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By exploiting the reciprocal theorem of Stokes flow we find an explicit expression for the first order slip
length correction, for small protrusion angles, for transverse shear over a periodic array of curved menisci.
The result is the transverse flow analogue of the longitudinal flow result of Sbragaglia & Prosperetti [Phys.
Fluids, 19, 043603, (2007)]. For small protrusion angles, it also generalizes the dilute-limit result of Davis &
Lauga [Phys. Fluids, 21, 113101 (2009)] to arbitrary no-shear fractions. While the leading order slip lengths
for transverse and longitudinal flow over flat no-shear slots are well-known to differ by a factor of 2, the first
order slip length corrections for weakly protruding menisci in each flow are found to be identical.

I. INTRODUCTION

Quantifying the hydrodynamic slip properties of su-
perhydrophobic surfaces has been the focus of intense
research activity in recent years owing to their use
in significantly reducing friction factors in micro- and
nano-fluidics applications1,2. These surfaces reduce fric-
tion due to the presence of free surfaces, or menisci,
spanning interstitial grooves between protrusions in
the substructure of the surface. Much theoretical3–11,
experimental12–14 and numerical work15–18 has been done
to understand the friction properties of these surfaces.
A paper by Philip3, which solves a varierty of perti-
nent mixed boundary value problems, has become a well-
known reference in this area but it only deals with flat
menisci and under the assumption that they are shear-
free. There has been recent efforts to quantify hydro-
dynamic slip in more general situations where, for ex-
ample, the menisci are curved5–8,14,18 and where the ef-
fect of a second subphase fluid is incorporated10,11,19–21.
Special superhydrophobic microfluidic devices even ex-
ist with the capability of actively controlling the menis-
cus curvature to “tune” surfaces to have desired friction
properties22. On the other hand, the role of interface cur-
vature, in concert with surface immobilization effects due
to surfactants and other contaminants, have been studied
as mechanisms for understanding observed compromised
slip properties for certain surfaces23,24.

As research in the area grows, with new physical effects
constantly added and novel surface geometries devised,
it is desirable to have available a catalogue of explicit
formulas quantifying slip in canonical flow scenarios, es-
pecially ones involving non-zero meniscus curvature.

This paper, which adds to this catalogue, concerns
the problem shown in Figure 1: transverse shear flow
in an (x, y) plane over a 2a-periodic surface of no-shear
menisci, protruding with angle θ into the flow (a “bub-
ble mattress”), or into the groove if θ < 0, with those
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FIG. 1. Transverse shear flow in an (x, y) plane over a pe-
riodic array of weakly protruding menisci (or bubbles). The
protrusion angle can be either positive or negative. The lon-
gitudinal flow problem, where the flow is into the page, was
considered by Sbragaglia & Prosperetti5.

menisci spanning gaps of length 2b. This problem has
been considered theoretically by Davis & Lauga6 in the
dilute limit b/a� 1 with a view to rationalizing the ob-
served negation of any slip advantage14 afforded by the
no-shear menisci when those menisci protrude too promi-
nently into the oncoming shear. When the menisci are
flat, so that θ = 0, Philip3 found the transverse velocity
field analytically as well as the following formula for the
effective slip length:

λ⊥P =
a

π
log sec

(
πξ

2

)
, ξ =

b

a
, (1)

The latter formula is valid for any no-shear fraction ξ.

Philip3 also found an analytical solution for the
problem of semi-infinite longitudinal shear flow
(0, 0, wP (x, y)) (where the flow is now into the page
in Figure 1) over the same surface and found that the

associated slip length λ
||
P = 2λ⊥P . Recently, the present

author has demonstrated11 using a reciprocal theorem
approach that if the longitudinal slip length for shear
flow over weakly protruding menisci, i.e. θ � 1, is
developed in the regular perturbation expansion

λ|| = λ
||
P + θλ

||
1 + . . . (2)
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then the first order slip length correction, λ
||
1 , is given by

the integral formula

λ
||
1 =

1

2a

∫ b

−b

(
b2 − x2

2b

)(
∂wP

∂x
(x, 0)

)2

dx. (3)

We emphasize that the integral on the right hand side
depends only on Philip’s known flat-meniscus solution
wP (x, y) for which it is known that

wP (x, 0) =
2a

π
cosh−1

[
cos(πx/2a)

cos(πb/2a)

]
,

∂wP

∂x
(x, 0) = − sin(πx/2a)

[cos2(πx/2a)− cos2(πb/2a)]1/2
.

(4)

The same problem of longitudinal flow over weakly-
protruding menisci was considered by Sbragaglia &
Prosperetti5 using a very different approach where the
full first order flow perturbation and slip length correc-
tion were computed by solving an infinite linear system
of so-called dual series equations. After a series of ma-
nipulations, and use of several special function identities,
Sbragaglia & Prosperetti5 report the result

λ
||
1 =

bF (ξ)

2
, (5)

with

F (ξ) = ξ

∫ 1

0

(1− s2)
[1− cos(sπξ)]ds

cos(sπξ)− cos(πξ)
. (6)

Since that work, the present author11 has shown that
exactly the same result follows on substitution of (4) into
formula (3):

λ
||
1 =

1

2a

∫ b

−b

(
b2 − x2

2b

)
sin2(πx/2a)

cos2(πx/2a)− cos2(πb/2a)
dx

(7)
which, after a change of integration variable, x = bs,
and use of some trigonometric identities, retrieves (5).
While both approaches reach the same final result (5),
Sbragaglia & Prosperetti5 did not derive the integral for-
mula (3) expressing the first order correction in terms of
Philip’s known flat-meniscus solution wP .

The purpose of this Letter is to show that exactly
the same feature is true of the transverse flow prob-
lem; namely, that the first order slip length correction for
transverse flow can also be found as an explicit integral
dependent only on Philip’s known flat-state transverse
flow solution. The transverse problem was not considered
by Sbragaglia & Prosperetti5; indeed, to the best of the
author’s knowledge, there has been no previous attempt
to generalize the longitudinal analysis of Sbragaglia &
Prosperetti5 to the transverse flow scenario, probably ow-
ing to the much more complicated biharmonic nature of
the governing field equation for the streamfunction in this
case. The generalization is made here, by extending the

reciprocity approach of recent work11 – this avoids the
need for a direct solution of the full first-order problem –
with the surprising result that the first-order slip length
correction for the transverse problem is identical to that
for the longitudinal problem in the same geometry.

To proceed with the analysis we let {ui, σij} repre-
sent Philip’s solution for transverse shear flow, with unit
shear rate, over a periodic array of flat no-shear slots
as depicted in Figure 1 but with θ = 0. Let {u′i, σ′ij}
represent the solution for transverse shear flow, with the
same unit shear rate, over a surface of weakly protruding
menisci with protrusion angle θ and |θ| � 1 (the menisci
can protrude into the fluid or into the groove). Let D be
the fluid domain in a single period window of this weakly
protruding scenario; see Figure 1. Without loss of gen-
erality we assume zero pressure in the subphase gas so
that, on the meniscus,

σ′ijnj = Tκni, (8)

where T is the surface tension and κ is the meniscus
curvature in the transverse (x, y)-plane. We follow Davis
& Lauga6 and assume the capillary number is sufficiently
small that the meniscus can be assumed to be a circular
arc of constant curvature. As y →∞,

u→
(
y + λ⊥P

0

)
, u′ →

(
y + λ⊥

0

)
, (9)

where λ⊥ is the quantity we wish to find. By the recip-
rocal theorem of Stokes flow25:∮

∂D

(u′iσijnj − uiσ′ijnj)ds = 0. (10)

The periodicity in the x-direction of both flows precludes
any contribution to this boundary integral from the pe-
riod window sidewalls. Along the “edge” at infinity, i.e.,
x ∈ [−a, a], y = H as H →∞, we find

σijnj , σ
′
ijnj →

(
1
0

)
(11)

hence the contribution to the boundary integral from this
edge is

2a(λ⊥ − λ⊥P ). (12)

On use of the no-slip conditions satisfied by both ui and
u′i on the lower no-slip walls of the period window (10)
we find

2a(λ⊥ − λ⊥P ) +

∮
meniscus

(u′iσijnj − uiσ′ijnj)ds = 0. (13)

Since θ is small it is easy to show that its curvature κ =
O(θ). Hence by the boundary condition (8) and the fact
that, on the curved interface, uini = O(θ) where ui is
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the velocity field of the flat-interface problem,∮
meniscus

uiσ
′
ijnjds = o(θ). (14)

By the no-slip conditions satisfied by both ui and u′i on
the lower walls of the period window we then conclude
that

2a(λ⊥ − λ⊥P ) +

∮
meniscus

u′iσijnjds = o(θ). (15)

Now if we develop the perturbation expansions

u′ = u + θu1 + . . . , λ⊥ = λ⊥P + θλ⊥1 + . . . (16)

then it follows from (15) that

2aθλ⊥1 = −
∮
meniscus

uiσijnjds+ o(θ). (17)

Therefore the first-order slip length correction for a
weakly curved circular meniscus is given by an inte-
gral whose integrand depends only on the known flat-
meniscus solution. Formula (17) is the analogue of the
aforementioned result (3) for the longitudinal flow prob-
lem derived using similar reciprocity arguments11.

It only remains to compute the integral on the right
hand side of (17) correct to order θ. The problem for
transverse flow over a periodic array of flat no-shear slots
was solved by Philip3 and rederived9 in a convenient
parametric form using a complex variable formulation
of the Stokes flow problem. On introducing the complex
variable z = x+ iy (note: the use of z here is not to label
the third axis orthogonal to the (x, y) plane), Crowdy9

finds

ψ = Im[zf(z) + g(z)], f(z) =
i

4
h(z), g(z) = −zf(z),

(18)
where an explicit expression for h(z) was given. Now, as
shown in9,

σijnj 7→ 2µi
dH

ds
, H(z, z) ≡ f(z) + zf ′(z) + g′(z),

(19)
where the arrow 7→ is used to denote the procedure of ex-
pressing a vector quantity (ax, ay) in its natural complex
variable form ax + iay. Similarly,

u 7→ u+ iv = −f(z) + zf ′(z) + g′(z). (20)

On the flat meniscus, we can then write

u+ iv = H − 2f(z). (21)

It follows from (17) that

2aθλ⊥1 = −Re

[
2µi

∫
meniscus

(H − 2f)dH

]
, (22)

where we have used the fact that a.b 7→ Re[(ax−iay)(bx+
iby)]. On use of the expression for g(z) from (18),

H = f(z)− f(z) + (z − z)f ′(z). (23)

It is straightforward to show5,11 that the meniscus can
be parametrized by z = x+ iθη(x) where

η(x) =
b2 − x2

2b
. (24)

Hence, on the meniscus,

H = f(x) + iθη(x)f ′(x)− f(x) + iθη(x)f ′(x)

+ 2iθη(x)f ′(x) + o(θ) = 4iθηf ′(x) + o(θ),
(25)

where we have used the fact, established in9, that f(x) =
f(x) and, hence, f ′(x) = f ′(x). Equation (22) yields

2aθλ⊥1 = Re

[
4µi

∫ b

−b
f(x)dH

]
+ o(θ)

= θRe

[
−16µ

∫ b

−b
f(x)d[ηf ′(x)]

]
+ o(θ).

(26)

It follows that

λ⊥1 =
8

a

∫ b

−b
η(x)f ′(x)2dx, (27)

where we have used integration by parts and the fact that
η has simple zeros at x = ±b as seen from (24). (27) and
(18) together imply

λ⊥1 =
8

a

∫ b

−b
η(x)f ′(x)2dx = − 1

2a

∫ b

−b
η(x)h′(x)2dx.

(28)
The author has also shown elsewhere9 that Philip’s so-
lution for longitudinal shear flow over flat slots can be
written as wP = Im[h(z)] where the analytic function
h(z) is precisely that appearing in (18). By the ana-
lyticity of h(z), and the fact that ∂wP /∂y = 0 on the
meniscus in the longitudinal flow problem,

dh

dz
=

i∂wP

∂x
(29)

so that (3) can be written as

λ
||
1 =

1

2a

∫ b

−b
η(x)

(
∂wP

∂x

)2

dx = − 1

2a

∫ b

−b
η(x)h′(x)2dx.

(30)
The conclusion, on combining (7), (28) and (30), is

λ⊥1 = λ
||
1 =

1

2a

∫ b

−b
η(x)

sin2(πx/2a)

cos2(πx/2a)− cos2(πb/2a)
dx.

(31)
That is, the first-order slip length correction, in small
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protrusion angle, is the same for both longitudinal and
transverse shear over these superhydrophobic surfaces.
Moreover, (31) provides an explicit integral formula for
it. We are unable to suggest a physical reason for this sur-
prising result, but it is clearly related to the fact that the
same analytic function h(z) appears in the flat-meniscus
solutions for both longitudinal and transverse flow.

We can check this result in the dilute limit ξ � 1. An
expansion of (31) for small ξ yields, after some manipu-
lations,

λ⊥1 = λ
||
1 ∼

bξ

6
. (32)

It has already been verified elsewhere8 that the result
(32) for longitudinal flow is consistent with a small-θ ex-
pansion of a formula derived by a conformal geometric
approach valid for arbitrary protrusion angles θ. On the
other hand, for transverse flow, Davis & Lauga6 find the
dilute-limit slip length in this case as a general function
of θ in the form

πb2

a

∫ ∞
0

A(s, θ)ds, (33)

where an explicit form of A(s, θ) is given6. A small-θ
expansion yields

A(s, θ) =
2s

sinh(2sπ)
+

2s2θ

cosh2(sπ)
+O(θ2), (34)

implying, on substitution into (33), the first-order slip
length correction

πb2

a

∫ ∞
0

2s2

cosh2(sπ)
ds =

bξ

6
, (35)

which confirms the new result (32). Here we have used
the fact that ∫ ∞

−∞

s2

cosh2(sπ)
ds =

1

6π
(36)

which follows from an exercise in residue calculus (inte-
grating s4/ cosh2(sπ) around the closed boundary con-
tour of the channel region −∞ < Re[s] <∞ with upper
walls at Im[s] = 0 and Im[s] = 1).

It is clear from this calculation that, in the small an-
gle limit, the new result (31) generalizes the dilute-limit
transverse slip length result of Davis & Lauga6 (33) to
any no-shear fraction.

At the same time, the formula in (31) is the direct
analogue, for transverse shear flow, of the small-angle
longitudinal slip length result found by Sbragaglia &
Prosperetti5.
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