden change in

resistance occurs.

The sensors discussed above were specially developed for

detecting slip. Recent work has involved adding slip func-

tionality to existing sensors with minimal modification. Veiga

et al. (2015) used a BioTac tactile sensor and compared SVMs

with random forests to detect slip [6]. Seven differently shaped

objects—including a box and a ball—were used to collect data to

train classifiers which were able to predict slip as well as detect

it. Tests demonstrated high success for each object depending

on the classifier used; however, no single classifier performed

well across all objects. Meier et al. (2016) also used the BioTac

to detect slip but used a convolutional neural network as the

classifier [18].

Optical tactile sensors have also been used to detect slip. Yuan

et al. (2015) used a GelSight sensor which has markers over a

clear gel and calculated the entropy of the marker distribution

to detect slip [9]. They showed that slip occurs at high entropy

levels, but did not progress to a system that reacts to the onset

of slip. That work was improved upon by Dong et al. (2017)

who used shear, contact area and relative displacement between

the sensor and an object to detect slip [19]. They used this

slip detection capability to determine the required grip strength

when picking up a various objects with a one-degree-of-freedom

gripper.

Slip detection has not previously been performed on the Tac-

Tip. Instead the focus has been on shape detection, such as

following the contours of various unseen 2D objects [12] and

accurate (sub-mm) localisation [11], [14], [20]. The TacTip has

also been integrated on robotic grippers. Ward-Cherrier et al.

(2017) used a tactile-modified Yale OpenHand GR2 gripper

Fig. 2. (a) TacTip attached to newly designed mount. (b) The new ELP camera
module secured to the mount with screws to minimise movement of the camera.
The mount is attached to the UR5 via a bayonet cap.

to manipulate cylinders held in a pinch grasp [21]. These

capabilities suggest that the TacTip would be effective at slip

detection, which is the purpose of this study to confirm.

III. MATERIALS AND METHODS

A. Details of Tactile Sensor and Data Collection

1) Tactile Sensor: This study is conducted using the TacTip;

a biomimetic tactile sensor originally presented by Chorley et al.

(2009) [10]. The TacTip is a 3D-printed optical tactile sensor

containing 127 pins arranged in a hexagonal pattern on the inside

of a hemisphere constructed from Tango Black+, a rubber-like

material. The tip is filled with silicone gel (RTV27905) and

sealed with a clear acrylic lens. This makes it compliant but

allows it to rapidly reform its shape and reduces hysteresis. A

camera is focused on the pins and records their positions when

the TacTip contacts an object.

For this study we customised the sensor to use an ELP USB

camera module (model ELP-USBFHD01M-L21) which runs

at 120 frames per second (FPS), significantly faster than the

previous camera used (Livecam, 30 FPS). A new mount was

developed to contain the camera module that eased integration

into the existing TacTip sensor design (Fig. 2). For all experi-

ments here, the TacTip is mounted on a six degree-of-freedom

robotic arm (UR5, Universal Robots).

2) Rig for Slip Experiments: To perform a rigorous analysis

of slip, we designed a custom apparatus for automated collection

of slip detection data. The rig was designed with several criteria

in mind: (i) to allow an object to fall under gravity with minimal

friction; (ii) to allow any experiments to be repeatable with

high precision; (iii) to have the experiments performed entirely

without human input after initial setup; and (iv) to allow a variety

of object shapes and weights to be tested.

The apparatus utilised a low friction rail system with a slider

to which multiple objects can be attached (Fig. 1). Four tactile

stimuli with different radii of curvature were made to represent

differently-shaped objects (radii of curvature: 20, 40 and 80 mm

and the original flat surface), which can be easily interchanged

for testing. Because the objects remain secured to the rail when

dropped, the entire data collection procedure can be performed

autonomously.
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Fig. 3. Picture showing the raw camera image (left) and the identification of
the pins (red dots) after image processing (right). This demonstrates the working
principle of the sensor. The pin positions are the sole tactile data output from
this sensor.

3) Data Collection: The TacTip was pressed against the test

stimulus to secure it, then was raised to a default position. The

arm was then retracted at a speed of 0.1 mms−1 until the object

fell. The arm was next moved to the bottom of the rail to retrieve

the object and return it to its original position. The UR5’s max-

imum repeatability of ± 0.1 mm means that the data collection

runs are consistent and can be performed quickly and safely.

All of the data for training was collected using the flat stimulus.

The data collection routine is performed 40 times for each test

condition.

4) Data Preprocessing: The images from the camera are

processed using Python OpenCV. The images are captured,

thresholded and a contour detection algorithm used to detect

the pin centres, giving coordinates (x, y) in pixels. Fig. 3 shows

the raw camera image and the result of pin detection, with each

red marker on a pin centre. The list of all 127 pin positions is

then passed to MATLAB for analysis. The pin positions are the

sole output from the sensor and are the basis for any analysis

performed. When the sensor contacts a surface the changes in

pin positions are used as the tactile information.

B. Classifier Training and Experiment Description

1) Data Processing: The challenge for this work is to de-

velop a classification method that is robust to changes in arm

movement speed and object shape. As slip involves an object

moving relative to the sensor, having a time-dependent com-

ponent is useful for robustness. For this work the difference

in position of each pin between consecutive frames—the pin

velocity—was chosen. Velocity was chosen because a change

in velocity will always be present when an object starts to slip

and it is easily inferred from the pin positions. When holding

an object, the surface of the TacTip stretches downwards due

to the object weight. When that object begins to slip, the coef-

ficient of friction changes from a static to kinetic value that is

generally lower. Hence, the frictional forces decrease and the

elastic force from the stretched sensor surface causes it to move

back towards its non-deformed shape, shifting the pins upwards.

This is evident in the vector field of the pin velocities, which

has a characteristic alignment at the moment slip occurs (see

Fig. 4(b)). This pattern allows us to determine which frames

correspond to slip for training the classifier.

The vector of pin velocities is collected in Cartesian co-

ordinates (∆xi ,∆yi) for 1 ≤ i ≤ 127, and transformed by:

∆ri =
√

∆x2
i + ∆y2

i and ∆θi = arctan(∆yi/∆xi). The an-

gular component (∆θi) of the pins is shifted to have a mean

of zero with respect to the x-axis of the camera, removing all

angular dependence of the data. This yields a 254-dimensional

time-series input (∆ri ,∆θi) to the classification method.

2) Classification Method: Support Vector Machines (SVM)

were chosen as the classification method as they satisfy several

criteria: (i) fast classification speed; (ii) ability to handle highly

dimensional data (up to 254 dimensions for this work); and (iii)

fast to train over small data sets.

SVMs are a binary classification method that works by effec-

tively plotting (labelled) training data and drawing a hyperplane

which best separates the two classes of the data. New data is

plotted and is classified according to which side of the hyper-

plane it falls on. For further detail see [22]. Not all classes are

able to be separated by a hyperplane; however, non-linear SVMs

can be trained to transform the data so the classes can be lin-

early separated. Here we use a non-linear kernel k(�xi , �xj ) to

transform the data as �xi → φ(�xi), with

k(�xi , �xj ) = φ(�xi) · φ( �xj ). (1)

A Gaussian kernel was used as the non-linear kernel for this

study, given by

k(�xi , �xj ) = exp(−γ||�xi − �xj ||
2) for γ > 0. (2)

Both linear and non-linear (Gaussian) kernels were tested with

parameters chosen—for the non-linear case—using Bayesian

optimisation (using the MATLAB function fitcsvm). Two pa-

rameters were optimised: the Kernel Scale (γ in equation (2));

and the box constraint, which sets the cost of a training data

point being on the wrong side of the dividing hyperplane.

Binary classification splits the training data into two classes.

These classes will be referred to as ‘slip’ and ‘static’. The ground

truth labels were set by manually looking at the vector fields for

each frame and identifying the frames with the alignment of

vectors consistent with slip.

3) Experimental Validation: The first set of experiments

tested the SVMs on the data collected from the automated slip

experiment (details in Section 3A.3). This ‘offline’ testing com-

pares the output of a classifier to the ground truth labels for the

data. Two analyses were performed to identify the best method:

(i) a comparison between a linear and non-linear kernels; and (ii)

the effect of varying the number of frames in the training data

‘slip’ class. This second test is important because the initially-

clear slip signal becomes noisy after only a few frames (see

Fig. 4(c)). The classifiers were trained on half of the collected

data with the remaining data used for testing.

Online testing involves using a classifier to detect slip occur-

ring on a real object in real time. Online testing was performed

using the best-performing classifier from the offline tests. The

online testing involved securing the object in the manner used

when collecting training data, however, when slip is detected

the UR5 reacts to secure the slipping object.

Three online tests were performed. Firstly, the flat stimulus

was tested under the same conditions as the data collection, with

the robotic arm retracted at 0.1 mms−1 . Secondly, the speed of
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Fig. 4. An example of the vector field of pin velocities. Each arrow corresponds to the velocity of one pin and each red dot corresponds to a single detected pin
(fig 3). (a) A typical vector field for a frame where the object is securely held. (b) The characteristic alignment of pins when slip occurs. (c) Showing the same slip
event 5 frames after slip begins. The slip signal has already become very noisy. The difference in vector alignment and magnitude between (b) and (c) demonstrates
the clarity of the slip signal. The direction of vector alignment depends on the slipping angle relative to the surface of the TacTip.

Fig. 5. Picture showing 3D printed stimuli created for this work. Each has
a different radius of curvature to test ability to cope with objects of different
shapes. The apex height of each object is the same (20 mm).

the retraction was varied. Finally, the three curved stimuli were

tested to determine the ability to detect slip of differently-shaped

objects (Fig. 5).

To determine whether a test was a success an ArUco marker

was attached to each stimulus, with a camera (Canon EOS 600D)

recording its position (Fig. 6) [23]. The ArUco marker is used to

record the height of the stimulus: it thus determines whether the

stimulus has been caught or dropped when slip begins, and how

far the stimulus fell before being caught. Calibration is achieved

by lifting an object 50 mm at the start of each test to calibrate

the pixel-to-distance ratio.

IV. RESULTS

A. Inspection of Slip Training Data

The training data demonstrates how drastic an effect a slip

event has on the tactile data. Fig. 7 shows the pin displacements

relative to their initial positions and the frame-to-frame pin ve-

locities, over a typical data collection run. Each coloured line

represents a different pin. There is a clear spike in the pin ve-

locities at around the 1200th frame and a step-change in the pin

positions, both of which strongly signal the onset of slip. This

pin velocity spike is present in all pins. Therefore, slip affects

the entire TacTip skin surface.

Given that we will apply an SVM classifier to the velocity of

pin positions, Fig. 7 shows how noticeable the slip onset is and

indicates that the classifier should work well. The width of the

spike in the velocity data is approximately 0.2s (∼20 frames).

Hence, to prevent a slipping object from falling, the data must be

collected, classified and the robot moved in a very brief period

of time.

B. Offline Validation of SVM Classifier for Slip Detection

Offline testing will allow us to obtain the best classifier, which

will then be used to identify slip in real time. The first clas-

sifier comparison was between the use of a linear and a non-

linear (Gaussian) kernel. The dimensionality of both kernels was

also varied. We compared using both frame-to-frame changes

in magnitude and angles, (∆ri ,∆θi), to sole changes in an-

gle, ∆θi and sole changes in magnitude, ∆ri , corresponding to

254, 127 and 127 dimensional data, respectively. For this first

comparison, a total of six classifiers were tested, with the re-

sults expressed in terms of the percentage of correctly classified

frames (summarized in Table I).

Two observations are drawn from Table I. The first is that

using both the changes in magnitude and angle (∆r,∆θ) gives

better performance than just magnitude or angular data. Both

the magnitudes and angles are useful for slip classification, jus-

tifying the use of the transformation from Cartesian coordinates

to magnitude and angle. As an aside, the magnitudes give better

classification than the angular data on both tests.

The second observation is that the Gaussian kernel outper-

forms the linear kernel. All three of the classifiers trained with

a Gaussian kernel outperform all three with the linear kernel.

The best performing Gaussian SVM has a score 4% higher than

the best scoring linear SVM method. Clearly a hyperplane is

not able to effectively separate the two classes, but the use of an

optimised non-linear kernel is sufficient to drastically increase

the classification success.

The second set of offline tests involves varying the number of

frames in the ‘slip’ class. Previously for training, every frame

was assigned manually to the class ‘slip’ or ‘static’. For the first

test, all ground truth frames in the slip class were used to train

the classifiers; however, the pattern becomes noisy after only a

few frames (see Fig. 4(c)). Choosing the appropriate number of

frames in the slip class would ensure that only the data with a

clear signal indicating slip would be kept, which would give a

better separation between the two classes.

Testing demonstrated that that using 4 frames in the slip

class increases classification success from 99.11% to 99.88%.

Therefore, using the cleanest slip signal allows the SVM to
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Fig. 6. Figure showing the three steps of the experiment procedure. (a) TacTip makes contact with object at bottom of rail. (b) Object slides 5cm up the rail and
then arm begins to retract. (c) When slip is detected arm moves back in to secure the object. A clear drop in height can be seen between (b) and (c). This process
then repeats. The height of the object is tracked by the ArUco marker attached to the stimulus. The marker is labelled in (a).

Fig. 7. Top: Pin displacements during a data collection run. Bottom: Pin
velocities obtained by differentiating the top graph. The sharp spike around
1200 frames is when slip occurs. For clarity a subset of the pins are used and a
5 frame moving average has been applied to the pin displacements.

TABLE I
COMPARISON OF KERNEL TYPES AND DIMENSIONS USED IN THE CLASSIFIER

The classifiers using both magnitude and angular data perform best. The

Gaussian kernel also performs notably better than the linear. Columns

three and four represent the optimised parameters kernel scale (KS) and

box constraint (BC).

better discriminate between slipping and static objects, although

this only marginally outperformed using 3 or 5 frames. For the

remaining tests, only the 4-frame classifier in the ‘slip’ class is

used. It should be noted that the classifier is able to detect more

than the slip onset and can detect upwards of 10 frames after

onset, albeit with lower accuracy.

C. Online Slip Detection & Object Recovery

The main goal of this research is to detect slip and react in

real time. The offline analysis above (Section IVB) allowed us

to identity the best-performing classifier, which not only detects

slip with minimal error but also has a low false-positive rate.

A false positive in this case involves classifying static data as

slipping and therefore reacting to an incorrect impulse. In most

circumstances, this would be less costly than a false negative–

where an object would fall without the robot reacting—but re-

acting unnecessarily could still be harmful. This is why we use

a success rate based on classifying both static and slip frames

rather than only detecting the slip frames.

For online testing in real time, a similar experiment is used as

for the offline tests: the TacTip is pressed horizontally against

a stimulus until it was secured, lifts the stimulus, and then the

arm is again slowly retracted. However, in the online test, when

slip is detected, the arm moves immediately back to prevent the

object from falling. To minimise the effect of false positives, two

consecutive frames must be classified as slip before a response

is triggered from the robot arm.

The initial online tests were performed with the flat stimulus,

which was also used for data collection and analysis. Therefore,

online and offline performance can compared. The speed at

which the arm was retracted was varied to evaluate performance

under different slipping conditions. Validation was achieved

by tracking an ArUco marker (Section IIIb3); thus, we can

determine whether an object has been successfully caught and

calculate the falling distance (Fig. 8).

A test is deemed to be a success when there are two distinct

plateaus separated by a clear drop in height. This means the

object was held steady as the arm retracted (first plateau), began

to slip (drop in height) and was then stopped by the arm (second

plateau). The successes determined from tracking the ArUco

marker and calculating the stopping distances are shown in Ta-

ble III. Overall the systematic error in this method is estimated

to be ±0.1 mm, with standard and systematic errors summed in

quadrature to give the total error.

Eleven different arm retraction speeds varying from 0.1 to

20 mms−1 were performed. Each speed is tested twenty times

(Table III). Seven of the eight lowest retraction speeds have

a success rate of 100%, with the success rate of catching the

object decreasing above 3 mms−1 retraction speed. The average

success over the 220 performed tests is 95%.

There is a positive correlation between retraction speed and

stopping distance, with the slowest speed giving a stopping

distance of 15.5 mm and the fastest 26.9 mm. These results
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Fig. 8. The height of an object during two tests - separated by the dashed
line. Each test has three sections; lifting object, arm retraction and finally, what
happens after slip. The first test has a clear drop followed by a plateau after the
slip has been detected and successfully stopped. The second test, a failure, only
has a large drop as slip was not detected and the object fell.

TABLE II
THE SUCCESS OF THE SVM CLASSIFIER AT DETECTING SLIP AND THEN

MOVING THE ROBOT TO CATCH THE OBJECT

Each speed was tested 20 times. Best performance was for the lowest speeds but success

is high across all tests.

demonstrate that the method developed offline (Section IVB)

performs well in real time to secure a falling object; moreover,

this performance is invariant to changes in arm retraction speed.

Fig. 9 shows the height of the object over twenty test runs. In this

case, each test was successful. The entire computational loop in-

cluding image capture, processing and classification runs at 100

frames per second. Classification was clocked at 3 milliseconds,

less than the time between frames.

The second online test uses three other stimuli with differ-

ent radii of curvature to test robustness to object shape. Each

stimulus was tested twenty times to investigate how the classi-

fier generalises to objects with different curvatures. The stimuli

were mounted such that their curvature was aligned to the ver-

tical axis, with retraction speed 0.1 mms−1 .

Table III shows the classifier is able to detect slip on all the

curved objects, with only 3 failures from the 60 tests performed.

For two stimuli, the stopping distance is less than that for the flat

stimulus; however, this is within error. Testing on these objects

mimics a range of situations that would be encountered when

deploying slip detection in real-world scenarios. We emphasise

Fig. 9. Graph showing the height of an object during twenty tests. Using the
success criteria described in Section IV.C it can be determined that each slip
was successfully detected and the object prevented from falling. It also shows
that there is a reasonable amount of variability in the stopping distance.

TABLE III
THE SUCCESS OF SLIP DETECTION WITH OBJECTS WITH DISTINCT

RADII OF CURVATURE (ROC)

20 tests are performed per object and their success percentage given. The

first row is for the flat stimulus (from Table III).

that these curved objects are entirely novel to the classifier,

which was trained only on a flat object.

V. DISCUSSION

In this study we presented a method of detecting slip using

the TacTip: a biomimetic optical tactile sensor. The velocity of

internal pins within the sensor was used as the input to a support

vector machine (SVM) to detect slip. When slip occurs the ve-

locity vectors of the pins display a clear alignment. Transform-

ing the velocity data into magnitude and angular components

allowed the SVM to reliably discriminate between slipping and

stationary objects. This required minimal training data and pre-

processing. Tests were carried out by securing an object and

then allowing it to slip by retracting the sensor. When slip was

detected the sensor was moved to secure the object, preventing

it from being dropped. These tests achieved a success rate of

up to 100% when the TacTip is retracted at low speeds. The

classifier was also able to detect slip in novel curved objects and

prevent them being dropped.

Fast classification speed coupled with camera upgrades and

streamlined processing means that the TacTip tactile sensor is

capable of running at 100fps, over three-fold faster than previ-

ous studies using the TacTip. Classification speed was a major

factor in the choice of an SVM. In a study by Veiga et al. ran-

dom forests were deemed to be marginally better at detecting

slip than support vector machines [6]. However, here offline

testing yielded comparable results between the two studies with

a classification success of 99.88%. This demonstrates that the
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velocity profile of the entire surface of the TacTip is a reliable

measure to detect slip.

We have only considered situations where an object slips

due to gravity. The method may be susceptible to false posi-

tives when lifting an object and the sensor surface is stretching

under a load. There are multiple other scenarios in which slip

could occur such as slipping under external load and at multi-

ple angles relative to the surface of the sensor. However, here

the scope of our study encompassed training only over a single

angle (downwards under gravity). Furthermore, we did not con-

sider the re-detection of non-slip, which would be an interesting

extension of the method to detect when slip has stopped so that

a precise action to minimise slip can be chosen.

The ability of the classifier to cope with the variation of

the arm retraction speed—when inducing slip—demonstrates a

robustness to changes in experimental conditions. The classifier

was trained on just one retraction speed, yet generalizes to over

220 tests with speed varied from 0.1–20 mms−1 with success

rate of 95%. Veiga et al. (2015) achieved an average success of

74%; however, this was over a wider variety of different objects.

The classifier was also able to detect slip over novel objects,

despite only being trained on a single object. Different shapes

deform the surface of the TacTip in distinct ways; however, by

examining properties common to all slip events—here, the pin

velocity distribution—it is possible to still reliably detect slip

for differently curved objects. This finding relates to work by

Dong et al., who were able detect slip over a wide range of

objects [19]; however, that study considered just the required

grip strength and did not involve responding to the onset of slip

to minimise slipping distance. The minimal processing of our

method allowed for slip to be detected in real time. Nevertheless,

using slip to determine grip strength on an object would be an

interesting future study.

VI. CONCLUSION

The aim of this work was to present a robust method of slip

detection using the TacTip biomimetic optical tactile sensor.

Using the velocity of each internal sensor pin, a support vector

machine was able to reliably detect slip and was robust to novel

object shapes and slip (retraction speed) profiles. We expect the

proposed methods will apply to other array-based soft tactile

sensors that are able to detect the local velocities of surface

movement. Future work will be concerned with further integra-

tion of the TacTip technology onto robotic hands so that slip

can be tested in a wider range of scenarios. We expect that the

method will extend to be independent of slipping direction and

material, which is important when performing multiple grasps.

Other tests will include determining grasp strength and investi-

gating slip with soft and fragile objects.
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