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[1] This paper is initially concerned with uncertainty of hazard estimates using renewal
process models where the parameters are poorly constrained because of the scarcity of
large earthquakes occurring along the same fault segment. A Bayesian inference is
adopted, taking account of the whole likelihood function of the parameters. Also, new
statistical models are considered which make use of knowledge on the slip associated with
earthquake ruptures, may help to improve the hazard estimate in a positive way. Including
these models, the predictive efficiency is compared by using the Akaike’s Bayesian
information criterion (ABIC). Three data sets are analyzed for the illustrations. The
Brownian Passage Time (BPT) model is selected to fit the first data set, consisting of 10
historical great earthquakes from Nanaki trough in Japan. However, its predictive hazard
function shows a large uncertainty (>100 years) of likely occurrence time around 2070.
The second data set consists of the last three events of the first data set but associated with
record of slip sizes, for which the ABIC selected the extended lognormal renewal process
model where the time intervals between successive events are normalized by the
corresponding slip sizes of the starting events of the intervals. The estimated predictive
hazard function implies that the next event is likely to occur around 2040 ± 10. The last
data set, consisting of 4 events with estimated occurrence times and slip sizes from a
submarine fault. The ABIC selected the slip-size-dependent BPT model for this data. This
model indicates that the likelihood of occurrence time of the next event is decreasing from
now, and the period of its half decay is more than several hundred years. For the data sets
of the last two examples, it was also shown that the slip size records are useful for better
prediction of the next event. INDEX TERMS: 7223 Seismology: Seismic hazard assessment and

prediction; 7221 Seismology: Paleoseismology; 3210 Mathematical Geophysics: Modeling; KEYWORDS:

Brownian Passage Time process, lognormal distribution, Weibull distribution, posterior distribution, time-

predictable model, renewal processes
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1. Introduction

[2] In order to assess the probability of rupture on an
active fault, the coefficients of the hazard function are
substituted by the maximum likelihood estimates (MLE)
that are obtained by fitting a renewal process to historical or
paleoearthquake occurrence data. Since the available
records of such events are usually small in number, it is
recommended to reduce the number of parameters to be
adjusted after the comparison of goodness of fit of the
model, using the Akaike information criterion (AIC)
[Akaike, 1974, 1998], with the restricted models where a
parameter is fixed with a standard value for each renewal
process such as the shape factor of lognormal distribution
[Nishenko and Buland, 1987; Savage, 1991;Working Group

on Assessment Methods of Long Term Earthquake Proba-
bility, 2001; Ogata, 1999].
[3] However, when the data set is too small size or has a

particular configuration, the MLE has not only large errors
but also tends to provide a biased hazard function, namely, a
very different outcome from our statistical intuition. For
example, for the data where several events have occurred in
such a way that the successive time intervals are of almost
equal lengths, the hazard rate with the MLE coefficients
leads to an unusually high probability of occurrence of the
next event in a very short time span, so as to keep the same
length from the last event. The bias and large uncertainty of
the MLE are due to a spiky peak and extremely asymmetric,
heavy-tailed shape of the log likelihood function, which
often takes place when the data set is small.
[4] To overcome such an inherent difficulty, we adopt a

Bayesian inference which takes all the information regard-
ing the entire log likelihood function into consideration in
estimating the current and future hazard and its uncertainty,
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rather than looking at a representative parameter value for
the likelihood function. Thus we can consider the uncer-
tainty of the hazard rate functions based on the posterior
distribution and their expectation to evaluate the probability
of the occurrence of the next event. This Bayesian method
includes selection of models by using the Akaike’s Bayesian
information criterion (ABIC), which is useful for the selec-
tion of Bayesian models, namely, not only the prior but also
the likelihood function. For example, it will be worth
examining the predictive utility of the slip-size records for
each data set by making use of the ABIC, since some
authors doubt the reliability of the slip-dependent model
[e.g., Mulargia and Gasperini, 1995].

2. Data

[5] In this paper we will analyze three sets of occurrence
data. The first data set in Table 1 consists of 10 great
earthquakes of M8 class at Nankai trough, taken from Utsu
[1999, Table 10.5], where the fourth event of early thir-
teenth century [Sangawa, 1992] is provisionally set to be
1233 in this paper.
[6] The second data set listed in Table 2 consists of the

last three events in the above mentioned Nankai earthquakes
where the coseismic rise at Muroto Peninsula (the water
level changes at Murotsu Port) is assumed to be propor-
tional to the slip sizes [Shimazaki and Nakata, 1980]. In
addition to these records, we make note on the fact that the
great event at Nankai trough has never occurred since 1946,
using this information as appropriate.
[7] The third data set is listed in Table 3, which is from

Off Toyooka Fault, one of the submarine faults in Beppu
Bay, Khushu, Japan. This data set is based on the inverse
image of submarine normal fault structure using sonar
reflection, boring data of strata, and their calibration of
14C ages estimated by radiocarbon dating [e.g., Nakata and
Shimazaki, 1993]. Here, they identified the last four events
and estimated the occurrence times and the associated slip
sizes. This active fault is estimated to create an earthquake
of magnitude 6 to 7 class. In addition to the above data we

note that the event has never occurred since 300 B.C.,
making use this information as appropriate.

3. Models and Hazards

[8] Consider a random series of events, t1 < t2 < . . . < ti <
. . ., and the interval lengths Xi = ti � ti�1 (i = 1, 2, ) between
the consecutive events. If the sequence {Xi} is independ-
ently and identically distributed, the original series of events
{ti} is called a renewal process. Hereinafter the density
distribution of the interval is denoted by f (xjq), and the
cumulative distribution function is denoted by F(xjq), which
are characterized by parameter vector q. In particular, if the
exponential distribution

f xjlð Þ ¼ le�lx ð1Þ

F xjlð Þ ¼ 1� e�lx ð2Þ

hold, then the series is a stationary Poisson process with
intensity l, where l is the expected number of events in the
unit time interval, or reciprocal of the mean interval length
between the successive events. In addition, we later
consider a slip-size-dependent renewal process using this
distribution.
[9] We further consider two distributions for the renewal

processes and their extensions throughout this paper. The
first one is the lognormal distribution

f xjm; sð Þ ¼ 1
ffiffiffiffiffiffi

2p
p

sx
exp

ln x� mð Þ2
2s2

( )

ð3Þ

F xjm; sð Þ ¼ �
ln x� m

s

� �

ð4Þ

where ‘‘ln’’ denotes natural logarithm, �(x) denotes the
standard normal distribution, and the parameters m and s2

represent the mean and variance of the variable ln x. The
second distribution is the Weibull distribution

f xjb; sð Þ ¼ b

s

x

s

� �b�1

exp � x

s

� �b
� 	

ð5Þ

F xjb; sð Þ ¼ 1� exp � x

s

� �b
� 	

; ð6Þ

where b represents the power of the polynomial in its hazard
function and s is the scaling parameter.
[10] Let T be current time and consider records of

occurrence times {ti; i = 1, 2, . . ., n} of events in the

Table 1. Historical Earthquakes at Nankai Trough

Occurrence Time Date, years

t1 684
t2 887
t3 1099
t4 1233
t5 1361
t6 1498
t7 1605
t8 1707
t9 1854
t10 1946

Table 2. Last Three Earthquakes at Nankai Trough

Occurrence Time Date, years Slip Size x, m

t1 1707 1.8
t2 1854 1.2
t3 1946 1.15

Table 3. Fault Off Coast of Toyooka, Beppu Bay

Occurrence Time Date, years B.P.a Slip Size x, m

t1 5900 1.0
t2 4500 0.6
t3 3600 0.7
t4 2250 1.3

aB.P. indicates years before 1950 A.D.
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observed period [t1, T ]. If we can assume renewal processes
for the data, then we have the following log likelihood
function

ln L qð Þ ¼
X

n

i¼2

ln f ti � ti�1jqð Þ þ ln F T � tnjqð Þ ð7Þ

[e.g., Brillinger, 1982; Davis et al., 1989; Ogata, 1999],
where

F xjqð Þ ¼ Prob Time > xf g ¼
Z 1

x

f tjqð Þdt ¼ 1� F xjqð Þ ð8Þ

is called as the survivor function, which means the
probability of no event in the time span of length x from
the last event. This is derived by the stationarity of renewal
processes for an arbitrary time at random after the last event
[Daley and Vere-Jones, 1988, section 4.2]. The last term in
the log likelihood in equation (7) stands for the fact that no
events occurred from the last event up until the current time
T, and the contribution of this term cannot be neglected
especially when the number of events n is small or the
length of T � tn is larger than the mean recurrence time (T �
t1)/n [cf. Davis et al., 1989; Ogata, 1999].
[11] Suppose that estimates q̂ of the parameters are

obtained somehow. For example, the maximum likelihood
estimates (MLE) are the values of parameters that maximize
the log likelihood function (7). Also, there are a few other
good estimates, as will be discussed in section 4. The hazard
function of the occurrence of the next event, at the time
when x years has elapsed since the last event, is derived by
the calculation of conditional probability such that

l xjqð Þ ¼ lim
�!0

Prob x < Time < xþ�jTime > xf g
�

¼ lim
�!0

Prob x < Time < xþ�f g
� Prob Time > xf g

¼ f xjqð Þ
F xjqð Þ ¼ � d

dx
lnF xjqð Þ: ð9Þ

Therefore, assuming no event has occurred up to the current
time tc since the last event, the probability that at least one
event takes place in the future interval (tc, tc + y) is
calculated by

P tc; yjqð Þ ¼ 1� exp �
Z tcþy

tc

l tjqð Þdt
� 	

¼ 1� F tc þ yjqð Þ
F tcjqð Þ :

ð10Þ

By taking the derivative of the function in equation (10)
with respect to y, we have the density function of the
occurrence time of the next event

p tc; yjqð Þ ¼ l tc þ yjqð Þexp �
Z tcþy

tc

l xjqð Þdx
� 	

¼ F tc þ yjqð Þ
F tcjqð Þ f tc þ yjqð Þ: ð11Þ

[12] Now, extending the renewal processes, we consider
models to investigate the statistical uncertainty of the time-

predictable model [Shimazaki and Nakata, 1980] for the last
two data sets listed in section 2. Given a data set of
occurrence times of events {ti: i = 1, 2, ���, n} associated
with slip sizes {xi: i = 1, 2, ���, n}, consider the ratio of
interval length between consecutive earthquakes to the slip
size of the starting event of the interval. Assume that the
ratios are independently and identically distributed accord-
ing to a density function f (ratiojq). Then we can state the
log likelihood as follows:

ln L qð Þ ¼ ln L qjt1; � � � ; tn; T ; x1; � � � ; xnð Þ

¼
X

n

i¼2

ln f
ti � ti�1

xi�1

jq
� �

þ ln F T � tn

xn
jq

� �

ð12Þ

For such a slip-size-dependent renewal process, the hazard
rate at an elapsed time y from the last event is written using
the slip size xn of the last event as follows. That is to say,

l xjxn; qð Þ ¼ lim
�!0

Prob x < Time < xþ�jTime > xf g
�

¼ lim
�=xn!0

Prob x=xn < Time=xn < x=xn þ�=xnf g
�=xnð ÞProb Time=xn > x=xnf g xn

¼ f x=xnjqð Þ
F x=xnjqð Þ x

�1
n ¼ � d

dx
lnF x=xnjqð Þ: ð13Þ

Using this equation, we can calculate the cumulative
probability and its density function replacing l(xjq) in the
first equalities of equations (10) and (11), respectively, by
l(xjxn,q).
[13] The distributions for this type of model include the

exponential, lognormal, and Weibull, as stated above. Note
here that the process using the exponential distribution for
the ratio is not a Poisson process.
[14] Another type of slip-size-dependent model for the

stochastic version of the time-predictable model is available,
that is, the original form of the Brownian Passage Time
(BPT) distribution [Schrödinger, 1915; Seshadri, 1998,
etc.]. This reduces to the standardized version of the BPT
distributions [Matthews, 1998; Ellsworth et al., 1998] if we
assume the same slip size for each event. The Brownian
passage process is compatible with the physical mechanism
in which the rupture takes place when tectonic loading with
stress accumulation, adding Brownian perturbations, rea-
ches the Coulomb threshold and then the stress drops to
repeat the stress accumulation. The Brownian perturbations
are assumed for many effects including external stress
transfer effects from earthquakes outside the target source,
aseismic load variations, pore pressure, dilatancy, healing,
and general evolution of spatial heterogeneity.
[15] The density and cumulative distribution function of

this model are given by

f xjx; v; sð Þ ¼ x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ps2x3
p exp � x� vxð Þ2

2s2x

( )

ð14Þ

F xjx; v; sð Þ ¼ �
vx� x

s
ffiffiffi

x
p

� �

þ exp
2xv

s2

� 	

� � vt þ x

s
ffiffiffi

x
p

� �

; ð15Þ

respectively, where �( ) denotes the cumulative function of
the standard normal distribution, v is the accumulation rate
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of the stress, s2 is the variance of the Brownian fluctuation,
and x is the variable that is proportional to the stress drop or
slip size of the event. Then the log likelihood of this model
is given by

ln L v; sð Þ ¼
X

n

i¼2

ln fq ti � ti�1jxi�1; v; sð Þ þ ln F q T � tnjxn; v; sð Þ;

ð16Þ

and the hazard rate at elapsed time y from the last event is
given by

l xjx; v; sð Þ ¼ f xjx; v; sð Þ
F xjx; v; sð Þ ¼ � d

dx
ln F xjx; v; sð Þ: ð17Þ

Replacing l(xjq) in the first equation of equations (10) and
(11) by this hazard function, we can derive the cumulative
probability and its density functions, respectively.
[16] Here it should be noted that application of the

ordinary renewal process models to the events without slip
size information, such as the data in Table 1, is equivalent to
applying the slip-size-dependent renewal processes assum-
ing same slip size, say xi = 1.0.

4. Recurrence Time Normalization

[17] For accurate calculation of log likelihoods at any
possible parameter values and their integrals, we normalize
the data of occurrence times relative to the mean recurrence
time n of the stationary Poisson process model as discussed
by Nishenko and Buland [1987]. That is to say, set n = (T �
t1)/n, and then transform the original occurrence times {ti}
in the observation period [t1, T ] to the normalized occur-
rence times {ti} in the normalized time span [0, n] by ti =
(ti � t1)/n. Thus, in the normalized times, the mean
recurrence time becomes 1.0. Then the corresponding
parameters of the normalized renewal processes become
as listed in Table 4, in terms of the original parameter
values. Thus, we can see that the log likelihood values ln L1
of the normalized occurrence data with respect to the
normalized parameters are respectively related to the orig-
inal log likelihood values by

ln L qð Þ ¼ ln L1 q1ð Þ � n ln n:

This relation also holds for the integrated likelihood
(likelihood of a Bayesian model) that will be introduced
in section 5. The normalized parameters are also useful in
comparing the shapes of the distributions for data sets of
different timescales. From here on we will be concerned

with the normalized data and the corresponding parameters
unless otherwise mentioned.

5. A Bayesian Inference

[18] The maximum likelihood estimator (MLE) works
typically well in the case where the likelihood function is
symmetric with respect the parameter. However, if it is
asymmetric and heavy tailed, the MLE provides a biased
estimate [e.g., Box and Tiao, 1973]. This can take place
when the sample size is small, and the maximum likelihood
procedure is not suitable for such a case.
[19] In this section we denote the likelihood function by

L(qjX) for the data set that is also denoted by the vector X.
For the Bayesian inference [e.g., O’Hagan, 1994], we
assume a proper prior distribution (i.e., a probability den-
sity) p(q) of the parameters q. Then the posterior density
distribution is given by

f qjXð Þ ¼ L qjXð Þp qð Þ
R

�
L qjXð Þp qð Þdq ; ð18Þ

which indicates the certainty of the model at each parameter.
Here � is a parameter space that will be described explicitly
in section 6.
[20] On the basis of the posterior distribution, we can

define two estimates. The first one is the maximum poste-
rior (MAP) estimate

q̂M ¼ arg max
q

f qjXð Þ
� 	

¼ arg max
q

L qjXð Þp qð Þ
� 	

; ð19Þ

which is expected to be approximately equal to the MLE
that is obtained when p(q) = 1 in equation (19). The second
one is the Bayes estimate, or the posterior mean,

q̂B ¼
Z

�

q f qjXð Þdq ¼
R

�
qL qjXð Þp qð Þdq

R

�
L qjXð Þp qð Þdq : ð20Þ

[21] Substituting these estimates to the hazard functions
in equation (9), (13), or (17) in such a way that

l̂M xð Þ ¼ l xĵqM
� �

ð21Þ

and

l̂B xð Þ ¼ l xĵqB
� �

; ð22Þ

we can assess the probabilities of the next event by
calculating those in equations (10) and (11). However, when
the sample size is too small, the uncertainty for each
estimate can be too large to provide a practical probability
assessment. The alternative is obtained by taking the
average of all possible hazard functions with respect to
the posterior distribution in such a way that

l̂P xð Þ ¼
Z

�

l xjqð Þ f qjXð Þdq ð23Þ

[e.g., Rhoades et al., 1994; Ogata, 1999]. We call this the
Bayesian predictive hazard function. The superiority of the
prediction performance using this hazard function over

Table 4. Parameter Normalization

Models Normalized Parameters
Relation to the Original

Parameters

Lognormal m1 m � ln n
s1 s

Weibull b1 b
s1 s/n

BPT v1 vn
s1 s

Exponential l1 ln
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those based on a single estimate such as in (21) and (22) can
be shown by a similar inequality to that discussed by Akaike
[1978, 1998].
[22] Now, in order to define our prior distributions for

data set of events with the normalized recurrence times, we
consider transformations of parameters q from the original
infinite parameter space � into the unit square �0 = (0, 1) �
(0, 1). For the lognormal case, q = (m, s) 2 � = (�1, 1) �
(0, 1) is transformed to q0 = (m0, s0) by the relation

m ¼ ln
m0

1� m0
ð24Þ

s ¼ � ln ð1� s0Þ
a

ð25Þ

for some a > 0. These transformation lead to the uniform
prior density distribution p0(q0) = 1 on the parameter space
�0 = (0, 1) � (0, 1), if we assume the prior

p qð Þ ¼ p mð Þp sð Þ ¼ dm0
dm

ds0

ds
¼ e�m

1þ e�mð Þ2
ae�as ð26Þ

in the original parameter space. Furthermore, taking account
of the Jacobian matrix that preserves the integral of the
posterior function on the corresponding regions in � and
�0, we obtain the posterior density distribution on the
parameter space �0 such that

f0 m0; s0jað Þ / L ln
m0

1� m0
;� ln 1� s0ð Þ

a

� �

: ð27Þ

Namely, the posterior density distribution is given by
normalizing the function on the right-hand side of equation
(27) by its integral over the region �0 with respect to the
parameters m0 and s0. Later, we will make use of the
function in (27) for sampling parameters qi, i = 1, 2, ���, n
from the posterior function.
[23] Similarly, since all the parameters (a, b) for the

Weibull distribution and (v, s) for the BPT model are
positive valued, we take the same transformation as in
equation (25) so that the prior distributions are

p að Þp bð Þ ¼ da0

da

db0

db
¼ ae�aa be�bb ð28Þ

and

p vð Þp sð Þ ¼ dv0

dv

ds0

ds
¼ ae�av be�bs; ð29Þ

respectively, in the original parameter space �. Then we
have the respective posterior density distributions

f0 a0; b0ja; bð Þ / L � ln 1� a0ð Þ
a

;� ln 1� b0ð Þ
b

� �

ð30Þ

and

f0 v0; s0ja; bð Þ / L � ln 1� v0ð Þ
a

;� ln 1� s0ð Þ
b

� �

: ð31Þ

By a similar manner, we can define the prior and posterior
distributions of both the stationary Poisson process and the
slip-size-dependent exponentially distributed renewal pro-
cesses.
[24] The optimal values of the hyperparameters a and b

in the prior distribution are selected by maximizing the
normalizing factor of the posterior distribution in equation
(18). For example, in the case of the BPT model, choose a
and b such that they maximize

L a; bð Þ ¼
Z

�

L v; sjXð Þp v; sja; bð Þdvds

¼
Z

�0

L � ln 1� v0ð Þ
a

;� ln 1� s0ð Þ
b

� �

dv0ds0: ð32Þ

This maximizing procedure is called the type II maximum
likelihood method of Good [1965], where L(J) = L(a, b) in
equation (32) is called the integrated likelihood or the
likelihood of Bayesian model. In a manner similar to the
BPT model, we can calculate the integrated likelihood for
the exponential, lognormal, and Weibull models. Further-
more, the Akaike’s Bayesian Information Criterion [Akaike,
1980, 1998],

ABIC ¼ �2ð Þmax ln integrated likelihoodð Þ

þ 2 number of adjusted hyperparametersð Þ

¼ �2ð Þmax
#

lnL #ð Þ þ 2 dim #f g; ð33Þ

is useful in order to compare the predictive efficiency of the
stated Bayesian models of different priors or likelihood
functions based on the data, where dim{J} = 1 for the
exponential and lognormal models and dim{J} = 2 for
Weibull and BPT models. A model with a smaller ABIC
value is considered to provide a better prediction. The
physical fundamentals of the present procedure from the

Table 5. Historical Earthquakes at Nankai Trougha

Model Hyperparameters ABIC Normalized Timescale Real Timescale

First Second MAP1 MAP2 BE 1 BE 2 MAP1 MAP2 BE 1 BE 2

Poisson 1.0 – 121.9 0.898 – 0.871 – 6.82 � 10�3 – 6.61 � 10�3 –
Lognormal 0.25 – 110.7 0.030 0.270 0.259 0.296 4.91 0.270 4.91 0.296
Weibull 4.0 1.0 113.7 3.74 1.17 3.38 1.17 3.74 154. 3.38 154.
BPT 1.0 0.25 109.9b 0.942 0.266 0.923 0.292 7.15 � 10�3 0.266 7.01 � 10�3 0.292

aMean recurrence time is 131.7 years. Hyperparameters show the optimal parameter values of the prior distribution, and the minimum ABIC value for
each model is given. The MAP1 and MAP2 are the first and second components of the parameter estimates with maximum a posterior distribution,
respectively. The BE 1 and BE 2 are the first and second components of the posterior mean estimates, or the Bayes estimate, respectively (see text for
further explanation).

bOverall best fitted model (i.e., with the minimum ABIC value) for the data.
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prediction viewpoint are effectively presented by Akaike
[1985, 1998].
[25] We have described only the two types of priors,

logistic and exponential distributions of the shift and scaling

parameters, respectively, for technical reasons such as the
compatibility with the considered transformation of param-
eters. One can also consider and compare any other proper
prior distributions, including those based on physical mech-
anisms or empirical laws, by means of the ABIC.

6. Results and Uncertainties

6.1. Historical Earthquakes at Nankai Trough

[26] The optimal hyperparameter values, â and b̂, were
searched among restricted values on the grids {2i; i = . . .,
�1, 0, 1, ���} to maximize the integrated likelihood as in
equation (32). Table 5 lists the estimates and ABIC values
of the four renewal process models (exponential, lognor-
mal, Weibull, and BPT) that have been applied to the data
in Table 1. The ABIC values indicate the BPT model is the
best fit.
[27] Figure 1 shows a contour map of the posterior

function (31) of the BPT model with respect to the trans-
formed parameters. From Table 5 and Figure 1 we see that
the MAP estimate and Bayes estimate (posterior mean
estimate) are close for v but differ slightly for s. Similar
features can be seen from the contour map for lognormal
model of Ogata [2001]. This is due to the fact that the
posterior function is symmetric with respect to v while
asymmetric and rather heavy tailed with respect to the
scaling parameter s.
[28] Now, in order to see the variability of the estimated

hazard functions, we simulate 100 samples of parameters
q0 = (v0, s0) in �0 from the posterior distribution f (v0, s0)
in (31), repeating the following rejection algorithm:
1. Simulate a pair of uniform random numbers (v0, s0) in

the unit square �0.

Figure 1. Heights of the posterior density distribution in
equation (31) of v0 (the horizontal axis) and s0 (the vertical
axis) for the data in Table 1 are contoured at the unit
intervals in logarithmic scale for the range from �10 to �1,
with no contours being shown below the value �10. The
lower and upper pluses indicate the MAP and posterior
mean estimate (Bayes estimate), respectively.

Figure 2. (a) One hundred samples of hazard rate functions of time, representing the variability of the
estimated hazard rate function. Their parameter values are simulated from the posterior probability
distribution in equation (31) of the BPT model applied to the data in Table 1. The horizontal dashed
line indicates the level of the mean hazard rate (0.076 event/yr) throughout the whole time span, with
the vertical dotted line indicating the current time (March 2002). (b) The curves with M, B, and P show
the hazard function equation (21) with the MAP estimate in equation (19), the hazard function (22)
with the Bayes estimate (posterior mean estimate) in equation (20), and the Bayesian predictive hazard
function in equation (23), respectively.
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2. For a uniform random number U 2 [0, 1], accept (v0,
s0) as a sample if U � f0(v0, s0)/max(x, y)2�0 f0(x, y) hold,
otherwise reject it.
[29] Note here that the function f0 need not be the

normalized one. That is, the function on the right-hand side
of equation (31) can be used since the ratio in the step 2 of
the rejection algorithm cancels the normalizing constant.
Thus Figure 2a shows the hundred samples of hazard

function l(xjqi), which shows the variability of the esti-
mated hazard function inferred from the data in Table 1,
assuming the BPT renewal process.
[30] On the other hand, Figure 2b shows the hazard

functions with the MAP and posterior mean estimates and
also the Bayesian predictive hazard function of the BPT
model. Here, we have made two-dimensional numerical
integrations for a 400 � 400 lattice on �0. We also note

Figure 3. (a) One hundred samples of cumulative probability functions of time from present time (the
vertical dashed line), corresponding to each sample path of the hazard rate functions in Figure 2a. These
are calculated by the equation in equation (10) and represent the variability of the probability estimate. (b)
The curves with M, B, and P show probability functions based on the MLE, Bayes estimate (posterior
mean estimate), and the Bayesian predictive hazard function, respectively. (c) and (d) Predicted
probability density functions in equation (11) corresponding to Figures 3a and 3b, respectively.
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that the posterior mean estimate is expected to be approx-
imately equal to the following arithmetic mean:

q̂B � 1

N

X

N

i¼1

qi

of the sampled parameters qi from the posterior distribution,
while the Bayesian predictive hazard function is expected to
be approximately equal to the arithmetic mean,

l̂P xð Þ � 1

N

X

N

i¼1

l xjqið Þ;

of the functions shown in Figure 2a. We see that the three
hazard functions in Figure 2b differ only slightly from one
another.
[31] Figure 3a shows 100 samples of cumulative proba-

bility function, where each of the samples is derived from the
corresponding sample hazard function in Figure 2a by the
relation in equation (10). From these samples of cumulative
probability, the error distribution of the predicted probability
until time t, say, is obtained by making the histogram of
points at which the cumulative curves crossed the vertical
line at the time t [cf. Savage, 1991, 1992]. Figure 3b shows
the three cumulative probability functions corresponding to
the three hazard rate in Figure 2b. We see little difference
between the estimates. Figures 3c and 3d show the estimated
probability density of the next event corresponding to
Figures 3a and 3b, respectively. It can be seen that the next
Nankai event will most likely to occur around the years of
2070–2080, with a likely occurrence range of more than 100
years, if we applied the best fitted BPT renewal process
using the data in Table 1. These results do not change much
for the lognormal [Ogata, 2001] and Weibull models with
the optimal selection of the hyperparameters.

6.2. Last Three Earthquakes at Nankai Trough

[32] As described in section 2, the data in Table 2 are only
for the last three Nankai events, for which records of slip
sizes are available. Thus the sample size is indeed very
small even if we have the implicit information that no event
has occurred since 1946. Nevertheless, the posterior distri-
butions itself is well defined for each model.
[33] Again, the optimal hyperparameter values were

selected among the restricted values on the grids {2i;

i = ���, �1, 0, 1, . . .} in order to maximize the integrated
likelihood. Table 6 lists the maximizing hyperparameter
estimates, the MAP and posterior mean estimates, and
ABIC values of the four models (exponential, lognormal,
Weibull, and BPT) which have been applied to the data in
Table 2. The same models are also applied, but assuming
the same slip size (say, 1.0) for all the three events, which
represents the case where slip information is not useful.
The results show that the renewal models using slip sizes
are better fitted than those models without slip-size infor-
mation. Overall, the slip-size-dependent (SSD) lognormal
model shows the best fit.

[34] From Table 6 we see that the MAP and posterior
mean estimates for SSD lognormal and SSD-BPT models
are similar for m and v but vary greatly for s, respectively.
This is due to the fact that both the posterior distributions
are almost symmetric with respect to m and v, while they are
asymmetric and heavy tailed with respect to the scaling
parameter s. Furthermore, the MAP estimates of s of SSD
lognormal and SSD-BPT models are very small due to the
fact that the ratios {(ti � ti�1)/xi�1; i = 2, 3} are almost equal
to one another. The MLE is almost the same as the MAP
estimate, both being inadequate as the estimate for s.
Rather, the posterior mean estimate seems to be closer to
our intuition. Figure 4 shows a contour map of the posterior
function of the SSD lognormal model with respect to the
transformed parameters.
[35] By the rejection algorithm described in section 6.1,

we simulate 100 samples of parameters q0 = (m0, s0) in �0

from the posterior distribution f (m0, s0) of the SSD lognor-
mal model. Figure 5a shows the 100 hazard functions l(xj
q0), which show the variability of the estimated hazard
function inferred from the data in Table 2, assuming the
SSD lognormal model.
[36] In comparison with Figure 2a for the data in Table 1

this shows many sample functions rising steeply around
2030–2040, due to the fact that the ratios of the consecutive
interval lengths to the corresponding slip sizes are almost
equal to each other, which typically supports the hypothesis
of the time-predictable model. On the other hand, it is also
indicated that the remainder of samples of hazard functions
can also simulate such approximately equal ratios with
some probability.
[37] As a result, the hazard functions with the MAP and

posterior mean estimates in addition to the Bayesian pre-
dictive hazard function are shown in Figure 5b. Among

Table 6. Last Three Earthquakes at Nankai Trougha

Model Hyperparameters ABIC Normalized Timescale Real Timescale

First Second MAP1 MAP2 BE 1 BE 2 MAP1 MAP2 BE 1 BE 2

Slip-Size Data Used
Exponential 1.0 – 34.9 0.955 – 0.838 – 9.77 � 10�3 – 8.57 � 10�3 –
Lognormal 0.0625 – 30.0* �0.211 0.0322 �0.210 0.0577 4.37 0.0322 4.37 0.0577
Weibull 32.0 1.0 30.9 36.0 0.821 22.2 0.831 36.0 80.2 22.2 81.2
BPT 1.0 0.125 30.8 1.229 0.0433 1.213 0.0936 0.0126 0.0433 0.0124 0.0936

Slip-Size Data Not Used
Poisson 0.5 – 36.4 0.669 – 0.505 – 6.84 � 10�3 – 5.16 � 10�3 –
Lognormal 0.5 – 36.8 0.170 0.235 0.199 0.408 4.75 0.235 4.78 0.408
Weibull 4.0 1.0 37.7 4.95 1.31 3.29 1.28 4.95 128. 3.29 125.
BPT 1.0 0.5 34.9 0.815 0.213 0.700 0.388 8.34 � 10�3 0.213 7.16 � 10�3 0.388

aMean recurrence time is 97.73 years. See Table 5 for the table notes.

ESE 1 - 8 OGATA: SLIP-SIZE-DEPENDENT RENEWAL PROCESSES AND BAYESIAN INFERENCES



these we choose the Bayesian predictive hazard function for
the same reason as described in section 4.
[38] Figure 6a shows 100 samples of cumulative proba-

bility function that is calculated by the first equality in
equation (10), where each of the samples is derived from the

corresponding sample hazard function in Figure 5a. Figure
6b shows the cumulative probability functions correspond-
ing to the hazard rate in Figure 5b. Figures 6c and 6d show
the estimated probability density of the next event corre-
sponding to Figures 6a and 6b, respectively. It is seen that
the next Nankai event will most likely to occur around the
years of 2040 based on the data in Table 2 associated with
the slip-size information. The other models (SSD Weibull
and SSD-BPT models), with the optimal hyperparameter
values in the prior distributions, also provide the similar
shapes to those in Figures 5b, 6b, and 6d, and the proba-
bility of the occurrence by 2040 is more than 60%.

6.3. Events of the Fault in Beppu Bay

[39] This data set consisting of four events with slip sizes
appears to fit to the time-predictable model very well during
the period until the last event [Nakata and Shimazaki,
1993]. However, the next event should have occurred at
about 300 � 400 years ago if the series of events exactly
obeyed the time-predictable model.
[40] The optimal hyperparameter values were searched

among the restricted values on the grids {2i; i = . . ., �1, 0,
1, ���} in order to maximize the integrated likelihood. Table 7
lists the estimates and ABIC values of the considered
models. It can be seen that the renewal models using slip
sizes, with the exception of the exponential distribution, are
better fitted than those without using such information.
Overall, the SSD-BPT model is best fitted for this data.
However, the difference between the ABICs (i.e., 1.8) of the
SSD-BPT model and the ordinary BPT model without slip-
size effect is not so large compared to those between the
lognormal models in the previous example (i.e., 6.8 from
Table 6). This may be due to the fact that there are larger
uncertainties in the estimation of occurrence times and
smaller slip sizes than the previous example.

Figure 4. Heights of the posterior density distribution in
equation (30) for the data in Table 2 are contoured at the
unit intervals in logarithmic scale for the range from �10 to
4, with no contours being shown below the value �10. The
lower and upper pluses indicate the MAP and Bayes
estimate (posterior mean estimate), respectively.

Figure 5. (a) One hundred samples of hazard rate functions of time that start from the occurrence time
of the last event, simulated from the posterior probability distribution in equation (30) for the data in
Table 2, consisting of only three events but associated with their slip-size records. The horizontal dashed
line indicates the mean hazard rate (0.0102 event/yr) with the vertical dashed lines indicating the current
time. (b) The estimated hazard rate functions are similarly defined to those in Figures 2a and 2b.
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[41] Figure 7 shows a contour map of the posterior
function of the SSD-BPT model with respect to the trans-
formed parameters (v0, s0). In a similar manner to the
previous sections, 100 samples of parameters q0 = (v0, s0)
in �0 are simulated from the posterior distribution of the
SSD-BPT model. Figure 8a shows the hundred hazard
functions l(xjq0), which show the variability of the esti-
mated hazard function inferred from the data in Table 3,
assuming the SSD-BPT model.
[42] The steep rise of many simulated hazard functions in

Figure 8a is due to the equality of the ratio of the consec-

utive intervals to the corresponding slip sizes, which sup-
ports the hypothesis of the time-predictable model.
However, the variability is not only larger than that of the
previous models applied to the data in Table 2, but also the
differences between the three estimates in Figure 8b are
larger than those in Figure 5b. This is due to the fact that the
time interval from the last event up until the current time
substantially exceeds the one expected by the time-predict-
able model of Shimazaki and Nakata [1980]. This outcome
is led by the log likelihood functions that include the log-
survivor function as in equations (7), (12), and (16).

Figure 6. (a) One hundred samples of cumulative probability functions of time, starting from the
current time, derived from the hazard rate functions in Figure 5a, using the first part of the equation in
equation (10). (b) The similar cumulative probability functions based on the MAP, posterior mean
estimate, and the Bayesian predictive hazard function in equation (23). (c) and (d) Predicted probability
density functions in equation (11) corresponding to each sample path of the function in Figures 5a and 5b,
respectively.
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[43] As a result, the hazard functions with the MAP and
posterior mean estimates and the Bayesian predictive hazard
function shown in Figure 8b differ greatly from each other.
Among these we select the Bayesian predictive hazard
function for the same reason as described in section 4. It
should also be noted from Figures 8a and 8b that the current
hazard rate is several times higher than the average hazard
rate for the fault.
[44] Figure 9a shows 100 samples of cumulative proba-

bility function (10) where each of the samples is derived
from a sample hazard function in Figure 8a. Figure 9b
shows the cumulative probability functions corresponding
to the hazard functions in Figure 8b. We see large differ-
ences between the three estimates compared to Figure 3b for
the case of the data in Table 1. Figures 9c and 9d show the
estimated probability density of the next event correspond-
ing to Figures 6a and 6b, respectively. It can be seen that the
next event will most likely to occur in current years, based
on the models of the optimal prior distributions fitted to the
data in Table 3 with the slip-size information. Namely, the
probability of the occurrence within the 21st century is
about 30%.

7. Discussion

7.1. Methodological Aspect

[45] Any estimates based on a finite number of events are
inevitably associated with some errors. For a large enough
number of events, the errors of the hazard function can be
approximately calculated using the second derivatives of the
log likelihood (Hessian matrix) around the MLE [e.g.,
Imoto, 1999]. However, this does not always work well
for data sets with small sample sizes. In contrast, the
simulation of parameter values from posterior function is
useful to see the variability or uncertainty of the estimated
functions for prediction, such as those given in Figures 2a,
3a, 3c, 5a, 6a, 6c, 8a, 9a, and 9c.
[46] The extremely small MAP estimate of the scale

parameter s leads to the steep rise of the hazard rate
function in Figure 5. Even in the case where only the
occurrence times are available (or all the slip sizes are the
same), the similar spiky and extremely skewed posterior
function and then the steep hazard rises are conducted if
intervals of consecutive events are about the same length
such as the historical earthquakes around Odawara in Japan
and the Parkfield earthquakes in San Andreas Fault. If we
adopt this estimate or the MLE, the hazard function predicts

with high probability that the next event will take place to
keep the equidistant time interval from the last event.
However, this kind of data is actually rare throughout the
world, and examples of occurrences with such intervals
number 4 � 5 at most. In contrast, it is not unlikely that an
ordinary inhibitory renewal process, such as the gamma,
Weibull and lognormal, can simulate the occasional realiza-
tion of events with 4 � 5 consecutively equidistant intervals
as discussed by Utsu [1994].
[47] In seismic hazard assessment, one of the most critical

parameters in renewal models is the earthquake recurrence
in time. Usually this parameter is poorly constrained due to
the scarcity of large earthquakes occurring along the same
fault segments. The only improvement to this unfortunate
situation is to include some constraints from other explan-
atory variables. This paper has presented this issue and
provided a way of introducing the slip information through
a Bayesian inference. In this sense even if the recurrence

Table 7. Events in Fault Off Coast of Toyooka, Beppu Baya

Model Hyperparameters ABIC Normalized Timescale Real Timescale

First Second MAP1 MAP2 BE 1 BE 2 MAP1 MAP2 BE 1 BE 2

Slip-Size Data Used
Exponential 0.5 – 70.4 0.678 – 0.541 – 4.56 � 10�4 – 3.64 � 10�4 –
Lognormal 0.25 – 67.3 0.120 0.156 0.144 0.232 7.42 0.156 7.45 0.232
Weibull 8.0 1.0 69.2 7.64 1.20 5.66 1.23 7.64 1790. 5.66 1830.
BPT 1.0 0.25 64.0* 0.923 0.123 0.864 0.198 6.20 � 10�4 0.123 5.81 � 10�4 0.198

Slip-Size Data Not Used
Poisson 1.0 – 69.7 0.750 – 0.729 – 5.04 � 10�4 – 4.90 � 10�4 –
Lognormal 1.0 – 70.2 0.0 0.431 0.0614 0.721 7.30 0.431 0.614 0.721
Weibull 2.0 1.0 72.7 2.34 1.15 1.76 1.14 2.34 1710. 1.76 1690.
BPT 1.0 0.5 65.8 1.22 0.223 1.06 0.384 8.21 � 10�4 0.223 7.10 � 10�4 0.384

aMean recurrence time is 1475.0 years. See Table 5 for the table notes.

Figure 7. Heights of the posterior density distribution in
equation (31) for the data in Table 3 are contoured at the
unit intervals in logarithmic scale for the range from �10 to
2, with no contours being shown below the value �10. The
lower and upper pluses indicate the MAP and posterior
mean estimate (Bayes estimate), respectively.
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data is poor, the knowledge on the slip may help to improve
the hazard estimates in a positive way.
[48] For a further improvement of the hazard assessment,

extensions of the BPT model will be promising if some
records of physical factors that comprise the Brownian
perturbations become available. In particular, if we are
given information of slip mechanisms of events from
neighboring faults together with their estimates of occur-
rence times and slip sizes, the external stress transfer effects
from earthquakes outside the target source could become
useful explanatory variables to improve the prediction
performance.

7.2. On the Outcomes for the Next Nankai
Earthquakes

[49] With regards to the long-term earthquake prediction
at Nankai trough, the probabilities calculated based on the
data sets in Tables 1 and 2 differ significantly to one another
as described in section 6, even taking the uncertainty of
their estimates into account. The probabilities in section 6.1
are consistent with those in section 3.1.1.1 of Working
Group on Assessment Methods of Long Term Earthquake
Probability [2001], using similar data to the data in Table 1,
whereas the probabilities in section 6.2 are consistent with
those in section 3.1.1.2 by the lognormal distribution using
the stress accumulation rate and the last slip size with the
empirically reasonable variability parameter values ŝ = 0.2
or 0.3, as suggested by Working Group on California
Earthquake Probabilities [1988, 1995].
[50] Hori and Oike [1996] considered a point-process

model for the occurrence rate change of the historical
earthquakes in the inland zone around the Nankai trough,
forecasting that the next interplate event is most likely to
take place around 2040, which is again consistent with the
result in section 6.2.

[51] Another data set considered by Ogata [2001]
includes the same 10 events as listed in Table 1 but those
are associated with ranges of magnitudes as estimated by
Usami [1996]. The slip-size-dependent lognormal model
using the estimated seismic moment from the mean magni-
tudes is applied to obtain the outcome that the likely time of
the next event is during this century, with maximum around
2020. Thus the results on the whole considered for the great
events at Nankai trough are rather inconsistent. This means
that investigation of sizes of the historical events and
paleoearthquakes is crucial for the hazard assessment.

8. Conclusion

[52] In order to overcome the difficulty with the MLE
under a small sample size, we have adopted the Bayesian
inference, using the Bayesian predictive hazard function.
The degree of uncertainty of the estimated hazard functions
of the parametric model fitted to the data set is obtained by
simulating the parameter values from the posterior function.
[53] Generalized models of the renewal processes are

considered for the occurrence data associated with their slip
sizes. These are stochastic extensions of the time-predict-
able model, and we have adopted the Bayesian method to
objectively measure the predictive efficiency of the models,
including the optimal choice of the prior distributions and
the selection of models for likelihood function. Thus we
have analyzed the three sets of data, using the proposed
methods.
[54] The BPT model is selected to fit the first data set,

consisting of ten historical great earthquakes from Nanaki
trough. Its predictive hazard shows a large uncertainty
(>100 years) of likely occurrence time centered around
2070. The second data set consists of the last three events
in the first data set but associated with a record of slip sizes,

Figure 8. (a) One hundred samples of hazard rate functions of time, starting from the occurrence of the
last event, simulated from the posterior probability distribution in equation (31) for the data in Table 3,
consisting of four events and their associated estimated slip sizes. The horizontal dashed line indicates the
mean hazard rate (6.72 � 10�4 event/year) with the vertical dashed lines indicating the current time. (b)
The estimated hazard rate functions are similarly defined to those in Figures 2a and 2b.
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for which the ABIC selected the slip-size-dependent log-
normal renewal process model. The estimated predictive
hazard function implies that next event is likely to occur
around 2040 ± 10. The slip-size-dependent BPT model is
selected to fit the last data set, consisting of four events with
estimated occurrence times and slip sizes from the submar-
ine fault. This model indicates that the likelihood of the next
occurrence time is decreasing from now and that the period
of its half decay is more than several hundred years.

[55] For each data set in the last two examples, it was also
shown that the slip-size records are useful for better pre-
diction of the next event.

[56] Acknowledgments. The theme of this paper is inspired by the
discussions in the Working Group on Assessment Methods of Long Term
Earthquake Probability (Chairman, K. Shimazaki) in the Committee of
Earthquake Research, the Headquarters for Earthquake Research Promo-
tion, the Prime Minister’s Office, Japan. The completion of this paper was

Figure 9. (a) One hundred samples of cumulative probability functions of time, starting from the
current time, derived from the hazard rate functions in Figure 7a, using the first part of the equation in
equation (10). (b) The similar cumulative probability functions based on the MAP, Bayes estimate
(posterior mean estimate), and the Bayesian predictive hazard function. (c) and (d) Predicted probability
density functions in equation (11) corresponding to each sample path of the function in Figures 7a and 7b,
respectively.
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