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Abstract
Errors elicit a negative, mediofrontal, event-related potential (ERP), for both own errors (error-related negativity; ERN) and 
observed errors (here referred to as observer mediofrontal negativity; oMN). It is unclear, however, if the action-monitoring 
system codes action valence as an all-or-nothing phenomenon or if the system differentiates between errors of different 
severity. We investigated this question by recording electroencephalography (EEG) data of pianists playing themselves 
(Experiment 1) or watching others playing (Experiment 2). Piano pieces designed to elicit large errors were used. While 
active participants’ ERN amplitudes differed between small and large errors, observers’ oMN amplitudes did not. The dif-
ferent pattern in the two groups of participants was confirmed in an exploratory analysis comparing ERN and oMN directly. 
We suspect that both prediction and action mismatches can be coded in action monitoring systems, depending on the task, 
and a need-to-adapt signal is sent whenever mismatches happen to indicate the magnitude of the needed adaptation.

Keywords Error severity · Action monitoring · Observed action monitoring · ERN · oERN

During the past 30 years, researchers have intensely inves-
tigated the neural correlates of error processing (Falken-
stein et al., 1991; Gehring et al., 1993; Jessup et al., 2010; 
Ullsperger et al., 2014). Contrasting errors versus correct 
actions showed that error processing involves several areas 
at the medial wall of the prefrontal cortex (this region will be 
referred to as medial prefrontal cortex or mPFC), including 
the anterior cingulate cortex (ACC; Debener et al., 2005; 
Ullsperger et al., 2014). An event-related potential (ERP) 
component investigated in the context of error processing is 
the error-related negativity (ERN), a negative-going fronto-
central deflection that peaks around 100 ms after an erro-
neous response (Falkenstein et al., 1991; Falkenstein et al., 
2000; Gehring et al., 1993, Gehring et al., 2012; Holroyd 
and Coles, 2002). The ERN appears to be generated in the 
mPFC, probably the ACC (Debener et al., 2005; Dehaene 
et al., 1994; Ridderinkhof et al., 2004; Taylor et al., 2007).

Not all researchers agree that the mPFC is primar-
ily involved in error processing. Thus, it also has been 

questioned whether the ERN reflects error processing per 
se. Apart from a conception in terms of conflict monitor-
ing (Botvinick et al., 2001; Carter et al., 1998; Yeung et al., 
2004), Holroyd and Coles (2002) suggest that the ERN rep-
resents a reinforcement learning signal that is used to opti-
mize performance. This signal would not only include the 
information if an action is right or wrong, but, in case, also 
the extent of the error as well as whether the event was more 
or less unexpected—representing a signed prediction error. 
The more recent predicted-response outcome model (PRO 
model; Alexander and Brown, 2011) states that mPFC activ-
ity reflects unexpected events, e.g., outcomes and actions, 
rather than errors, i.e., an unsigned prediction error (Gaw-
lowska et al., 2018; Jessup et al., 2010; Wessel et al., 2012). 
Although there is initial evidence supporting the PRO model 
in the sense that error and surprise processing rely on similar 
neural mechanisms (Jessup et al., 2010; Wessel et al., 2012), 
there also is reason to believe that the mPFC codes informa-
tion that is particularly relevant for error processing (Haj-
cak et al., 2005; Maier et al., 2012; Maier and Steinhauser, 
2016), which is more in line with the reinforcement learning 
theory (Holroyd and Coles, 2002).

Both the reinforcement learning theory (Holroyd and 
Coles, 2002) and the PRO model (Alexander and Brown, 
2011) imply that an ACC-driven response-locked neural 
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signal is sensitive to (prediction) error size. Indeed, previous  
empirical studies have found that ERN amplitude can vary in 
different contexts and conditions. For example, ERN ampli-
tude is enhanced when errors are particularly significant or 
participants are more motivated (Ganushchak and Schil-
ler, 2008; Gehring et al., 1993; Hajcak et al., 2005). The 
actions themselves in these studies were, however, always 
classified in a binary fashion as either right or wrong. Action 
valence can vary more gradually than just distinguishing 
right versus wrong. In sports, music or many other motor-
cognitive tasks, people can diverge from the correct move-
ment on a scale from “perfect” to “completely wrong.” In 
everyday language, we use terms such as slip or fallacy, 
which also suggests that we distinguish between errors of 
different severity. The ACC receives input from both motor 
and cognitive brain areas and is supposedly involved in the 
planning and regulation of behavior (Devinsky et al., 1995), 
making it a crossroad for correction and adaptation (Hol-
royd and Coles, 2002). For this function, the system needs 
to know how much adaptation is needed: for example, when 
a pianist hits a key one or two notes amiss and must adapt 
their hand position within milliseconds to hit the next note. 
Taking into account the function of the ACC, the variability 
of ERN amplitudes in different contexts (Ganushchak and 
Schiller, 2008; Gehring et al., 1993; Hajcak et al., 2005) and 
the early processing needed for error (severity) detection in 
order to adapt behavior, it is conceivable that error severity 
is processed early after error commission in the time window 
of the ERN. We thus assume that the ERN as a fast indica-
tor of information related to error processing codes action 
valence on a spectrum and not as an all-or-nothing phenom-
enon, thus reflecting error severity. Although the PRO model 
(Alexander and Brown, 2011) assumes effects of error sever-
ity in the sense of the magnitude of a prediction error, the 
previously mentioned findings would support the view that 
the mPFC/ACC is, at least partially, involved in represent-
ing performance accuracy and not entirely driven by event 
expectancy, as stated by the PRO model (see for example 
Maier and Steinhauser, 2016 for conflicting results regard-
ing the model), which is more in line with the reinforcement 
learning theory (Holroyd and Coles, 2002), stating that the 
ERN reflects a learning signal to optimize performance.

Initial evidence supporting the assumption of a contin-
uous encoding of error severity stems from studies com-
paring different types of responses yielding different error 
types (under-reach vs. over-reach, Murata and Katayama, 
2005; hand vs. finger, Falkenstein et al., 2000; corrected vs. 
uncorrected, Paas et al., 2021). An effect of error size has 
been described in two paradigms in which wrong actions in 
either one (single error) or two (double error) dimensions 
were possible (Bernstein et al., 1995; Maier et al., 2008, 
2012; Maier and Steinhauser, 2016): double errors led to sig-
nificantly larger ERN amplitudes than single errors. These 

results, however, also may be explained by two parallel 
action monitoring processes for both dimensions, each cod-
ing accuracy in a binary fashion, that add up to an increased 
ERN. It has yet to be investigated whether different degrees 
of deviations from the aspired action indeed lead to corre-
spondingly increased neural responses in action monitoring 
regions.

The reinforcement learning theory (Holroyd and Coles, 
2002) implies that the ACC acts as a motor control unit, and 
therefore, an ERN should only occur when the person has 
acted in some way. In contrast, the processing of observed 
actions has been suggested to involve similar brain areas as 
the processing of self-actions, such as the mPFC, specifi-
cally the ACC (Yoshida et al., 2012; Koban and Pourtois, 
2014) and presupplementary and supplementary motor areas 
(Scangos et al., 2013), with additional activity, inter alia, in 
the superior temporal sulcus (Ninomiya et al., 2018), infe-
rior frontal gyrus (Shane et al., 2008), and anterior insula 
(Cracco et al., 2016; Koban and Pourtois, 2014). Accord-
ingly, observed errors have been reported to elicit an ERP 
component corresponding to the ERN, the observer error-
related negativity (oERN) at frontocentral sites (Bates 
et al., 2005; de Bruijn and von Rhein, 2012; Miltner et al., 
2004; van Schie et al., 2004). Source localization suggests 
the origin of the oERN also in the mPFC (van Schie et al., 
2004), probably in the ACC (Miltner et al., 2004). Com-
pared with the ERN, the oERN displays smaller amplitudes 
and peaks later relative to the eliciting event, which is an 
observed action and thus a visual stimulus rather than an 
own motor response, with the latency depending on the 
task (Bates et al., 2005; de Bruijn and von Rhein, 2012; van 
Schie et al., 2004). Research in observed error processing, 
as in own error processing, has mostly focused on binary 
response classifications in terms of accuracy (Bates et al., 
2005; de Bruijn & von Rhein, 2012; Kobza and Bellebaum, 
2013). Recent evidence from our lab indicated, however, 
that observed responses are processed primarily based on 
their expectancy and not their accuracy (Albrecht and Belle-
baum, 2021a, 2021b; Desmet et al., 2014), which might lead 
to differences compared to active responding with respect 
to effects of error severity. For observed action monitor-
ing, the PRO model (Alexander and Brown, 2011) seems to 
fit empirical results better than the reinforcement learning 
theory (Holroyd and Coles, 2002).

To investigate whether the ERN does indeed reflect a 
signal for action adaptation, and to compare effects on own 
and observed action monitoring, we investigated the effects 
of error severity in both an active and observation condi-
tion. So-called sequential tasks, such as typing or playing 
the piano (Herrojo Ruiz et al., 2009; Kalfaoğlu et al., 2018; 
Maidhof et al., 2009; Maidhof et al., 2013; Paas et al., 2021), 
appear to be particularly suitable to study error severity 
effects. In these tasks, errors are frequent and participants 
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stay seated while performing a (highly practiced) everyday 
motor task that is ecologically valid and not dependent on 
feedback (Herrojo Ruiz et al., 2009). Typically, the ERN 
occurs 20-100 ms before the response in sequential tasks 
(Herrojo Ruiz et al., 2009; Kalfaoğlu et al., 2018; Maid-
hof et al., 2009; Paas et al., 2021) and thus earlier than in 
tasks involving a single response (Falkenstein et al., 1991; 
Gehring et al., 1993). Maidhof et al. (2013) showed that 
potential errors are noticed earlier with regard to the reg-
istered keypress (probably due to earlier movement onset 
compared with nonsequential tasks), and earlier error reg-
istration is associated with shorter ERN latencies (Di Gre-
gorio et al., 2022). Furthermore, error monitoring and error 
severity processing are especially important for adaptation 
during sequential tasks.

In the present study, we thus conducted two experiments 
with pianists. In Experiment 1, participants played piano 
pieces which included frequent changes of hand positions, 
thereby provoking small and large errors. While partici-
pants played, both EEG and behavioral data were assessed. 
Videos recorded during Experiment 1 served as stimuli for 
Experiment 2, in which participants watched videos of other 
pianists performing while EEG data were assessed in the 
observers. With these experiments we aimed to investigate 
two main questions: First, are ERN amplitudes enhanced for 
larger compared to smaller errors? Second, is a similar effect 
found also for observed errors?

Experiment 1

In Experiment 1, we studied effects of error severity on 
error processing during active piano playing. Apart from 
the neural processing of errors, the piano-playing para-
digm allows investigation of relevant behavioral variables. 
First, post-event reaction times can be assessed. A relative 
slowing of reaction times after errors is a well-studied phe-
nomenon (Rabbitt, 1966, 1969), possibly linked to an atten-
tional shift towards the error (or unexpected event), result-
ing in an attention reorienting process back to the task that 
underlies the longer reaction times (Notebaert et al., 2009; 
Núñez Castellar et al., 2010). Post-error slowing is presum-
ably modulated by activity in the ACC (Danielmeier et al., 
2011; Debener et al., 2005; Fu et al., 2019), but findings on 
the relationship between ERN and post-error slowing are 
mixed (Chang et al., 2014; Debener et al., 2005; Gehring 
et al., 1993; Hajcak et al., 2003). Possibly, some factors 
influence post-error slowing and the ERN differently (such 
as expertise, Jentzsch et al., 2014, or error awareness, Nieu-
wenhuis et al., 2001), leading to a dissociation in respective 
tasks. Post-error slowing also has been observed in piano-
playing tasks (Herrojo Ruiz et al., 2009; Paas et al., 2021). 
A second variable of interest is keypress volume (assessed 

as velocity), as error notes were played significantly more 
quietly than correct notes in previous piano-playing studies 
(Herrojo Ruiz et al., 2009; Maidhof et al., 2009; Maidhof 
et al., 2013; Paas et al., 2021). Because larger errors might 
lead to a larger focus of attention on the error, enhanced 
post-error slowing was expected for large compared to small 
errors. Additionally, quieter keypress volumes of error key-
presses compared with correct keypresses were expected, 
but as the processes behind the volume reduction are not yet 
established, we refrain from predicting differences between 
small and large errors regarding volume.

Method

Participants

We recruited experienced pianists to take part in the study 
via social media, person-to-person recruiting, and flyers 
distributed at the university, music conservatory, and music 
schools. Because the pieces included large steps between 
keys to induce errors and the pieces were thus difficult to 
learn, we suggested a minimum experience of 1,500 hours 
spent with the instrument, although participants were 
allowed to take part with less experience if they were able 
to play the pieces fluently. We aimed for a sample size of 
at least 20 participants, because this sample size seems 
to be adequate for sequential tasks (Herrojo-Ruiz et al., 
2009; Kalfaoğlu et al., 2018; Maidhof et al., 2013). Expect-
ing a 30% dropout-rate for fulfilling one or more exclu-
sion criteria or due to technical problems, we originally 
recruited 30 participants. Of these, five were excluded due 
to previous neurological or psychological diseases, so data 
from 25 participants were recorded. Of these, one had to 
be excluded due to technical problems during data acquisi-
tion. Another three were excluded because they made less 
than ten large errors, which was especially problematic 
for the analysis of the ERP data (see below). The remain-
ing sample of 21 participants consisted of 12 cis-gender 
women and 9 cis-gender men between 17 and 34 years 
(mean [M] = 23.1 years, standard deviation [SD] = 4.2 
years). Twenty of them were right-handed, one person was 
left-handed. Please note that pianists usually play melodies 
with their right hand and accompaniment with their left 
hand, regardless of handedness, so left-handed participants 
should be able to perform the task as well as right-handed 
participants, as was the case for the left-handed participant 
that took part in our study. All participants reported no 
previous neurological or psychiatric illnesses and no intake 
of medication that affected the nervous system. All partici-
pants took part voluntarily. The study is in compliance with 
the declaration of Helsinki and was approved by the ethics 
committee of the Faculty of Mathematics and Natural Sci-
ences at Heinrich-Heine-University, Düsseldorf.
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Material

We designed six pieces to be played with only the right 
hand. All pieces consisted of 96 sixteenth notes in 6 bars 
and ended with a seventh bar that consisted of a single whole 
note. To keep the physical distance between played keys 
constant, all pieces were written in C major and thus only 
played on white keys. The pieces kept to a general harmonic 
structure and the highest notes played could be interpreted 
as a melody, the remaining notes as accompaniment. The 
pieces were designed to require large hand movements to 
induce errors. The lowest key throughout the pieces was 
E3, the highest key was A5. Consecutive notes could differ 
between 1 and 10 white keys; the average difference was 
4.98 white keys (SD = 1.88 keys). The pieces were written in 
MuseScore 3 (version 3.6.2, MuseScore BVBA, 2021). They 
are included in the Supplementary Material (Figure S1).

An automatically created recording was generated for 
each of the pieces (created with MuseScore 3, version 
3.6.2, MuseScore BVBA, 2021) in which the melody parts 
of the pieces were pronounced. In the recording, pieces were 
played at 60 beats per minute (one beat = one quarter note), 
and tempo at the top of the score notation also was stated as 
60 quarter notes per minute.

Experimental task and setup

The pieces as well as the recording were sent to each par-
ticipant 2 weeks before testing. Participants were instructed 
to study the pieces in the next 14 days. They were told that 
they should be able to play the pieces with the right hand 
quite fluently but that they should not strive for perfect sound 
and that occasional errors during play were acceptable. 

Participants also were told to practice in whatever tempo 
they felt comfortable. They were given an instruction to 
practice approximately 15 minutes a day (distributed as they 
saw fit). According to self-reports, the participants practiced 
the pieces 204.1 minutes on average (SD = 188.9 minutes, 
45-840 minutes).

For data acquisition during the experiment, participants 
used a digital piano (Casio LK-S450 for most participants, 
two participants used a Yamaha YDP-144 R Arius). During 
the experiment, the keyboard was set on mute, so that par-
ticipants could not hear themselves play. The piano was posi-
tioned in front of a desktop monitor (1,920 x 1,080 px) that 
served for visual stimulation. Participants could navigate 
through the experiment with their left hand and the lowest 
note on the keyboard. A Logitech BRIO webcam was con-
nected to an additional laptop for recording the participants’ 
hand from above during play for the videos used in Experi-
ment 2. A picture of the setup can be seen in Fig. 1. We 
recorded the Musical Instrument Digital Interface (MIDI) 
information of the played segments on the experiment com-
puter. MIDI refers to the signal used by digital instruments 
to generate and communicate tones including note on- and 
offset, key and velocity (in piano playing, this corresponds 
to volume). Stimulus presentation, EEG trigger timing and 
MIDI recording was controlled with Python 3.7.5 using the 
packages psychopy (version 3.2.3; Peirce et al., 2019) and 
mido (version 1.2.9, Ole Martin Bjørndalen 2021, mido.
readthedocs.io).

The experiment consisted of 60 sequences in total, 10 
for each piece. Each sequence started with a score notation 
preview of the piece that was to be played (a picture of the 
first two bars, i.e. the first line, of the respective piece score 
notation, including the piece number). Participants could 

Fig. 1  Setup of Experiment 1
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then start the recording which began with 4 metronome 
beats (1,000-hz beeps) accompanied by the numbers 1 to 
4 displayed on the screen. Subsequently, the score notation 
of the whole piece was displayed on the screen to allow 
participants to play from sheet. After they finished playing 
the piece, participants ended the recording and proceeded to 
the next sequence. A display of the sequence structure can 
be seen in Fig. 2.

Before the experiment, participants were asked in what 
tempo they had practiced the pieces. Accordingly, the met-
ronome beats were set for each participant individually to 
a tempo slightly faster than the tempo in which they had 
practiced to increase difficulty. Participants were instructed 
to start playing right after the last metronome beat had been 
presented. They were further asked to keep to one tempo 
(loosely that of the metronome) during each sequence and 
to put emphasis on playing fluently, even if that meant mak-
ing errors.

The 60 sequences were preceded by 3 practice sequences 
in which participants could get to know the procedure of a 
sequence, but in which they were shown a mock preview and 
no actual score notation during play. They were instructed 
to get familiar with the instrument and the procedure dur-
ing these practice sequences, and to play whatever came to 
their mind.

Assessment of expertise

As a measure of Piano Playing Expertise we assessed the 
experience participants had with their instrument, because a 
certain level of experience was defined as inclusion criterion 
(see above). Expertise was defined as total hours spent with 
the instrument, calculated by multiplying the self-reported 
number of years of piano experience with the self-reported 
average hours of practice per week times 52 (number of 
weeks per year).

EEG recording

We recorded EEG signals at a 1,000-Hz sampling rate 
with a 32-channel actiCap electrode cap (ActiCAP; Brain 
Products GmbH, Germany) with the software Brain Vision 
Recorder (version 1.20, Brain Products, Munich, Germany). 
The active silver/silver-chloride electrodes were attached 
according to the 10-20 system on 29 scalp sites, i.e., FCz 
(which was used as online reference), F7, F3, Fz, F4, F8, 
FC5, FC1, FC2, FC6, T7, C3, Cz, C4, T8, CP5, CP1, CP2, 
CP6, P7, P3, Pz, P4, P8, PO9, P1, Pz, P2, and PO10. Addi-
tionally, we recorded the signal from both mastoids to use as 
offline reference. The ground electrode was placed at AFz. 
For electrooculogram (EOG) data, we placed two horizontal 
EOG (hEOG) electrodes at F9 and F10, respectively, and 
two vertical EOG (vEOG) electrodes at Fp2 and below the 
right eye. All impedances were kept below 10 kΩ.

An EEG marker was sent every fifth keystroke to avoid 
a possible overlap of markers (Maidhof et al., 2009). The 
MIDI data allowed offline determination of markers for the 
remaining keystrokes. We conducted a pilot test for a possi-
ble delay between key press and marker by using a Tektronix 
TDS 210 oscilloscope. Key presses are transformed to audio 
signals by the digital instrument in real-time. In the test, 
we therefore compared onset times between the audio and 
marker signal. The markers were sent consistently 1.6 ms 
before tone onset across all tests.

Procedure

Participants received the piano pieces 2 weeks before the 
actual experiment in the lab. After arrival, participants gave 
informed written consent to take part in the study and com-
pleted a demographic questionnaire and an expertise self-
report measure.

Fig. 2  Sequence structure of Experiment 1
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Subsequently, EEG electrodes were attached to the 
scalp and participants started the experiment. Participants 
received written instructions and the experimenters were 
present during three practice sequences for questions and 
further explanations. At the start of the experiment, record-
ings of video, MIDI and EEG were started. The experiment 
lasted between 35 and 75 minutes, depending on the speed 
in which participants played. After completion of the exper-
iment, participants received compensation in the form of 
either course credit or 40 €.

Data analyses

Behavioural data preprocessing and definition of event types  
All following analysis steps were performed in MATLAB, 
version R2017b (Mathworks, Natick, MA). We employed 
the MATLAB MIDI Toolbox (Eerola and Toiviainen, 2004) 
and a dynamic score matcher algorithm created by Large 
(1993; see also Palmer and van de Sande, 1993; Rankin 
et al., 2009) to compare the recorded MIDI signal with 
the correct score notation the participants had been asked 
to play. This procedure was used to determine the differ-
ent types of trials for which ERP and behavioral data were 
compared (see below). The algorithm finds a so-called opti-
mal match between two MIDI sequences and assigns every 
played note an attribute: match, substitution (a score notation 
note was replaced in the performance), addition (there was 
an added note in the performance that could not be matched 
to any notation note), and miss. All substitution events were 
defined as “uncorrected” errors (see also below).

We then calculated the interval in white keys for substitu-
tion events between the correct score notation note and the 
corresponding performance note. Black keypresses were not 
considered in the analysis.

In the analyses, we included the event types correct, small 
error (one-note errors that were not corrected), and large 
error (two-note errors that were not corrected). All errors 
larger than two-note errors were excluded. Moreover, we 
only included error and correct events that were preceded 
and followed by a correctly played note, which also excludes 
correct notes played before or after miss events. Each of 
the 97 notes included in the score notation of each piece 
was played 10 times in the course of the experiment, which 
allowed us to calculate the note accuracy for every note as 
the percentage of times the note was played correctly. Only 
notes that had an accuracy higher or equal to 40% were con-
sidered in the analysis, to exclude notes that were played 
systematically wrong. Additionally, we only included notes 
for which at least one error trial and one correct trial was 
included to avoid confounds of note selection.

Behavioral Dependent Variables Two behavioral meas-
ures served as dependent variables, which possibly differed 

between event types (correct, small error, large error). To 
investigate potential behavioral effects of error severity, 
namely on keypress volume and post-event slowing, the 
behavioral dependent variables Volume and Inter-Keypress-
Interval (IKI) were assessed. Volume was defined as the 
recorded velocity in the MIDI signal of each note. IKI was 
defined as the difference between note onset time of the cur-
rent and of the following note (see Paas et al., 2021). This 
maps the time delay between the event (correct, small or 
large error) and the subsequent correct keypress and serves 
as a measure of post-event reaction time, which is used to 
calculate post-error-slowing.

Behavioral data statistical analysis For all statistical analy-
ses, if not stated differently, we conducted single-trial linear 
mixed models (LME) analyses in R (version 3.5.3) using the 
package lme4 (version 1.1-23). According to best practice 
(Meteyard and Davies, 2020), all models should include all 
within-subject main and interaction effects as random effects, 
if this is possible without leading to model fit errors. For all 
subsequently described analyses, we performed an iterative 
process: all within-subject main and interaction effects were 
first included as random factors. If this led to model fit errors 
(singular fit or overfitting), we tested which random effect 
led to this error and removed this from the model. As most 
of our models included only the main effect Event Type, for 
some models this factor is included as random effect factor 
and for others not, depending on the model fit.

We conducted LME analyses, calculating separate mod-
els for dependent variables IKI (post-event reaction time) 
and volume (velocity). As independent variable, we set the 
three-level factor Event Type (correct, small error, large 
error). Small error was set as baseline condition to determine 
both the difference between correct and (small) errors and 
between small and large errors. Consequently, we created the 
design matrix depicted in Table 1 based on simple coding. 
We included random intercepts and slopes for Event Type 
per participant into each model.

With Cook’s Distance outlier detection (using the “influ-
ence” function of the package stats, version 4.02, in R) based 
on the calculated models (with a cutoff value of 4/(n-number 
of predictors-1)), we removed 4 participants from the IKI 
analysis (remaining n = 17, 17–34 years, M = 22.8 years, SD 
= 4.4 years, 9 women, 8 men) and two participants from the 

Table 1  Design matrix of the factor event type

Note. The first line depicts the baseline condition.

Small error Correct Large error

Small error 0.66 −0.33 −0.33
Correct −0.33 0.66 −0.33
Large error −0.33 −0.33 0.66
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volume analysis (remaining n = 19, 17–34 years, M = 23.2 
years, SD = 4.4 years, 11 women, 8 men). Subsequently, the 
models were recalculated with the new sample.

EEG data preprocessing We recoded the EEG marker files 
offline by synchronizing the markers sent every five notes 
with the recorded MIDI data using MATLAB. The new 
markers were then written into new marker files, which were 
loaded into Brain Vision Analyzer (Brain Products, Munich, 
Germany). Subsequently, we applied a 0.5-Hz high-pass 
and 30-Hz low-pass filter to the data (as suggested by Luck, 
2014). As participants read score notations while they 
played and were not prevented from looking down on their 
hand (both to obtain maximum ecological validity), vertical 
and horizontal eye movements occurred frequently during 
the experiment and the corresponding artefacts had to be 
removed from the EEG data. For this, we used the Gratton 
and Coles ocular correction algorithm (Gratton et al., 1983). 
The respective hEOG and vEOG channels were used as ref-
erence for eye artefact detection. The data were segmented 
into 900-ms–long epochs starting 300 ms before note onset. 
Subsequently, an automatic artifact rejection based on the 
signal from the electrodes of interest Fz, FCz, and Cz was 
performed. The artifact rejection removed all segments that 
included voltage steps larger than 50 μV/ms, for which the 
difference between highest and lowest amplitude was more 
than 100 μV, in which amplitudes were lower than −100 
μV or higher than 100 μV, and for which activity was less 
than 0.1 μV. On average, 12.1 segments per participant were 
removed (0-146 segments, SD = 31.7 segments). This left 
enough segments per participant and condition for the fol-
lowing analyses (see also Table  S3 in the Supplementary 
Material).

The interval between 300 and 200 ms before the event 
was used for baseline correction (for similar procedures in 
sequential task paradigms, see Herrojo Ruiz et al., 2009; 
Maidhof et al., 2013). Single-trial data as well as averages 
for each Event Type were exported per participant.

In our statistical analysis of the ERN amplitude, we used 
ERP data from single trials. To determine the time points 
for data extraction in the single trials, we took the individual 
participants’ averages in each condition into account, thereby 
applying a combination of average- and single-trial-based 
analyses. Thus, only participants were included who had 
at least ten trials in each experimental condition. The EEG 
signal was first pooled at Fz, FCz, and Cz, because at these 
sites the ERN is typically maximally pronounced, which 
also was the case in the present study. Because participants 
were allowed to play in their individual tempo, and the laten-
cies of ERNs in sequential tasks are related to movement 
onset (Maidhof et al., 2013) and thus indirectly to tempo, we 
expected large peak latency variations between participants 
which were visible in single-participant data inspection  

(for a display of single-subject ERPs, see Figure S5 in the 
Supplementary Material). To determine the typical ERN 
latencies in each participant, we considered the participants’ 
averages for each Event Type and searched for the maximum 
negative peak in in a time window between 130 ms pre- and 
130 ms post-event. Likewise, we determined the latencies 
of the preceding maximum positive peak in a time window 
between 180 ms pre-event and the negative peak (for a simi-
lar procedure, see Maier et al., 2012). We subsequently cal-
culated the single-trial amplitude measures corresponding 
to the peaks in the averages as the mean signal in the time 
window 10 ms before to 10 ms after the negative and posi-
tive peak latency in the average, respectively. Single-trial 
ERN measures corresponding to an average-based peak-to-
peak measure were then calculated as the difference between 
the two values derived for each segment. We used differ-
ence measures (amplitude around negative peak – amplitude 
around positive peak), as segments might partly overlap in a 
sequential task and subtracting the preceding positivity can 
partially account for differences in baseline activity which 
can indeed be seen in Fig. 3. In two control analyses we used 
only single trial values corresponding to the negative peak 
in the average (without subtraction of the preceding positiv-
ity) or mean amplitude values in a time window from 50 ms 
before to 50 ms after keypress, because the relative negativ-
ity for errors was most pronounced in this time window. This 
analysis yielded comparable results (see Section S9 in the 
Supplementary Material).

EEG data statistical analyses We defined an LME model 
with ERN amplitude as dependent variable (see above for 
the general procedure for defining LME models). Event 
Type served as independent variable, coded as in the behav-
ioral analyses (Table 1). Random intercepts per participant 
were included (adding Event Type as random factor led to 
singular fit error). No participant was excluded based on 
Cook’s outlier detection.

Results

Additional statistical results for all models can be found in 
the Supplementary Material (Tables S6, S7, and S8).

Expertise

Participants spent 7760.38 h on average playing the piano 
during their lifetime (range 520 h – 24,960 h, SD = 7,871.76 
h, Median = 4,368.0 h; see Figure S4 for a histogram).

Behavioural data On average, correct keypresses occurred 
in 90.70% of all keypresses, small errors in 3.03%, and large 
errors in 1.44%. All included participants made at least ten 
large errors. For detailed information, see Table S3.
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Fig. 3  ERPs as a function of Event Type for Experiment 1. (A) ERPs 
respective to the response (correct keypress, small error or large 
error). (B) ERPs aligned for the negative peak latency identified for 
each participant and condition. (C) ERPs aligned for the respective 

preceding positive peak latency. (D) Topographies of the negative 
peak corresponding to the ERPs depicted in (A). (E) Topographies of 
the negative peak if the peaks are aligned (corresponding to the ERPs 
depicted in B)
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IKI There was a significant effect of Event Type on IKIs, 
F(2,15566) = 27.44, p < 0.001. Contrast comparisons 
revealed a significant difference between small and large 
errors (p = 0.001, b = 22.14), and between correct responses 
and small errors (p = 0.036, b = -4.71). After a large error 
keypress, participants took significantly longer (M = 369.66 
ms, SD = 29.68 ms) to press the next key compared to after 
a small error keypress (M = 361.68 ms, SD = 16.30 ms), and 
the IKI after correct actions was shorter than after a small 
error keypress (M = 358.63 ms, SD = 4.99 ms).

Volume We found a significant effect of Event Type, 
F(2,17509) = 88.23, p < 0.001. Both correct events (p < 
0.001, b = 4.10) and large errors (p < 0.001, b = 3.96) 
resulted in significantly higher volume levels (M = 69.49 
velocity, SD = 0.50 velocity; and M = 68.30 velocity, SD = 
2.21 velocity, respectively) compared with small errors (M 
= 64.14 velocity, SD = 1.68 velocity).

ERN For a display of ERPs in the three Event Type con-
ditions, see Fig. 3 (Figure S5 in the Supplementary Mate-
rial shows single subject averages). There was a significant 
effect of Event Type, F(2,2079.10) = 21.61, p < 0.001. 
Contrasts revealed significantly lower amplitudes for correct 
responses (M = −1.07 μV, SD = 0.34 μV) compared with 
small errors (M = −1.87 μV, SD = 0.96 μV; p < 0.001, b 
= 0.88) and significantly higher amplitudes for large errors 
(M = −3.16 μV, SD = 1.68 μV) compared with small errors 
(p = 0.004, b = −1.21). A significant difference between 
small and large errors remained if the single-trial ERN was 
quantified just based on the maximum negative peak in the 
average in a time window between –130 ms and 130 ms per 
participant and condition, and if the ERN was quantified as 
the amplitude mean between −50 ms and 50-ms relative to 
the button press, but no significant difference between small 
errors and correct events was found for these analyses (see 
Section S9 in the Supplementary Material).

Conclusion for experiment 1

In Experiment 1, we compared the processing of different 
error types in a piano-playing paradigm. Our results show 
that ERN amplitudes as well as behavioral measures vary 
depending on the type of error. Larger ERN amplitudes were 
observed for large compared with small errors, whereas all 
errors were accompanied by a larger ERN relative to cor-
rect responses. Post-error-slowing was seen after all error 
types but was largest for large errors, whereas small errors 
were played in a lower volume than large errors and correct 
keypresses. The results indicate that the action monitoring 
system does not only differentiate between right and wrong 

but also between different degrees of erroneous actions. In 
a post-hoc analysis on measures that might represent expec-
tancy, we found that error severity explained the effects better 
than the frequency of the event, the difficulty of the respec-
tive note, and the insecurity before and during the respective 
keypress (see Supplementary Material, Section S2).

Experiment 2

Observing errors can be just as important as monitoring 
one’s own errors, for example, when musicians play together 
or teach others. As established above, the mechanisms of 
processing vicarious actions appear to be similar, albeit not 
completely identical, compared with those involved in the 
processing of own actions. Researchers observed a corre-
sponding ERP component, the oERN (Bates et al., 2005; 
Miltner et al., 2004; van Schie et al., 2004), and increased 
activity in the mPFC for observed others’ errors (Koban and 
Pourtois, 2014).

As outlined for own responses above, also the neural 
response to observed actions can be modulated by surprise 
and expectancy (Alexander and Brown, 2011), as has been 
shown for mPFC activity (Schiffer et al., 2014) and the 
amplitude of a frontocentral oERN-like ERP component 
(Albrecht and Bellebaum, 2021a; Kobza and Bellebaum, 
2013). Recent studies from our lab even suggest that previ-
ously observed valence effects for observed actions on this 
component can be completely attributed to expectancies 
(Albrecht and Bellebaum, 2021a, 2021b). The occurrence 
of an oERN-like component in action observation is con-
trary to the assumptions of the reinforcement learning theory 
(Holroyd und Coles, 2002), which assigns the ACC a role as 
motor control unit. In addition, the component seems to be 
primarily driven by expectancies, not valence, whereas the 
theory expects the signal to resemble a signed, rather than an 
unsigned, prediction error. Based on the empirical findings 
concerning the ERP component after observed actions, it is 
questionable whether the component is related to observed 
error processing at all. We will thus subsequently refer to 
it as observer mediofrontal negativity (oMN). The strong 
expectancy effect on the oMN amplitude may suggest a func-
tional dissociation between ERN and oMN, with potentially 
differing effects of error severity on the two components.

As with active error processing, research on observed 
error processing has so far focused on a binary classifi-
cation of response accuracy (Bates et al., 2005; de Bruijn 
and von Rhein, 2012; Kobza and Bellebaum, 2013). The 
observational data used in this study were taken from the 
actively performing participants of Experiment 1. We 
expected to see higher oMN amplitudes for errors than for 
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correct keypresses, because errors were less frequent and 
thus more unexpected. Because there was only a slight 
difference between small and large error frequency in the 
videos for Experiment 2 and because we assumed that the 
oMN was mainly driven by the expectancy of the observed 
response, we suspected to find no difference in oMN ampli-
tude between the error types and thus a different pattern as 
for own responses in Experiment 1.

To directly compare the processing of own and observed 
actions, we also conducted an analysis including the ERPs 
from experiments 1 and 2 with factors agency and event 
type. In this exploratory analysis, amplitude differences 
between the components ERN and oMN were eliminated 
via z-standardization. Because we hypothesized to find dif-
ferences between small and large errors in the ERN, but not 
in the oMN, we expected to find a significant interaction 
between agency and event type.

Method

Participants

As in Experiment 1, experienced pianists were recruited via 
print-material, social media, and mouth-to-mouth advertis-
ing. Again, a minimum experience of 1,500 h was suggested, 
but lower values were allowed if participants were able to 
play the respective material by heart (see below). Because 
sequential tasks have not been used for error observation 
paradigms before, we planned our sample size based on pre-
vious sequential task paradigms on own action monitoring 
(Herrojo-Ruiz et al., 2009; Kalfaoğlu et al., 2018; Maidhof 
et al., 2013; see also Experiment 1) and aimed for a final 
sample size of at least 20 participants. As in Experiment 1, 
we expected a 30% dropout rate and thus recruited 30 par-
ticipants, of which one had to be excluded due to a previous 
neurological or psychological disease. We therefore recorded 
data from 29 observer participants. Of these, three had to be 
excluded due to technical problems and three others because 
of low performance in the pre- and post-performance test or 
during the experiment (see below). The remaining 23 par-
ticipants consisted of 15 cis-gender men and 8 cis-gender 
women between 18 and 44 years (M = 24.5 years, SD = 
6.4 years). One participant was left-handed, 22 right-handed 
(again, the left-handed participant performed as well as the 
other participants in the pre- and post-test). All participants 
reported no previous psychological or neurological illnesses, 
no intake of medication that could affect the nervous system, 
and had normal or corrected-to-normal vision. Participation 
was voluntary and participants received compensation of 
40€ or course-credit. The study was in accordance with the 
declaration of Helsinki and approved by the ethics commit-
tee of the Faculty of Mathematics and Natural Sciences at 
Heinrich-Heine-University, Düsseldorf.

Material

Participants watched videos that were recorded during data 
acquisition of Experiment 1. In contrast to Experiment 1, 
participants were required to know the piece by heart to 
facilitate observation. To limit the time effort and ensure that 
participants reached a high performance level, we used only 
one of the six short pieces per participant that were used in 
Experiment 1. To obtain a large number of trials per condi-
tion, we calculated the number of isolated events for each 
event type and piece. Large errors were the most infrequent 
event type, so we chose the piece in which the most isolated 
large errors were made on average. Consequently, we chose 
10 videos in which this piece was played (each from a dif-
ferent participant of Experiment 1) that included as many 
isolated pitch errors as possible and as few other error types 
as possible (e.g., missed notes, black key notes, pitch errors 
that deviated more than two white keys from the correct 
key). In total, participants watched the same piece being 
played 60 times. Originally, the intention was to play each 
of the ten videos six times. Due to a technical error, one of 
the ten chosen videos was watched 12 times, eight videos 
were watched six times each, and one video was not watched 
at all. As the order of the videos was randomized, however, 
and the focus of the study was on the processing of the single 
notes, we suspected that this technical error did not affect 
the results of the study, which was confirmed by a post-hoc 
analysis excluding trials from the video that was shown 12 
times, which yielded the same pattern of results. Participants 
saw 6.600 isolated correct notes being played, 290 isolated 
small errors, and 210 isolated large errors (Table S10, Sup-
plementary Material).

The expertise of the pianists that played the piece in the 
video ranged from 936 to 22,620 hours (M = 6,423.1 h, SD 
= 6,078.8 h). Videos had a resolution of 1,280*720 px and a 
framerate of 60. The videos always started 1 s (or 60 frames) 
before the first keypress and ended 1 s (or 60 frames) after 
the last. They were trimmed at the upper and lower side so 
that only the piano and the moving hand were visible. For 
practicing, participants received the score notation and audi-
tory recording of the piece before the experiment.

Experimental task and setup

Similar to the procedure for Experiment 1, the material was 
sent to participants before testing, and they were instructed 
to practice approximately 15 minutes a day on average in a 
tempo that felt comfortable for them. In contrast to Experi-
ment 1, they were, however, instructed to learn only one 
piece, and this by heart. Participants stated an average prac-
tice time of 130.0 minutes (SD = 93.1 minutes, range 44 –  
420 minutes). Before the experimental observation task was 
conducted in the lab, participants were asked to perform the 
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piece themselves on a digital piano (Casio LK-S450) while 
MIDI signal was recorded on a connected laptop. The piano 
was set on mute to avoid additional feedback and to make the 
conditions as similar as possible to Experiment 1.

For the experimental task, participants sat in front of 
a 1,920 x 1,080 px desktop monitor. Participants were 
instructed to watch the videos carefully and count the errors 
made in each of them. The experiment consisted of 60 video 
presentations (9 different videos; durations between 31-70 
s, M = 47.8 s, SD = 12.8 s), which were played in random 
order. The videos were embedded in sequences that also 
contained control questions after each video (see below). 
For a display of a sequence, see Fig. 4.

Participants could start the sequences themselves. After a 
short fixation cross (500 ms) the video was displayed. Partici-
pants received only visual input; the videos were played with-
out sound. A marker was sent to the EEG recording software 
every fifth observed keypress. Following the videos and another 
500-ms fixation cross, participants were asked how many mis-
takes the observed person had made in this segment. They 
could freely enter a number and proceed with the Enter key. 
After another 500-ms fixation cross, participants were asked 
how experienced in piano playing they believed the observed 
person to be on a scale from 1 to 10. Again, they could enter a 
number and proceed with the Enter key. Subsequently, the next 
sequence came on, which could again be started by the partici-
pant. Stimulus presentation and recording was controlled with 
Presentation (version 22.0, Neurobehavioral Systems, Albany, 
CA). After completing the experiment, participants were again 
asked to play the piece on the muted digital piano while MIDI 
was recorded.

Assessment of expertise We acquired the measure Piano 
Playing Expertise in Experiment 2 in the same way as in 
Experiment 1.

Procedure

Participants received the material to practice the piano 
pieces used in the experiment via e-mail 2 weeks before the 
actual study in the lab. For testing in the laboratory, partici-
pants first gave written, informed consent to take part in the 

study. After this, they played the studied piece by heart. Par-
ticipants subsequently filled out the demographic question-
naire, including Expertise measurements, after which EEG 
electrodes were attached. Participants then completed the 
actual experiment which lasted around 60 minutes. Finally, 
the electrodes were removed, and participants played the 
piece again. Participants received either course credit or 40 
€ as compensation.

EEG recording

EEG measures were recorded in the same way as in Experi-
ment 1. Markers were sent and reconstructed in the same 
way.

Data analyses

Behavioral data of  the  pre‑ and  post‑tests All following 
steps were performed in MATLAB, version R2017b (Math-
works, Natick, MA). As for Experiment 1, we used the 
dynamic score matcher algorithm created by Large (1993; 
see also Palmer and van de Sande, 1993; Rankin et  al., 
2009) to compare the recorded MIDI signal with the correct 
score notation for the pre- and post-experiment piano per-
formance. We calculated the accuracy as the percentage of 
correctly played notes for each participant, separately for the 
pre- and post-experiment piano performance. If participants 
restarted playing the piece during the recording, all previous 
notes were excluded from further analysis. All participants 
who had an accuracy of <50% in both tests were excluded. 
This was the case for two participants in total.

Event types used for  the  ERP analysis We used the same, 
previously determined relevant notes and events from 
Experiment 1 for the ERP analysis in Experiment 2. For 
this purpose, the notes and event types were extracted from 
the logfiles corresponding to the respective videos shown 
in Experiment 2. Inclusion criteria for notes were identical 
to the Experiment 1 analyses, with the exception that we 
also included notes with <30% note accuracy in Experiment 
2. High error rates might indicate systematic errors for the 
players themselves but do not indicate potential systematic 

Fig. 4  Sequence structure in Experiment 2
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errors of the observer participants. A computer error dur-
ing testing caused some videos to end too early for seven 
participants. In only one of them this led to a significant 
decrease in analyzable segments, and this participant was 
thus excluded from the analysis (this is one of the exclu-
sions due to technical problems mentioned in the Participant 
section).

Behavioral data assessed during  the  experiment and  data 
extracted from  the  participants of  experiment 1 We 
assessed the measure Number of Perceived Errors (as stated 
by the participants after each sequence) and then calculated 
the measure Recognized Error Margin as the absolute differ-
ence between the Number of Perceived Errors and the actual 
error number (as calculated from the logfiles of Experiment 
1; all error types were included in this measure). One par-
ticipant of Experiment 2 who scored more than 1.645 SD 
higher (equivalent to a percent rank < 5) than the other par-
ticipants in the Recognized Error Margin was excluded from 
all further analyses. Subsequently, the Perceived Exper-
tise of the observed player (as stated by participants after 
each sequence, see above) and Objective Expertise of the 
observed player (Expertise measurement calculated for each 
player from Experiment 1) were determined. All continu-
ous measures that were considered subsequently as factors 
in any analysis were scaled to lie between −0.5 and 0. 5 and 
then mean-centered.

Behavioral data statistical analysis For the analysis of the 
behavioral data of the pre- and post-test, an LME analysis in 
R (version 3.5.3) was performed with accuracy as depend-
ent variable and Measurement Time as fixed-effect factor. 
Random intercepts per participants were allowed. For the 
procedure determining the final model in terms of the ran-
dom effects structure, please refer to the Methods section of 
Experiment 1.

Additionally, we investigated the relationship between 
perceived expertise and objective expertise of the observed 
player. An LME model with perceived expertise as depend-
ent variable and Objective Expertise as fixed effect was 
defined, which allowed random intercepts and slopes for 
Objective Expertise by participant and random intercepts 
by observed video. Then, it was examined whether adding 
the Number of Perceived Errors (as stated by participants 
after each trial) in the respective trial explained significantly 
more variance by using model comparison. If the variable 
explained more variance, it was added to the model.

EEG data preprocessing First, EEG markers were recoded 
based on the MIDI data gained in Experiment 1 for each 
of the observed players by using MATLAB. Subsequently, 
the markers were imported to Brain Vision Analyzer (Brain 

Products, Munich, Germany) for EEG data preprocessing, 
which was conducted in the same way as the processing 
described for Experiment 1. The artefact rejection removed 
an average of 5.2 segments (range 0-86 segments, SD = 17.0 
segments).

Segments were also created in accordance with the pro-
cedure in Experiment 1, resulting in three Observed Event 
Types: observed correct response, observed small error, and 
observed large error. Again, single-trial data and averages 
per Observed Event Type and participant were exported and 
electrodes Fz, FCz, and Cz were pooled.

The component that we call oMN (often referred to as 
oERN in the literature) occurs later than the ERN in non-
sequential tasks: namely 100 to 300 ms after the event 
(depending on the task, see Bates et al., 2005; Miltner et al., 
2004; van Schie et al., 2004). To date, this component has 
not been investigated in sequential tasks. If, however, ear-
lier ERN peaks in active sequential tasks are related to the 
earlier onset of the movement relative to key registration 
compared with nonsequential tasks (Di Gregorio et al., 
2022; Maidhof et al., 2013), it is conceivable that the oMN 
also peaks earlier in sequential tasks, as the observed move-
ment can be detected earlier. Indeed, visual inspection of our 
data revealed a negativity that seemed to represent action 
monitoring between −100 and 100 ms around the observed 
keypress (see Fig. 5 for a grand average, and Figure S13 
in the Supplementary Material for single subject ERPs). 
In accordance with this, we again used a combination of 
average-based and single-trial based analyses for the extrac-
tion of the ERP signal of interest. First, we determined the 
latencies of the maximum negative peak in a time window 
between −100 ms pre-event and 100 ms post-event in the 
average of each participant in each Event Type condition. 
Then, the preceding positive peak was searched in the time 
window between −150 ms and the negative peak. Again, 
single-trial measures corresponding to these peaks in the 
average were calculated in an area from 10 ms before to 
10 ms after the negative and positive peak latency for the 
respective participant and condition, and measures corre-
sponding to an average-based, peak-to-peak measure for 
each trial were determined as the difference between the two 
values. Because peaks in the average were not as pronounced 
as in the active data, and latencies might have varied both 
between participants and between trials within participants 
(due to different playing speeds of the different players in 
the videos), we conducted additional analyses based on just 
the amplitude value corresponding to the negative peak and 
based on the mean amplitude in the time window from −100 
to +100 ms with the same model. Compared with the data of 
active responders (Experiment 1), the relative negativity was 
temporally more dispersed around the onset of the observed 
button press. That’s why a wider time window was used for 
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Fig. 5  ERPs of observers as a function of Observed Event Type 
(Experiment 2). (A) ERPs respective to the observed response 
(observed correct keypress, observed small error or observed large 
error). (B) ERPs aligned for the negative peak identified for each 
observer participant and condition. (C) ERPs aligned for the respec-

tive preceding positive peak. (D) Topographies of the negative peak 
corresponding to the ERPs depicted in Figure A. (E) displays the 
topographies of the negative peak if the peaks are aligned (corre-
sponding to the ERPs depicted in B)
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the mean amplitude-based analysis. Results are reported in 
the Supplementary Material. Both analyses led to a similar 
result pattern than the main analysis. As for Experiment 1, 
ten trials were required as minimum for each participant in 
each condition, which was fulfilled by all participants of 
Experiment 2.

No subject was removed as outlier for the oMN analysis 
based on Cook’s Distance. After data-cleaning was com-
plete, more than 100 segments remained for each participant 
and condition (Table S11).

EEG data statistical analyses We first defined an LME model 
with oMN amplitudes as dependent variable and Observed 
Event Type as independent variable, coded as in the previ-
ously described analyses for Experiment 1 (Table 1). Ran-
dom intercepts per participant were set (see Methods for 
Experiment 1 for the procedure in determining the random 
effects structure of the model). All continuous measures that 
were considered as predictors subsequently were scaled to 
lie between −0.5 and 0.5 and then mean-centered.

We additionally tested whether adding the Recognized 
Error Margin, which represented error recognition accuracy 
and may be affected by attentional factors, as independent 
variable explained more variance.

Post‑hoc analyses comparing active and passive ERP data In 
an exploratory post-hoc analyses, we compared the effects 
of the factor Event Type between the ERN and oMN, that is, 
between the active and observer participants of Experiments 
1 and 2. As we were not interested in amplitude differences 
between the two dependent ERP variables (ERN and oMN), 
we used z-transformed data of both the active and observer 
groups. We determined a model with Event Type (correct, 
small error, large error, coded as in the previous analyses) 
as within-subject and Agency (active, observer, coded as 
−0.5 and 0.5, respectively) as between-subject fixed effect 
factor. Z-standardized single trial ERP amplitudes were set 
as dependent variables. Random intercepts per participant 
were allowed. A potential interaction was resolved by deter-
mining the Agency effect for the respective conditions cor-
rect, small error and large error.

Results

Additional statistical results for all models can be found in 
the Supplementary Material (Tables S14, S15, and S16).

Expertise

Participants had a mean Expertise of 4,913.09 hours (SD = 
4,404.90 h, 780-1,7160 h, Median = 3,432.0 h). Although 
means and medians were descriptively different, Exper-
tise did not differ significantly between the samples of 

Experiments 1 and 2 (t(42) = 1.50, p = 0.141), possibly 
due to the high variance of Expertise in both groups. Previ-
ous studies suggest that changes in action monitoring occur 
already at early stages of training (Jentzsch et al., 2014; 
Rachaveti et al., 2020). Whereas all of our participants were 
highly experienced, we can assume that the descriptive 
differences in Expertise between groups did not influence 
results. For a histogram of expertise, see Figure S12 in the 
Supplementary Material.

Behavioral data of the pre‑ and post‑test

Participants had an average accuracy of 86.21% in the pre-
experimental test (SD = 11.88%), and an average accuracy of 
83.80% in the post-experimental test (SD = 16.18%), which 
did not differ significantly F(1,22.00) = 1.18, p = 0.289, b = 
−2.42. This indicates that participants did not learn addition-
ally by watching the 60 repetitions of the piece.

Behavioral data assessed during the experimental task

Regarding the Recognized Error Margin, participants dif-
fered on average by 5.60 (SD = 1.66) perceived errors from 
the actual errors in the videos. The Recognized Error Margin 
was calculated as the absolute difference in each sequence 
between the number of actual and recognized errors. Look-
ing at over- and underestimation separately, participants 
underestimated the number of errors in 76.73% of trials on 
average (SD = 20.85%), overestimated the number of errors 
in 15.39% on average (SD = 18.40%) and correctly stated 
the number of errors in 7.88% on average (SD = 4.71%). 
In sequences in which participants underestimated or cor-
rectly estimated the number of errors, they failed to notice 
an average of 44.98% of errors (SD = 14.15%). In sequences 
in which participants over- or correctly estimated the num-
ber of errors, they noticed on average 46.39% of additional 
errors (SD = 12.73%). The results show that participants 
were not excellent at recognizing errors. However, the vari-
ance between participants was relatively small. To control 
for interindividual differences regarding error recognition, 
we considered the Recognized Error Margin as a variable in 
our main ERP analysis.

In a model including perceived expertise as dependent 
and Actual Expertise as independent variable, adding the 
perceived number of errors led to a significantly improved 
model fit, χ2(2) = 174.30, p < 0.001, AICwithout = 4,859.10, 
AICwith = 4,688.80. The actual expertise of the players did 
not influence the perceived expertise as a main effect (p = 
0.952) or in interaction with the Perceived Number of Errors 
(p = 0.071), but we found a main effect of Perceived Number 
of Errors, F(1,1307.63) = 186.00, p < 0.001, b = −6.23. A 
higher number of perceived errors led to lower perceived 
expertise.
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EEG data

ERPs in response to the different Observed Event Types are 
displayed in Fig. 5 (for single-subject ERPs, see Supple-
mentary Material, Figure S13). For the number of segments 
included in each condition for the analysis, see Table S11. 
Adding the Perceived Number of Errors (p = 0.780) 
explained no additional variance compared to a model with 
Observed Event Type as the only predictor. We found a 
main effect of Observed Event Type on oMN amplitude, 
F(2,21158.00) = 24.56, p < 0.001. The contrast between 
observed small errors (M = −1.19 μV, SD = 0.52 μV) and 
observed correct keypresses (M = −0.44, SD = 0.17 μV; p 
< 0.001, b = 0.73) revealed a significant difference, but no 
difference was found between large (M = −1.35 μV, SD = 
0.60 μV) and small errors (p = 0.480, b = −0.15). Calculat-
ing the oMN as a mean amplitude between −100 and 100 
ms around the observed response or using the amplitude 
corresponding to the maximum negative peak in the average 
in the respective timeframe revealed a similar pattern (see 
Supplementary Material, Section S17).

Exploratory analysis comparing active and observer ERP 
data from experiments 1 and 2.

Although there was a main effect of Event Type, 
F(2,61471.00) = 43.77, p < 0.001, and a trend effect of 
Agency, F(1,172.00) = 3.43, p = 0.066, our main interest 
was the interaction between Agency and Event Type. This 
interaction was significant, F(2,61471.00) = 3.01, p = 0.049. 
Resolving the interaction, there was no effect of Agency for 
correct events (p = 0.855) or small errors (p = 0.983), but 
for large errors F(1,3693.00) = 6.15, p = 0.013, b = 0.11, the 
standardized amplitudes of the ERP component related to 
monitoring were significantly larger for the active compared 
with the observer group.

Conclusion for experiment 2

We studied the processing of different error types in an 
action observation paradigm in which participants watched 
videos of others playing the piano. In accordance with previ-
ous studies we found larger amplitudes of the oMN for errors 
versus correct responses. As in most studies investigating 
(observed) error processing (e.g., Miltner et al., 2004; van 
Schie et al., 2004), valence effects in this study are con-
founded by low frequencies of errors. In accordance, a post-
hoc analysis (see Section S2 in the Supplementary Mate-
rial) revealed that between-condition differences in observed 
event type frequencies could explain the result pattern as 
well as differences in observed action valence. The focus of 
the study was, however, on potential effects of error severity, 
and there was no significant difference between observed 

small and large errors. The result pattern thus differed from 
the one in Experiment 1, where we found error severity 
effects for own action processing. The difference between 
active and observational response monitoring was further 
supported by an exploratory analysis directly comparing 
the data obtained in both experiments. This analysis indeed 
revealed that large errors, but not small errors and correct 
responses, were processed differently between active and 
observer participants, indicating that the error type is less 
influential in observed action processing than in own action 
processing.

General discussion

Experiment 1 was designed to identify the effect of error 
severity on behavioral and electrophysiological action 
monitoring during piano playing. In Experiment 2, we 
investigated the electrophysiological effect of error 
severity when observer participants watched videos of 
pianists playing.

In line with the hypothesis, Experiment 1 revealed 
increased ERN amplitudes for large compared with small 
errors, which, in turn, elicited larger ERN amplitudes than 
correct responses. Previous research also found a distinc-
tion between different error types (Bernstein et al., 1995; 
Maier et al., 2008; Maier et al., 2012; Maier and Steinhauser, 
2016). However, our study is the first to directly test the 
effect of error severity within one action dimension. Behav-
iorally, participants showed larger post-error slowing for 
large than for small errors. Overall, we thus found clear 
effects of error severity. Post-error slowing was reported 
in some previous studies investigating piano play (Herrojo 
Ruiz et al., 2009; Paas et al., 2021). The small post-error 
slowing after small errors (especially compared to post-
error slowing after large errors) might be attributed to the 
expertise in our sample: some previous studies showed that 
expertise reduced or even eliminated post-error slowing 
(Crump and Logan, 2013; Jentzsch et al., 2014; Loehr et al., 
2013; Rachaveti et al., 2020), depending on task demands 
(Jentzsch et al., 2014). Furthermore, if speed—or keeping a 
respective tempo—was emphasized, post-error slowing was 
reduced or not present (Jentzsch and Leuthold, 2006; Loehr 
et al., 2013). In the present study, participants had to keep 
the tempo, possibly explaining why little slowing occurred 
after small errors. Large errors, on the other hand, might 
have posed more demands with respect to corrective move-
ments and attention, leading to the observed large post-error-
slowing, possibly due to a reorienting process (Buzzell et al., 
2017; Notebaert et al., 2009; Núñez Castellar et al., 2010).

As found in previous studies, participants played small 
errors significantly more quietly than correct notes (Herrojo 
Ruiz et al., 2009; Maidhof et al., 2009; Maidhof et al., 2013; 
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Paas et al., 2021), whereas large errors were played at a similar 
volume as correct notes. We included only notes that were suc-
ceeded by a correct keypress, so for all (“uncorrected”) errors, 
hand movements following the error had to be adapted to keep 
on playing successfully (sequential correction). Together with 
the finding of post-error slowing, the reduced volume for only 
small errors suggests that action correction for small errors 
might start earlier than for large errors (even at keypress), which 
confirms recent findings on early error movement cancellation 
effects (Foerster et al., 2022).

For action observation (Experiment 2), there was no dif-
ference in processing between small and large errors. How-
ever, in accordance with previous studies, a significantly 
larger oMN amplitude for observed errors compared with 
correct keypresses was found (Bates et al., 2005; Bellebaum 
et al., 2020; de Bruijn and von Rhein, 2012; Koban et al., 
2010; Miltner et al., 2004; van Schie et al., 2004). Error rec-
ognition accuracy, that is, the difference between the number 
of perceived and actual errors, did not explain additional 
variance in the model. Thus, even though the null effect does 
not allow the conclusion that error severity does not affect 
observed action processing, we assume that the effect is at 
least reduced in comparison to own errors. This assumption 
was further supported by an exploratory analysis in which 
we compared the ERP amplitude pattern between the active 
(Experiment 1) and observer (Experiment 2) groups. We 
found that only for large errors, z-standardized amplitude 
values were significantly larger for the active than for the 
observer group.

The different findings in action monitoring for action and 
observation might have theoretical implications. The PRO 
model states that mPFC activity reflects the (un)expected-
ness of outcomes and actions rather than their accuracy 
(Alexander and Brown, 2011; Gawlowska et  al., 2018; 
Kobza and Bellebaum, 2013; Schiffer et al., 2014; Wessel 
et al., 2012). In contrast, the reinforcement learning theory 
(Holroyd and Coles, 2002) assumes that the ERN reflects 
a reinforcement learning signal that the ACC uses to adapt 
motor activity based on valence and expectancy of the event. 
Our data suggest that the monitoring of own actions at least 
partially reflects the deviation from a (subjective) goal, in 
line with the reinforcement learning theory (Holroyd and 
Coles, 2002). For observed action monitoring, however, 
the results might not reflect this deviation, but possibly 
only an expectancy violation (see also the effects of Event 
Type Frequency on both active and observation condition 
reported in the Supplementary Material, section S2). These 
results, in contrast, are more in line with the PRO model 
(Alexander and Brown, 2011). We suggest an integration 
of the two models: Based on the finding of different activa-
tions depending on the error size, we assume that the action 
monitoring system sends a general need-to-adapt signal to 
update action models (as proposed by the reinforcement 

learning theory) as well as prediction models (as proposed 
by the PRO model). For predictions, the magnitude of the 
adapt-signal depends on the prediction error, which has been 
shown for different event types: For feedback processing, for 
example, larger ERP amplitudes were found for infrequent 
compared to frequent feedback, irrespective of feedback 
valence (Ferdinand et al., 2012). Also, prediction error size 
modulates trial-by-trial ERP amplitudes in feedback process-
ing (Fischer and Ullsperger, 2013; Ullsperger et al., 2014), 
suggesting that amplitudes depend on the size of the predic-
tion adaptation. However, the two aforementioned studies 
showed modulations of a signed prediction error; thus, any 
effects can be accounted for not only by expectancies, but 
also by valence, and valence does seem to play an important 
role in feedback processing (Proudfit, 2015). We observed 
a similar effect of prediction error size for the processing of 
others’ actions, when less predicted actions elicited larger 
oMN amplitudes, irrespective of action valence (Albrecht 
and Bellebaum, 2021b). We believe that the adapt-signal, or 
maybe two overlapping adapt-signals, code the magnitude 
of prediction (Albrecht and Bellebaum, 2021b; Ferdinand 
et al., 2012) and action adaption needed to meet the desired 
outcome (as in the current study) continuously (rather than 
dichotomously). This combination of the reinforcement 
learning theory and PRO model could explain the magni-
tude of adapt-signals for cases where either an action or 
a prediction model or both have to be updated. Whether 
action or prediction adaptations are needed highly depends 
on the task: in observation, if others’ movements cannot 
be influenced (as in our study), an adapt-signal should be 
sent for predictions, but in active performance, especially 
in a sequential task, the adapt-signal should (also) be highly 
dependent on the necessity to update action models.

Future studies might test this suggested combination of 
the two models for both own and observed actions by modu-
lating the necessity to adapt movements quickly (sequential 
vs. nonsequential task) and, especially in observed action, 
the possibility to adapt actions at all (observation vs. joint-
action tasks; Loehr et al., 2013; Paas et al., 2021). Addition-
ally, the continuous, nondichotomous, nature of the signal 
should be tested by introducing multiple valence levels (cor-
rect, almost-error, small error, large error, etc.) and extend-
ing findings on multiple expectancy levels (from highly 
expected to highly unexpected, possibly by modulating both 
signed and unsigned prediction errors). To further corrobo-
rate the dissociation between expectancy and error sever-
ity, participants’ expectancy regarding the action should be 
assessed directly after each trial.

Conclusions

Our results offer first evidence for a continuous error sever-
ity coding in the brain during active action processing. 
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Crucially, our results suggest that this effect cannot be 
(only) attributed to expectancies, suggesting a reliance on 
a more general need-to-adapt signal in action processing. 
In contrast, error severity did not modulate observed action 
monitoring, which is in line with prediction error coding 
and updating predictions. The divergent findings between 
action and observation concerning the effect of error severity 
might hint at the representation of different continuous need-
to-adapt signals in the mPFC, with different signals play-
ing larger roles in action or observation, respectively. This 
suggested combination of the reinforcement learning theory 
(Holroyd and Coles, 2002) and the PRO model (Alexander 
and Brown, 2011) should be tested empirically by introduc-
ing multiple valence and (extending previous research, see 
Albrecht and Bellebaum, 2021b; Ferdinand et al., 2012) 
expectancy levels, and manipulating the importance of 
action adaptation in own and observed action monitoring.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 3758/ s13415- 023- 01097-1.
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