
San Jose State University San Jose State University 

SJSU ScholarWorks SJSU ScholarWorks 

Faculty Publications Physics and Astronomy 

1-1-1992 

Slip Length in a Dilute Gas Slip Length in a Dilute Gas 

Alejandro Garcia 
San Jose State University, alejandro.garcia@sjsu.edu 

D. Morris 
San Jose State University 

L. Hannon 
IBM Scientific Center 

Follow this and additional works at: https://scholarworks.sjsu.edu/physics_astron_pub 

 Part of the Other Astrophysics and Astronomy Commons, and the Other Physics Commons 

Recommended Citation Recommended Citation 
Alejandro Garcia, D. Morris, and L. Hannon. "Slip Length in a Dilute Gas" Physical Review A (1992): 
5279-5281. https://doi.org/http://dx.doi.org/10.1103/PhysRevA.46.5279 

This Article is brought to you for free and open access by the Physics and Astronomy at SJSU ScholarWorks. It has 
been accepted for inclusion in Faculty Publications by an authorized administrator of SJSU ScholarWorks. For 
more information, please contact scholarworks@sjsu.edu. 

https://scholarworks.sjsu.edu/
https://scholarworks.sjsu.edu/physics_astron_pub
https://scholarworks.sjsu.edu/physics_astron
https://scholarworks.sjsu.edu/physics_astron_pub?utm_source=scholarworks.sjsu.edu%2Fphysics_astron_pub%2F86&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/130?utm_source=scholarworks.sjsu.edu%2Fphysics_astron_pub%2F86&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/207?utm_source=scholarworks.sjsu.edu%2Fphysics_astron_pub%2F86&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/http://dx.doi.org/10.1103/PhysRevA.46.5279
mailto:scholarworks@sjsu.edu


PHYSICAL REVIEW A VOLUME 46, NUMBER 8 15 OCTOBER 1992 

Slip length in a dilute gas 

David L. Morris 
Department ofPhysics, San Jose State University, San Jose, California 95192-0106 

Lawrence Hannon 
IBM Scientific Center, 1530 Pagemi/1 Road, Palo Alto, California 94304 

Alejandro L. Garcia 
Department ofPhysics, San Jose State University, San Jose, California 95192-0106 

(Received 24 February 1992) 

We study the phenomenon of slip length using molecular dynamics and direct simulation Monte Carlo 
simulations of a dilute gas. Our work extends the range of Knudsen numbers that have been previously 
studied. In a recent paper, Bhattacharya and Lie [Phys. Rev. 43, 761 (1991)] suggest a logarithmic 
dependence of slip length on Knudsen number. By a simple redefinition of the mean free path, we obtain 
good agreement between simulation results and Maxwell theory for slip length. The anomalies seen by 
Bhattacharya and Lie appear to be due to their definition of the mean free path. 

PACS number(s): 47.45.Gx 

The velocity profile of a fluid very close to a wall 
(within a few mean free paths) exhibits a phenomenon 
known as slip. The velocity of the fluid v(x) near the wall 
does not equal the wall's velocity even if the wall is per
fectly thermalizing. A similar phenomenon, called jump, 
also occurs for temperature. The existence of velocity 
slip was first predicted by Maxwell [l]. Its effect is im
portant in microscopic flows (e.g., flow between the write 
head and the platter on a hard disk) and in rarefied gas 
flows (e.g., very-high-altitude flight). In this short paper 
we address the question: Is slip a strictly local effect or 
does it depend on the entire flow field? Physical intuition 
suggest the former but recent computer experiments indi
cate the latter [2,3]. 

We define the slip length I., as the distance inside the 
wall at which the (extrapolated) fluid velocity would 
equal the wall's velocity [4]. The slip length may be writ
ten as 

= v(x =0) vo1 (1) 
.- (dvldx)x=O Yo 

with the wall located at x = 0. The dimensionless slip 
length 1: is defined as 

[ *-Is• =L, (2) 

where L is the characteristic length in the problem. 
In this work we investigate how 1: varies with Knud

sen number for planar Couette and Poiseuille flow. The 
Knudsen number is a dimensionless parameter defined as 

Kn= ~ , (3) 

where A is the mean free path. Maxwell theory predicts 
that the slip length is related to the mean free path as 

t:=aKn, (4) 

where ae 1.15 is the slip coefficient [5]. 
From basic kinetic theory we know that the mean free 

path Ah, in a hard-sphere gas is 

(5) 

where p is the fluid density, and m and d are the mass 
and diameter of the particles, respectively. Chapman
Enskog theory gives us the following expression for the 
viscosity 71 of a hard-sphere gas: 

112 
[ 21TkB T 111=2...pA (6)

16 m 

where Tis the temperature and kB is Boltzmann's con
stant. 

For particles with extended potentials, the definition of 
the mean free path is problematic. Cercignani suggests 
the following operational definition for the mean free 
path [6]: 

A -!L [ 1Tm 1
1/2 

(7) 
v p 2kBT 

Notice that Av is defined in terms of the viscosity. We 
define the hard-sphere and viscous Knudsen numbers as 
Knh = Ah I L and Knv = Av I L, respectively. For a hard
sphere gas at equilibrium, the two definitions of mean 
free path are equivalent [7]. Far from equilibrium they 
differ, since Av includes boundary effects. 

The two definitions of the mean free path Ah and Av are 
functions of density; the latter also depends on tempera
ture. We computed the mean free path using the fluid 
density and temperature as measured near the wall. Us
ing the average density and temperature instead had little 
effect on the results from our runs. 

We measured slip length in two flow geometries. In 
planar Couette flow a fluid is confined between walls 
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moving in opposite directions with velocity vw; the walls 
are located at x = ±L /2. By conventional hydrodynam
ics [8], the steady-state velocity profile is 

2v0 
v(x)=-x (8)

L 

In planar Poiseuille flow, a fluid between stationary walls 
is acted on by an external force in a direction parallel to 
the walls; the velocity profile is 

(9) 

Note that by measuring the curvature of the profile we 
may obtain the viscosity of the fluid [9]. 

Since the phenomenon of slip occurs on a scale of only 
a few mean free paths, it is difficult to measure experi
mentally. In this respect, computer simulations are a 
useful tool for this problem. The two commonly used al
gorithms are molecular dynamics [10] (MD) and direct
simulation Monte Carlo [11] (DSMC). We simulated the 
flow of argon using both methods. In MD we used the 
Lennard-Jones potential (effective diameter a= 3.405 A); 
in DSMC we used the variable hard-sphere potential [12]. 
Results from the two simulation methods for similar runs 
were in very close agreement. 

The system consisted of 1000 atoms enclosed in a rec
tangular box of size LX A, where A is the cross-sectional 
area. The distance between the walls was constant at 
L = 30a, while the cross section varied from A = 8la2 to 
40000a2• The boundaries in they and z directions were 
periodic and the boundaries in the x direction were 
thermal walls. When a particle reaches a thermal wall, 
the particle's velocity is reset randomly from the biased 
Maxwell-Boltzmann distribution with temperature 
Tw=450 K. 

For the Poiseuille runs, the systems were subjected to 
an acceleration field of magnitude g =2.27X 1015 cm/s2 

in MD runs and g = 2. 27 X 1014 cm/s2 in the DSMC runs. 
For Couette flow, the thermal wall moved in opposite 
directions with speeds of ±4. 36 X 104 cm/s. 

The effective viscosity was obtained from the shear 
stress Pxy at the thermal wall. The shear stress was cal
culated as the net change of momentum of particles at 
the walls per unit per unit time. The effective viscosity is 
computed from 

(10) 

In the Poiseuille runs, the effective viscosity was also 
computed from the velocity profile [see Eq. (9)] and the 
two methods gave similar values. 

Bhattacharya and Lie [2,3] reported that for large 
Knudsen number ( > 0. 05) they observed a significant 
reduction in the expected slip length. Their analysis em
ployed the simple, hard-sphere definition for the mean 
free path. Using Knh, we reproduce their results in both 
Couette and Poiseuille flow (see Fig. 1). They suggested 
that the slip coefficient may vary as Is* oc ln( Knh ). Our 
runs extend the range of Knudsen number to lower 
values, and we find good agreement with Eq. (4) for 

FIG. 1. Dimensionless slip length 1,* vs hard-sphere (HS) 
Knudsen number Knh. The closed circles are from the Ref. [3]. 
The open circles and squares are our molecular-dynamics 
Poiseuille and Couette data, respectively. The cross-hatched 
circles and squares are our DSMC Poiseuille and Couette data, 
respectively. The solid line is given by (4) with a= 1.15; this 
linear relation appears as a curve in this graph due to the semi
log scale. 

Knh <0.05. 
Using the viscous definition for mean free path, we find 

that the slip length is accurately given by Maxwell theory 
for the entire range of Knudsen numbers (see Fig. 2). A 
least-squares fit of the data gives the value a=0. 97 for 
the slip coefficients; for just the low-Knudsen-number 
data (Knv < 0. 05) we obtain the slightly higher value of 
a= 1. 04. Given an estimated relative error in Av of about 
10%, the data are in reasonable agreement with theory. 

There remains the question of why the two definitions 
of mean free path give similar results at low Knudsen 
number but differ dramatically when the separation be
tween the walls is small. Maxwell theory was ofiginally 
formulated for the semi-infinite geometry, i.e., a fluid 
bounded by a single wall. It should not be surprising that 
the theory needs some modification when there is a 
second boundary nearby. 

The hard-sphere definition for the mean free path only 

FIG. 2. Dimensionless slip length Is* vs viscous Knudsen 
number Knv. See Fig. 1 caption for details. 
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depends on the density and the particle diameter. On the 
other hand, the viscous mean free path also depends on 
the distance between the walls, since the effective viscosi
ty decreases with increasing Knudsen number [4]. Heu
ristically, the viscous mean free path is the effective dis
tance traveled by a particle between collisions with parti
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cles or walls. It would be interesting to develop this point 
of view along more rigorous lines. 
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