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Slip effects on unsteady non-Newtonian blood hydro-magnetic flow through an

inclined catheterized overlapping stenotic artery are analyzed. The constitutive equa-

tion of power law model is employed to simulate the rheological characteristics of

the blood. The governing equations giving the flow derived by assuming the flow

to be unsteady and two-dimensional. Mild stenosis approximation is employed to

obtain the reduced form of the governing equations. Finite difference method is

employed to obtain the solution of the non-linear partial differential equation in the

presence of slip at the surface. An extensive quantitative analysis is performed for

the effects of slip parameter, Hartmann number, cathetered parameter and arterial

geometrical parameters of stenosis on the quantities of interest such as axial velocity,

flow rate, resistance impedance and wall shear stress. The streamlines for the blood

flow through the artery are also included. C 2016 Author(s). All article content,

except where otherwise noted, is licensed under a Creative Commons Attribution

3.0 Unported License. [http://dx.doi.org/10.1063/1.4941358]

I. INTRODUCTION

A detail literature survey reveals that the cardiovascular disease is the most important factor in

deaths. The major reason is associated with unusual hemodynamic problems within bloodstream.

Theoretical knowledge of the blood circulation, hemodynamics, offers significant help in diagnosis

of the coronary disease. Partial or even overall circulatory occlusion within a coronary artery lessens

the bloodstream offer to the heart which in turn increase the heart attack possibilities. The accu-

mulation of substance like cholesterol or plaque in arterial blood vessels in known as stenosis\

atherosclerosis. Catheter can be used as a tool to diagnose such type of diseases. Catheter alters

the flow pattern and hemodynamics characteristics when inserted inside the artery. A glance of

literature shows that several researcher have provided mathematical/theoretical studies for the blood

circulation inside arteries subject to several problems. For details readers are referred to the articles

by McDonald,1 Mazumdar,2 Fung,3 and Zamir.4 Kanai et al.5 established that the size of catheter is

directly related to the wave reflection at the catheter’ tip on the basis of experimental and theoretical

analysis. Back et al.6 investigated the mean flow resistance of blood in arteries. They concluded that

mean flow resistance of blood increases in catheterization of both normal artery and stenosed artery.

In most of the available studies blood vessels have been assumed to have zero inclination with

the horizontal. This is an established fact that ducts inside the human physiological system aren’t

horizontal, rather have some sort of inclination. This fact encouraged researchers to investigate the

blood flow in inclined arteries. Maruti Prasad and Radhakrishnachandramacharya7 investigated the

steady blood flow through inclined artery with multiple stenosis. The characteristics of the blood

flow through an inclined stenotic tube have been examined by Chakraborty et al..8 In other study,

Sharma et al.9 analyzed pulsatile MHD flow in an inclined catheterized stenosed artery with slip

aCorresponding author: Tel :- +92519019756 (e-mail: akbarzaman75@yahoo.com).
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on the wall. They have assumed the uni-directional blood through single stenotic artery. Recently,

Biswas and Paul10 examined the suspension model for blood flow through a tapering catheterized

inclined artery with asymmetric stenosis. In Refs. 7–10, the authors have assumed blood to be a

Newtonian fluid. The classification of blood as a Newtonian fluid is a crude approximation because

experimental results revealed that blood cannot be characterized as a Newtonian fluid.11

Motivated by above mentioned studies, the unsteady flow of blood flow through an inclined

catheterized artery with overlapping stenosis in the presence of uniform magnetic field is consid-

ered in this paper. Furthermore the present analysis generalizes the results in Ref. 9 by taking

into account non-Newtonian rheology of the streaming blood, two dimensional blood flow and the

overlapping stenotic nature of the artery. The unsteady oscillatory flow considered here is a variant

of flow over an oscillatory stretching sheet studied by several other authors.12–17 The structure of the

paper is as follows: Section II illustrates mathematical formulation of the problem and development

of flow equations. The outline of numerical method using finite difference technique is presented

in section III. Graphical results and discussions are explained in section IV. In section V, some

conclusions are included.

II. MATHEMATICAL FORMULATION

Consider an incompressible fluid\blood is flowing through inclined artery of length L with

overlapping stenosis subject to body force. Cylindrical coordinate system (r, θ, z) are chosen for the

present analysis, where r is directed along the radial direction and z along the axial direction of an

artery. The geometry for the overlapping stenosed arterial segment is defined as (see Fig. 1):

R (z) =


a

(

1 −
64

10
η

(

11

32
l3
0
(z − d) −

47

48
l2
0(z − d)2 + l0(z − d)3 −

1

3
(z − d)4

))

, d ≤ z ≤ d +
3

2
l0,

a, otherwise,

(1)

where a is the radius of the non-tapered artery in the non-stenotic region, l0 is the length of stenosis,

d is the length of non-stenotic region and the parameter η is defined as

η =
4δ∗

al0
4
, (2)

FIG. 1. Geometry of the stenosed arterial segment.
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in which δ∗ denotes the maximum height of the stenosis located at

z = d +
8l0

25
. (3)

The flow is governed by the following equations

∇ · u = 0, (4)

ρ
du

dt
= ∇ · T+ρb + J × B, (5)

where u is the blood fluid velocity, ρ is the blood density, T is the Cauchy stress tensor, b is the body

force per unit volume, J is the current density, B = B0 + B1 is the total magnetic field (where B1 is

the induced magnetic field assumed to be negligible), B0 is the constant magnetic field applied in the

radial direction18and d/dt is the material time derivative. By Ohm’s law, we have

J = σ (E + u × B) , (6)

where σ is the electrical conductivity of blood and E is the electric field. The imposed and induced

electrical fields are assumed to be negligible and in the low magnetic Reynolds number limit we get

J × B = −σ (u × B0) × B0 = −σB0
2
u. (7)

The Cauchy stress tensor for a power law fluid is given by19,20

T = −pI + S, (8)

where

S = µΠn−1
A1 (9)

In which p is the pressure, I is the identity tensor, n is the power law index, µ is the dynamic

viscosity of blood and A1 is the first Rivilin-Ericksen tensor, such that

A1 = ∇u + ∇u
T , (10)

and Π =



1

2
trace

�
A1

2
�
. (11)

It is assumed that the blood flow in the overlapping stenotic artery is unsteady, axisymmetric,

laminar, two-dimensional and fully developed. Therefore the velocity field for the current analysis is

given by

u = [u(r, z, t),0, w(r, z, t)] . (12)

In view of (12), Eqs. (4) and (5) give

∂u

∂r
+

u

r
+
∂w

∂z
= 0. (13)

ρ

(

∂u

∂t
+ u

∂u

∂r
+ w

∂w

∂z

)

= −
∂p

∂r
+

(

1

r

∂

∂r
(rSrr) +

∂

∂z
(Sr z)

)

, (14)

ρ

(

∂w

∂t
+ u

∂w

∂r
+ w

∂w

∂z

)

= −
∂p

∂z
+ ρgsin (φ) +

(

1

r

∂

∂r
(rSr z) +

∂

∂z
(Szz)

)

− σB2
0w, (15)

Srr = 2

µ

������
2

*,
(

∂u

∂r

)2

+

(

u

r

)2

+

(

∂w

∂z

)2+- +
(

∂u

∂z
+
∂w

∂r

)2
������
n−1

2 

(

∂u

∂r

)

, (16)

Szz = 2

µ

������
2

*,
(

∂u

∂r

)2

+

(

u

r

)2

+

(

∂w

∂z

)2+- +
(

∂u

∂z
+
∂w

∂r

)2
������
n−1

2 

(

∂w

∂z

)

, (17)

Sr z =

µ

������
2

*,
(

∂u

∂r

)2

+

(

u

r

)2

+

(

∂w

∂z

)2+- +
(

∂u

∂z
+
∂w

∂r

)2
������
n−1

2 

(

∂w

∂r
+
∂u

∂z

)

. (18)
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Where angle φ represents the inclination angle of an artery. The boundary and initial conditions are

taken as:

w(r, t) = V0,u(r, t) = 0 at r = ka,

w(r, t) = Ūs,u(r, t) = 0 at r = R(z),

w(r, t) = u(r, t) = 0 at t = 0. (19)

Where V0 represents the catheter velocity, k (1 < k > 1) is the aspect ratio of the catheter to artery

radius and Ūs is the slip velocity. The above equations can be made dimensionless by defining

r̄ =
r

a
, w̄ =

w

V0

, ū =
l0u

δ∗V0

, t̄ =
ωp

2π
t, z̄ =

z

l0

, R̄ =
R

a
, p̄ =

a2p

V0l0µ′
, S̄r z =

a

V0µ′
Sr z,

S̄rr =
l0

V0µ′
Srr , S̄zz =

l0

V0µ′
Szz, µ′ = µ

(

V0

a

)n−1

,e =
A1

A0

,ωr =
ωb

ωp

, Us =
Ūs

V0

B1 =
A0a2

µ′V0

, B2 = ρAg

a2

µ′V0

=
ρAg

A0

B1, Re =
ρV0a

µ′
, ḡ =

g

V 2
0
/a

,

(20)

where ωp is angular frequency. As an implication of these variables, Eqns. (13)-(18) after dropping

bars are

δ

(

∂u

∂r
+

u

r

)

+
∂w

∂z
= 0, (21)

αδε2

(

∂u

∂t
+ εRe

(

δu
∂u

∂r
+ w

∂u

∂z

))

= −
∂p

∂r
+ ε2

(

1

r

∂

∂r
(rSrr) +

∂

∂z
(Sr z)

)

, (22)

α


∂w

∂t


+ Re

(

δεu
∂w

∂r
+ ε2w

∂w

∂z

)

= −
∂p

∂z
+

(

1

r

∂

∂r
(rSr z) + ε

2 ∂

∂z
(Szz)

)

− M2 w + Re g Sin (φ) ,

(23)

Sr z =

������

*,δε *,

(

∂u

∂r

)2

+

(

u

r

)2+- + ε
(

∂w

∂z

)2+- +
(

δ
∂u

∂z
+
∂w

∂r

)2
������


n−1
2 (

∂w

∂r
+ δ

∂u

∂z

)

,

Srr =

������
2

*,δε *,
(

∂u

∂r

)2

+

(

u

r

)2+- + ε
(

∂w

∂z

)2+- +
(

δ
∂u

∂z
+
∂w

∂r

)2
������


n−1
2 (

εδ
∂u

∂r

)

,

Szz =

������
2

*,δε *,
(

∂u

∂r

)2

+

(

u

r

)2+- + ε
(

∂w

∂z

)2+- +
(

δ
∂u

∂z
+
∂w

∂r

)2
������


n−1
2 (

ε
∂w

∂z

)

. (24)

We have assumed the stenosis to be mild (δ = δ∗/a << 1), and the ratioε = a/l0 ≈ O(1). In view of

the above assumptions, Eqns. (22) - (23) reduce to

∂p

∂r
= 0, (25)

α


∂w

∂t


= −

∂p

∂z
+

1

r

∂

∂r

r
�����
∂w

∂r

�����
n−1

∂w

∂r

 − M2 w + Re g sin (φ) , (26)

to gather with the pressure gradient21 in dimensionless form

−
∂p

∂z
= B1 (1 + ecos(2π t)) , (27)

where α = ρωa2/2πµ′ is the Wormsley number, B1 is the amplitude of the pulsatile parameter and

M = B0a(σ/µ′)
1/2 is the Hartmann number.

Using value of −∂p/∂z in axial momentum equation (26), we get

α


∂w

∂t


= B1 (1 + ecos(2π t)) +

1

r

∂

∂r

r
�����
∂w

∂r

�����
n−1

∂w

∂r

 − M2 w + Re g sin (φ) , (28)
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w(r, t) = 1, at r = k,

w(r, t) = Us, at r = R(z), (29)

Volumetric flow rate, the shear stress at the wall and resistance to flow or impendence in terms of

this new variables are

Q =

1

0

urdr, (30)

τs = *,
�����
∂u

∂r

�����
n−1

∂u

∂r
+-r=1

, (31)

λ =
L

(

∂p

∂z

)

Q
. (32)

The dimensionless form of geometry equation is given by:

R(z) = (1 + ξ z)


1 −

64

10
η1

(

11

32
(z − σ) −

47

48
(z − σ)2 + (z − σ)3 −

1

3
(z − σ)4

)
, σ ≤ z ≤ σ + 1.5,

where η1 = 4δ, δ =
δ∗

a
,σ =

d

l0
, ξ =

ξ ′l0

a
.

(33)

The radial coordinate transformation22 is used in momentum to incorporate the geometry effects,

x =
r

R(z)
, (34)

using Eq. (34) in Eq. (28) and (29), we get

α


∂w

∂t


= B1 (1 + ecos(2π t)) +

1

xRn+1

∂

∂x

x
�����
∂w

∂x

�����
n−1

∂w

∂x

 − M2 w + g sin (φ) , (35)

w(x, t)|x=k = 1, w(x, t)|x = 1 = Us. (36)

Similarly the volumetric flow rate, the shear stress at the wall and resistance impendence respec-

tively takes the form:

Q = R2
*..,

1

0

w xdx
+//-
, (37)

τw =
1

Rn
*,
�����
∂w

∂x

�����
n−1

∂w

∂x
+-x=1

, (38)

λ =

L
l0

(

∂p

∂z

)

Q
, (39)

Substituting the value dimensionless form of pressure gradient in Eq. (40), we can write,

λ =
L

l0

B1 (1 + ecos(2π t))
(

1
0

w xdx

)

R(z)

. (40)

III. NUMERICAL SOLUTION USING FINITE DIFFERENCE METHOD

Finite difference scheme has been incorporated23–25 to obtain the numerical solution of Eq. (35)

subject to boundary and initial conditions (36). In this scheme, radial derivative is approximated by

central difference formulae while time derivative is approximated by a forward difference formula.
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The notation w
j

i
is used to represent the value of w at node xi and at time instant t j. Thus, we write

∂w

∂x
�

w
j

i+1
− w

j

i−1

2∆x
= wx, (41)

∂2w

∂x2
�

w
j

i+1
− 2w

j

i
+ w

j

i−1

(∆x)2
= wxx, (42)

and
∂w

∂t
�

w
j+1

i
− w

j

i

∆t
. (43)

Using the above approximation for spatial and time derivatives in (35), we get the following

difference equation:

w
j+1

i
= w

j

i
+

dt

α

�
B1

�
1 + ecos(2πt j)

�
+

1

xRn+1
|wx |

n−1wx +
wx

Rn+1

∂

∂x

(

|wx |
n−1

)

+
1

Rn+1
|wx |

n−1wxx − M2 w
j

i
+ Re g sin (φ)


(44)

The finite difference representation of the prescribed conditions is given by

w1
i = 0, at t = 0,

w
j

N+1
= Us, at x = 1,

w
j

i
= 1 at x = k .

(45)

The numerical solution is sought for N + 1 uniformly discrete points xi, (i = 1,2, . . . ..N + 1) with

a grid size ∆x = 1/N+1 at the time levels t j = ( j − 1)∆t, where ∆t is the small increment in time.

To obtain the accuracy of the order ∼ 10−7, we have taken the following step sizes: ∆x = 0.025 and

∆t = 0.00001.

IV. RESULTS AND DISCUSSION

In this section graphical results are displayed for the following set of parameters: d = 0.5, l0

= 1.0, ωp = 2π f p, f p = 1.2, ωb = 2π fb, Re = 1.

Fig. 2 illustrate dimensionless velocity profiles for different values of slip velocity (Us) panel

(a) and inclination parameter φ panel (b), where τs is the dimensionless steady state time at which

the maximum velocity is obtained. This figure indicates that magnitude of axial velocity increases

by increasing both of slip velocity or inclination angle. It is therefore concluded that increasing

either of slip velocity or inclination angle accelerate the flow ad results in larger momentum flux

through the whole arterial segment.

The dimensionless velocity profiles for different values of Hartmann number (M) and dimen-

sionless catheter radius (k) are shown in Fig. 3(a) and 3(b) respectively. It is found that in the

FIG. 2. (a) Velocity profile for different values of slip parameter Us and Fig. 2. (b) angle of inclination φ with the following

data: t =τs, z = 0.77, α = 2,e = 0.2, δ = 0.1, n = 0.8, k = 0.1,M = 0.5.
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FIG. 3. (a) Velocity profile for different values of Hartmann number, Fig. 3. (b) size of catheter radius and Fig. 3. (c) power

law parameter n with the following data: t =τs, z = 0.77, δ = 0.1, α = 2,e = 0.2, k = 0.1, n = 0.8, φ = π/3,Us = 0.1.

present scenario the axial velocity of the blood decreases with increasing the strength of the applied

magnetic field or the catheter radius. In fact, under the considered conditions the magnetic force is

a resistance to flow, and its magnitude is proportional to the axial velocity of blood, hence a flow

declaration is observed with the increase of M. In the same way, the drag force experienced by

the streaming blood increases with the increase of catheter radius and hence the amplitude of flow

near the catheter radius substantially. The variation in axial velocity for various values of power

law parameter n is shown in Fig. 3(c). As expected the magnitude of flow velocity increases with

a change in the behavior of the blood from Newtonian to shear thinning. This trend is physically

realizable because of decrease in the effective viscosity of the blood for n < 1.

The plots of dimensionless flow rate at the stenotic throat (z = 0.77) for different values of M

and k in the stenotic region are shown in Figs. 4(a) and 4(b). These figure reveals that flow rate

decreases with increasing the strength of the magnetic field or the radius size of catheter, which

shows that the effect of these parameters is to diminish the magnitude of flow rate.

The influence of slip parameter Us and inclination parameter φ on dimensionless flow rate in

the stenotic region is illustrated through Figs. 5(a) and 5(b). It is evident that flow rate increases with

an increase in the magnitude of slip parameter or inclination angle. The behavior of the flow rate is

directly linked with the behavior of the velocity. If velocity is an increasing (or decreasing) function

FIG. 4. (a) Flow rate for different values of Hartmann number,M and Fig. 4. (b)k with the following data: z = 0.77,Us

= 0.1, φ = π/3, α = 1,e = 1, δ = 0.1.
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FIG. 5. (a) Flow rate for different values of φ and Fig. 5. (b) Us with the following data: z = 0.77,n = 0.8, k = 0.1, α

= 1,e = 1,M = 0.5,Us = 0.1.

of a certain parameter than so is the case with flow rate. Therefore, increasing (decrease) in flow rate

with increasing slip velocity and inclination angle (Hartmann number and catheter radius) is a direct

consequence of increase (decrease) in velocity with increasing these parameters.

The profiles of wall shear stress at the stenotic throat (z = 0.77) for different values of Hart-

mann number, and catheter radius are shown in Figs. 6(a) and 6(b), respectively. Fig. 6(a) indicates

that wall shear stress decreases from the purely hydrodynamic (non-magnetic) to the magneto-

hydrodynamic case, since the presence of magnetic field decelerates the flow and reduces wall

stress. Fig. 6(b) depicts a similar behavior of wall shear stress with increasing the catheter radius as

observed through Fig. 6(a).

The time-series of dimensionless wall shear stress at the stenotic throat (z = 0.77) for different

values of slip parameter Us is shown in Fig. 7(a). It is evident from inspection of Fig. 7(a) that

an increase in the slip parameter Us decreases the magnitude of the wall shear stress. Similarly

wall shear stress at the stenotic throat follows an increasing trend with increasing the angle of

inclination. It is therefore concluded through Fig. 7 that flow acceleration caused by increasing the

angle of inclination at the stenotic throat increases the wall shear stress there. In contrast, the flow

acceleration caused by slippage at the stenotic throat reduces the wall shears stress there.

The time-series of dimensionless resistance to flow of various values of inclination angle and

slip parameter is plotted in Fig. 8(a) and 8(b). It is noted that resistance to flow decreases with

increase in the magnitude of angle of inclination or slip parameter.

The blood flow patterns over for the whole arterial segment at time instant t = 0.45 (which

belongs to diastolic phase) are shown in Fig. 9 (Panels (a)-(d)). Panel (a) is considered as standard

and rest of the panels are compared with it in order to illustrate the effects of various parameters

on bolus pattern. Panels (a) and (b) illustrate streamlines for φ = π/3 and φ = π/2, respectively.

Both panels indicate a circulating bolus of fluid in the overlapping stenosed region of the artery and

their comparison reveals a decrease in the size of bolus by increasing the angle of inclination. The

effect of slip parameter on streamlines pattern can be observed through the comparison of panels

(a) and (c). It is observed that an increase in the strength of slip parameter decreases the size of

FIG. 6. (a) Dimensionless wall shear stress for different values of Hartmann number, M and Fig. 6. (b) k with the following

data: z = 0.77, Us = 0.1, φ = π/3, δ = 0.1.
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the circulating bolus. This is perhaps due to the accelerating effect of slip on the flow velocity.

Finally, a comparison of panels (a) and (d) illustrates the effects of catheter radius on streamlines

pattern. It clear that size and circulation of trapped bolus decreases when the radius of the catheter is

increased.

FIG. 7. (a) Wall shear stress for different values of Us and Fig. 7. (b) φ with the following data: z = 0.77,n = 0.8, k

= 0.1, M = 0.5,Us = 0.1.

FIG. 8. (a) Resistance to flow for different values of permeability parameter φ and Fig. 8. (b)Us with the following data:

z = 0.77,n = 0.8, k = 0.1, M = 0.5,Us = 0.1.

FIG. 9. (a)-(d) Blood flow patterns for: δ = 0.1, B1= 4, t = 0.45.
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V. CONCLUSIONS

A mathematical model for magneto-hydrodynamic pulsatile flow of blood through overlapping

stenotic artery incorporating the effects of inclination angle and slip is presented. The Constitutive

model equation of non-Newtonian power-law model is used to characterize the blood rheology.

The nonlinear partial differential equation for the model under consideration is derived employing

the laws of mass and momentum conservation. The solution is obtained using an explicit finite

difference scheme. The numerical results show that the wall slip and inclination angle of the artery

have significant effects on the hemodynamical variables like axial velocity, flow rate, wall shear

stress and resistance impedance. In fact these variables, except wall shear stress, follow a similar

trend by increasing slip parameter or inclination angle. However, the behavior of wall shear stress

with increasing the slip parameter is quite opposite to the behavior of the wall shear stress with

increasing the inclination angle. Moreover, the streamlines of the flow also follow a similar trend

with increasing slip at the wall or inclination angle of the arterial segment.
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