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ABSTRACT

A general method for describing magnetic reconnection in arbitrary three-dimensional magnetic configurations
is proposed. The method is based on the field-line mapping technique previously used only for the analysis
of a magnetic structure at a given time. This technique is extended here so as to analyze the evolution of a
magnetic structure. Such a generalization is made with the help of new dimensionless quantities called “slip-
squashing factors.” Their large values define the surfaces that border the reconnected or to-be-reconnected
magnetic flux tubes for a given period of time during the magnetic evolution. The proposed method is universal,
since it assumes only that the time sequence of evolving magnetic field and the tangential boundary flows
are known. The application of the method is illustrated for simple examples, one of which was considered
previously by Hesse and coworkers in the framework of the general magnetic reconnection theory. The examples
help us to compare these two approaches; it reveals also that, just as for magnetic null points, hyperbolic
and cusp minimum points of a magnetic field serve as favorable sites for magnetic reconnection. The new
method admits a straightforward numerical implementation and provides a powerful tool for the diagnostics
of magnetic reconnection in numerical models of solar-flare-like phenomena in space and laboratory plasmas.
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1. INTRODUCTION

In spite of the progress reached so far in understanding of
the key role of magnetic reconnection in many phenomena of
space and laboratory plasmas, its quantitative description in real-
istic three-dimensional configurations still remains a challenge
(Priest & Forbes 2000; Schindler 2006). This concerns, in partic-
ular, the global aspects of reconnection such as an identification
of reconnected magnetic fluxes and related structural changes
in solar coronal configurations. There are basically two funda-
mental reasons why this important problem is so complicated in
the three-dimensional case.

First, by analogy with the two-dimensional case, one could
assume that partitioning the configurations into distinct interact-
ing magnetic fluxes by separatrix surfaces (SSs) and estimating
their time variation might help to resolve this problem. And, in-
deed, this idea works very well whenever such SSs are due to the
presence of magnetic null points (NPs) in the solar corona—the
NP SSs are boundless surfaces, and so they provide the required
partition. However, the situation is different if the SSs are due to
the presence of so-called bald patches (BPs), which are the seg-
ments of the photospheric polarity inversion line where coronal
field lines touch the photosphere (Seehafer 1986; Titov et al.
1993; Bungey et al. 1996; Delannée & Aulanier 1999; Aulanier
et al. 2002). The BP SSs are usually not boundless and, there-
fore, not able to provide the required partition of the respective
configurations. It is also important that they are not exceptional
structures, but are highly likely to be present, in practice, in
the complex configurations that exist in the solar atmosphere
(Titov et al. 1993; Bungey et al. 1996; Titov & Démoulin 1999;
Delannée & Aulanier 1999; Aulanier et al. 2002; Aulanier &
Schmieder 2002; Pariat et al. 2004). Moreover, the set of three-
dimensional structural features where reconnection may occur

4 In transition to Predictive Science, Inc., 9990 Mesa Rim Road, Suite 170,
San Diego, CA 92121-2910, USA.

is even wider than the mentioned above, because it includes also
quasi-separatrix layers (QSLs; Démoulin et al. 1996; Priest &
Démoulin 1995). Similar to BP SSs, these QSLs also do not pro-
vide an exact partition of configurations into distinct magnetic
fluxes.

The second fundamental difficulty in quantitative description
of three-dimensional reconnection is related to magnetic dif-
fusion and the breakdown of frozen-flux behavior. Being an
inherent part of the reconnection itself, magnetic diffusion in
three dimensions can occur throughout the plasma volume in
evolving configurations. This is of particular importance for nu-
merical MHD simulations, which may presently be performed
only with a relatively high numerical or physical diffusion com-
pared to real solar conditions. Deviations from the frozen-in
law condition are accumulated in this case throughout the vol-
ume to form a background against which it becomes difficult to
distinguish between magnetic diffusion and reconnection.

Nevertheless, significant progress in understanding three-
dimensional reconnection has been achieved in the framework of
general magnetic reconnection (GMR) theory (Schindler et al.
1988; Hesse & Schindler 1988; Hesse et al. 1991; Hesse &
Birn 1993), which is focused on the analysis of magnetic field
evolution constrained only by Maxwell’s equations and Ohm’s
law. On the basis of this theory, Hesse et al. (2005) have recently
shown that, regardless of the presence of certain structural
magnetic features, the time change of the reconnected magnetic
flux is always directly related to the maximum of the field-
line integral of a parallel electric field. For a plasma-magnetic
configuration contained in a closed volume, this means that
the change of the magnetic connection between the boundary
plasma elements is fully controlled by the voltage drop along
these lines. It is clear, however, that such a change of the
magnetic connection can always be found without calculating
the electric field if the magnetic field in the volume and the
plasma flows on the boundary are known at every moment. As
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will be shown, the theory based on this premise complements
the GMR theory by providing new intriguing opportunities for
the analysis of magnetic reconnection. The aim of this paper is
to develop a general mathematical formalism that allows one
to describe the change of magnetic connectivity and identify
the reconnecting magnetic fluxes in any evolving configuration.
The new theory has been outlined earlier by Titov (2007b). This
paper, however, provides its full exposition.

The new formalism can also be viewed as a generalization
of the theory of coronal magnetic connectivity, whose spatial
variation is measured with the help of the so-called squashing
factor Q. This quantity was introduced first for closed magnetic
configurations with a plane photospheric boundary (Titov et al.
1999; Titov & Hornig 2002; Titov et al. 2002) and then
extended to other configurations with arbitrary shapes of the
boundaries (Titov 2007a). The Q factor allows one to identify in
a given configuration at a fixed time all the structural magnetic
features, such as SSs and QSLs as well as their hybrids. Here
we generalize this quantity in order to characterize the evolution
of magnetic connectivity by applying the Q factor to so-called
slip mapping—the mapping that describes the slippage between
boundary plasma elements and footpoints of magnetic field
lines.

It was previously noticed by Forbes & Priest (1984) for
two-dimensional magnetic configurations that the speed with
which the photosphere is swept by a magnetic separatrix line
allows one to estimate the electric field at the reconnection
site. Forbes & Lin (2000) have also proposed strong arguments
that this principle can be extended to three-dimensional as well,
excluding the above-mentioned configurations with QSLs, if one
focuses only on the amount of the magnetic flux reconnected up
to a particular instant of time. Our paper provides exactly this
type of generalization of the principle for three-dimensional
configurations with QSLs included.

Section 2 describes the general theory of evolution of mag-
netic connectivity, which is illustrated in Section 3 for the ex-
ample of magnetic evolution proposed earlier by Hesse et al.
(2005). Section 4 presents another example of magnetic evo-
lution in a current-layer configuration to show the difference
between reconnection and magnetic diffusion. In Section 5, we
discuss the general properties of magnetic minimum points,
which happen to be closely related to the considered theory.
The obtained results are summarized in Section 6.

2. EVOLUTION OF MAGNETIC CONNECTIVITY

The basic concept that makes it possible to define the frozen-
in law and its violation in magnetized-plasma flows is the
connection of plasma elements by magnetic field lines (Axford
1984). When trying to characterize the magnetic structure
and its evolution, we find it extremely useful to apply this
concept to the plasma elements that are currently located at
the boundary of a given configuration. The magnetic field lines
threading the plasma volume generally start and end up at
some pieces of the boundary with the coordinate charts (u1, u2)
and (w1, w2) (Figure 1). In this way, they define a mapping
(u1, u2) → (w1, w2) determined by some vector function
(W 1(u1, u2),W 2(u1, u2)) from one piece of the boundary to
the other. The local properties of this mapping are described by
the Jacobian matrix

D =
[
∂W i

∂uj

]
. (1)

(w1, w
2)

B

~

B

(u1, u
2)

Figure 1. Circle is mapped into an ellipse by a linearized field-line mapping
acting between the tangent planes of the launch and target boundaries, where
two different curvilinear coordinates (u1, u2) and (w1, w2), respectively, exist.
The aspect ratio of the ellipse, when it is large, coincides with a high value of
the squashing factor Q.

For each field line, this matrix determines a linear mapping from
the tangent plane at the launch footpoint to the tangent plane at
the target footpoint, so that a circle in the first plane is mapped
into an ellipse in the second plane (Figure 1). The aspect ratio
λ of such an ellipse defines the degree of local squashing of
elemental flux tubes, which means that any infinitesimal circle
centered at a given launch point is mapped along the field lines
into an infinitesimal ellipse with this aspect ratio at the target
footpoint.

The value λ is invariant with respect to the direction of the
field-line mapping and so it can be used for characterizing the
spatial variation of magnetic connectivity. It turns out, however,
that Q ≡ λ + λ−1 provides a more compact expression in
terms of coordinates and practically coincides with λ in the
most interesting cases where it is large. So it is natural to use
the value Q, called the squashing degree (Titov et al. 2002)
or squashing factor, for characterizing the local properties of
a magnetic connection between the boundary elements. The
Q factor can be expressed in terms of the norm N (Priest &
Démoulin 1995; Démoulin et al. 1996) and Jacobian ∆ of the
field-line mapping as follows:

Q = N2/|∆|. (2)

It is convenient for further consideration to rewrite the covariant
expressions for N and ∆ found by Titov (2007a) for an arbitrary
shape of the boundary in the following matrix form

N2 = tr(DTG∗D G−1), (3)

|∆| = | det(DTG∗D G−1)|1/2 = | det D|
(

g∗

g

)1/2

≡
∣∣∣∣
Bn

B∗
n

∣∣∣∣ ,

(4)

where Bn and B∗
n are the normal components of the magnetic

field at the conjugate launch and target footpoints, respectively,
and

G =
[

∂ R

∂ui
·
∂ R

∂uj

]
(5)
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is the matrix of the covariant metric at the launch footpoints
with det G denoted by g. The radius vector R(u1, u2) defining
the shape of the boundary in a chosen coordinate chart (u1, u2)
is assumed here to be known. The latter equally refers to
the boundary at the target footpoints with the radius vector
R(w1, w2), where the matrix of the covariant metric is

G∗ =
[

∂ R

∂wi
·
∂ R

∂wj

]∗
. (6)

The asterisk symbol (superscript) indicates here that the values
of G refer to the conjugate target footpoints such that (w1, w2) =
(W 1(u1, u2),W 2(u1, u2)). In other words, the asterisk symbol
pulls back the values of G from the target to the launch footpoints
at which the Q factor is evaluated.

If the magnetic field B(r) is defined analytically or on some
numerical grid, the Jacobian matrix (1) can be straightforwardly
computed from the coordinates of the target footpoints that are
obtained by integrating the field-line equation

d r

dτ
= B, (7)

with the initial condition at launch footpoints

r|τ=0 = R(u1, u2) (8)

and the stopping condition at target footpoints

r|τ=τs
= R(w1, w2), (9)

which are satisfied by some parameter values τs to be found.
Tracing of the field lines should be done with a sufficiently high
accuracy to make the subsequent calculation of the coordinate
derivatives accurate enough. Although such computations are
relatively time consuming, they may be fulfilled with a very
good resolution even for the entire solar corona without using
supercomputers (Titov et al. 2008). The latter are required only
for numerical modeling of the coronal magnetic field itself. For
example, such a computation for the given magnetic field data
on a Mac Pro with one processor Intel Xeon (2 GHz) requires
only 23 hr. The resulting Q factor is obtained on a uniform
grid with 3600 and 7200 mesh points in latitude and longitude,
respectively, for a magnetic field defined in spherical coordinates
(r, θ, φ) on a nonuniform grid with 174×118×174 mesh points.

As mentioned in Section 1, the Q factor allows one to
identify in a given configuration all topological and geometrical
magnetic features at a fixed time instant. Formally, the SSs are
distinguished from the QSLs by infinite rather than large finite
values of Q. However, from a numerical point of view, these
features are similar, since they are both identified via large finite
values of Q. The only difference is that the maxima of Q increase
at SSs limitlessly with a decreasing size of a numerical grid
used for computing Q, while at QSLs such maxima converge
to certain large values. Such a subtle difference is usually not
important for applications and so, for brevity, we will use
hereafter the term QSLs in a broad sense to include also SSs,
unless it is stated otherwise.

2.1. Ideal Evolution of the Magnetic Field

If the evolution of magnetic configurations is subject to
the frozen-in law, the initial connection of plasma elements
by magnetic field lines remains unchanged. The analysis of
magnetic connectivity then is significantly simplified, because

Figure 2. Field-line mapping Π
ie
t is expressed at any time t in terms of the initial

field-line mapping Π0 and the tangential forward and backward boundary flows
Ft and F−t , respectively (see Equation (10)). This mapping occurs whenever the
frozen-in law is valid for the evolution of the configuration. The field lines and
trajectories of the footpoints are shown by solid and dashed lines, respectively.

the field-line mapping Π
ie
t at any time t can be composed in this

case as follows:

Π
ie
t = Ft ◦ Π0 ◦ F−t , (10)

where the superscript “ie” stands for the “ideal evolution,” Π0

is the initial field-line mapping, while Ft and F−t are tangential
boundary flows, forward and backward in time, respectively
(see Figure 2). This means that for any footpoint P, its conjugate

footpoint P̃ ≡ Π
ie
t (P) can generally be found by following the

lower path of the diagram

P
Π

ie
t−→ P̃

↓ F−t ↑ Ft

P0

Π0−→ P̃0.

(11)

In other words, instead of tracing the field line that connects P

and P̃ at time t (see Figure 2), one can first trace the trajectory of
P backward in time to find its initial prototype P0, then tracing
from it the field line of the initial configuration find its conjugate

prototype P̃0, and finally tracing the trajectory from P̃0 forward

in time find P̃. Such a three-step calculation of the field-line
mapping allows one to avoid the use of the magnetic field
data except for the initial data. Thus, whenever the tangential
boundary flows and the initial magnetic field are known, the
squashing factor may be calculated for any time moment without
computing the ideal MHD evolution of configuration itself.

This is very important if one takes into account the results
of numerical MHD simulations (Longcope & Strauss 1994;
Aulanier et al. 2005; Titov et al. 2008) that demonstrate a
good correlation between regions with a highly distorted field-
line mapping and strong current concentrations. In the light of
this, we conjecture that Equation (10) must provide a powerful
tool for predicting favorable sites of current-layer formation
in magnetic configurations whose evolution is subject to the
frozen-in law. Its first successful application to a particular
configuration with two twisted magnetic flux spots (Titov
et al. 2008) strongly supports this conjecture.

In coordinate notations, the field-line mapping defined by
Equation (10) is described as

Π
ie
t : (u1, u2)

F−t︷ ︸︸ ︷
(U1

0
,U2

0 )−→
(
u1

0, u
2
0

)
Π0︷ ︸︸ ︷(

W1
0

,W2
0

)
−→ (w1

0, w
2
0)

Ft︷ ︸︸ ︷
(W1 ,W2)−→ (w1, w2),

(12)

where the coordinate functions and their values are denoted by
the same letters but with different cases—the upper-case letters
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represent the functions, while the lower-case letters represent
their values; the functions and coordinates referring to the
initial time moment are marked with the subscript 0. Thus,
for example, the flow F−t maps (u1, u2) to (u1

0 = U 1
0 (u1, u2),

u2
0 = U 2

0 (u1, u2)) and so on. The second step in this composition
requires solving of the problem described by Equations (7)–
(9), with the proviso that this problem is set for the initial
configuration, whose boundary coordinates are (u1

0, u
2
0) and

(w1
0, w

2
0). The first and third steps of composition (12) require

tracing of the footpoint trajectories, which are determined from
the tangential components of the boundary velocity field vb,
assumed to be known. Specifically, one needs to solve the
following two initial value problems. For the first step, the
system

dU i
0

dt̃
= gis

(
∂ R

∂us
· vb

)
, i = 1, 2; s = 1, 2; (13)

(
U 1

0 , U 2
0

)∣∣
t̃=t

= (u1, u2), (14)

should be integrated backward in time from t to 0, while, for the
third step, the system

dW i

dt̃
= gis

(
∂ R

∂ws
· vb

)
, i = 1, 2; s = 1, 2; (15)

(W 1,W 2)|t̃=0 =
(
w1

0, w
2
0

)∗∗
, (16)

should be integrated forward in time from 0 to t. In both these
systems, summation over the repeating index s is assumed;
the contravariant metric [gis] ≡ G−1 refers to points of the
launch and target boundaries for Equations (13) and (15),
respectively. The double-asterisk symbol (in the superscript) in
Equation (16) indicates that the point (w1

0, w
2
0) is the image of

(u1, u2) that is obtained at the first two steps of composition (12).
In other words, the double asterisks provide a double pull back
of this point to the launch boundary, where Q is evaluated. This
convention will be used hereafter for other values as well, with
the extension to a triple pull back denoted by triple asterisks,
respectively.

It is clear that the first and third steps in the procedure
described above are no more difficult than the second step. In
principle, making consecutively these three steps at least three
times in the small neighborhood of a given launch point, one can
evaluate numerically the Jacobian matrix (1) and the respective
value of Q (see Equations (2)–(6)). In practice, however, the
divergence of the field lines at QSLs of the initial configuration
can be so high that it may significantly affect the accuracy of
such an evaluation. A better control of the accuracy in this
procedure is obtained by using the fact that the Jacobian matrix
Die of the composite “ideal” mapping (10) is the product of the
Jacobian matrices of the individual mappings, namely

Die =
[
∂W i

∂w
p

0

]∗∗

︸ ︷︷ ︸
M∗∗

[
∂W

p

0

∂us
0

]∗

︸ ︷︷ ︸
D∗

0

[
∂U s

0

∂uj

]

︸ ︷︷ ︸
M−1

. (17)

Thus, the calculation of D is reduced to the calculations of
these three matrices at the points that “lie on the path” of the
composite mapping. As stated above, each of these calculations

is similar to one another, and none of them requires knowledge
of the magnetic field, except at the initial moment.

It is clear from this consideration that the respective squashing
factor Qie can be obtained now by modifying Equations (2)–(4)
as follows:

Qie =
tr
(
DT

ie G
∗∗∗ Die G−1

)
∣∣det

(
DT

ie G
∗∗∗ Die G−1

)∣∣1/2
.

The determinant of the product of the individual matrices in this
expression can be rewritten as a product of the corresponding in-
dividual determinants. Using also conservation of the magnetic
flux in the initial configuration, we finally obtain

Qie =
(

g∗∗
0 g

g∗
0 g

∗∗∗

)1/2 ∣∣∣∣
B∗∗

n0

B∗
n0

∣∣∣∣
tr
(
DT

ie G
∗∗∗ Die G−1

)

det(M∗∗ M−1)
. (18)

We used here the fact that det D∗
0 = B∗

n0

√
g∗

0/(B∗∗
n0

√
g∗∗

0 ), where
B∗

n0 and B∗∗
n0 are the normal components of the initial field at

the corresponding conjugate footpoints, with g∗
0 ≡ det G∗

0 and
g∗∗

0 ≡ det G∗∗
0 at such points.

2.2. Nonideal Evolution of the Magnetic Field

The breaking of the frozen-in law causes a change of the
initial magnetic connection of the boundary plasma elements.
In other words, such elements experience, in this case, a slippage
relative to their ideal MHD mapping. This intuitive notion can be
formalized by introducing two types of mapping, which relate
two time moments 0 and t in the evolution of a given magnetic
configuration. The first of them, denoted by St and expressed as

St = F−t ◦ Πt ◦ Ft ◦ Π0, (19)

maps the boundary onto itself at the initial time 0. We will call
this the slip-forth mapping because the slippage of footpoints
occurs forward in time. The second mapping describes a
corresponding slippage backward in time, and it is expressed
as

S−t = Ft ◦ Π0 ◦ F−t ◦ Πt (20)

and called the slip-back mapping. This expression also maps the
boundary onto itself but at the final time t, so that the slip-back
mapping is an antipode to the slip-forth mapping. A pointwise
definition of these mappings is depicted in Figure 3 for the case
of a closed magnetic configuration. The picture can be easily
modified, however, to represent more general configurations
comprising both the closed and open field lines by simply
enclosing the coronal volume under study with the help of an
additional upper boundary surface.

Comparing Equations (20) and (10), we obtain

S−t = Π
ie
t ◦ Πt , (21)

which means that the slip-back mapping is just a composite of
the “real” and “ideal” field-line mappings at time t. Similarly,
Equation (19) can be rewritten as

St = Π
ie
0 ◦ Π0, (22)

where

Π
ie
0 = F−t ◦ Πt ◦ Ft (23)
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(b)

(a)

Figure 3. Slip-forth (a) and slip-back (b) mappings (see Equations (19) and
(20), respectively) act on the footpoints of the field lines in such a way that each

footpoint P and its image P̃ are generally different due to a breakdown of the
frozen-in condition.

is that initial field-line mapping, whose ideal evolution driven by
the flow Ft would produce at time t the final field-line mapping
Πt . Thus, both slip mappings identify the differences in the field-
line connectivities of the “real” and “ideal” configurations. The
slip-forth mapping St, however, does this for the initial observer,
while the slip-back mapping S−t does the same for the final
observer.

This consideration also shows that the footpoint slippage that
will occur or has occurred within time t is fully determined
by the magnetic fields at the initial and final moments and
by the respective displacements of the plasma elements due
to tangential boundary flows. Such a slippage is caused by both
magnetic reconnection and resistive plasma diffusion, whose
contributions may generally be comparable in value. Yet it is
clear that magnetic reconnection is more localized in space than
resistive diffusion (Schindler et al. 1988). One can expect,
therefore, that these two processes are discriminated not by
the magnitude of the slippage itself but rather by its spatial
gradient. Note also that the introduced slip mappings are very
similar to the field-line mapping in the sense that all of them
are just two-dimensional mappings of the boundary on itself.
Thinking by analogy, we can assume then that the squashing
factor is a major characteristic not only for a field-line mapping
but also for slip mappings. This assumption is fully confirmed
by our further analysis, which shows that in the case of slip
mappings the squashing factor makes it possible to identify the
reconnecting magnetic flux tubes in any evolving configuration,
even if its evolution involves a substantial resistive diffusion. In
particular, Section 4 presents an example of magnetic evolution
in a current layer with a small nonideal region inside. It shows
that the transition from magnetic diffusion to reconnection is
not abrupt but continuous. The reconnecting flux tubes here
pass through, and in the vicinity of, the nonideal region and
they are distinguished, as expected, by high values of the
squashing factor that are related to a locally enhanced current
density.

To derive the required expressions, let us first represent
the slip mappings in coordinate notations. For the slip-forth

mapping defined by Equation (19), we have

St :
(
u1

0, u
2
0

)
Π0︷ ︸︸ ︷(

W1
0

,W2
0

)
−→

(
w1

0, w
2
0

)
Ft︷ ︸︸ ︷

(W1 ,W2)−→ (w1, w2)

Πt︷︸︸︷
(U1 ,U2)−→

(u1, u2)

F−t︷︸︸︷
(U1

0
,U2

0
)

−→
(
u1

0, u
2
0

)
, (24)

so that its Jacobian matrix is determined by the following
product of individual Jacobian matrices:

Dsf ≡
[

∂U i
0

∂u
j

0

]
=
[
∂U i

0

∂up

]∗∗∗

︸ ︷︷ ︸
M−1∗∗∗

[
∂Up

∂wq

]∗∗

︸ ︷︷ ︸
D∗∗

[
∂W q

∂ws
0

]∗

︸ ︷︷ ︸
M∗

[
∂W s

0

∂u
j

0

]

︸ ︷︷ ︸
D0

. (25)

This composition implies that the respective squashing factor
Qsf can be derived from suitably modified Equations (2)–(4) as
follows:

Qsf =
tr
(
DT

sf G
∗∗∗∗
0 Dsf G−1

0

)

∣∣∣det
(
DT

sf G
∗∗∗∗
0 Dsf G−1

0

)∣∣∣
1/2

.

Rewriting the denominator in this expression as a product of
individual determinants of the entering matrices and using con-
servation of a magnetic flux in the initial and final configurations,
we finally obtain

Qsf =
(

g
∗∗∗g∗

0

g∗∗g
∗∗∗∗
0

)1/2 ∣∣∣∣∣
B

∗∗∗
n B∗

n0

B∗∗
n Bn0

∣∣∣∣∣
tr
(
DT

sf G
∗∗∗∗
0 Dsf G−1

0

)

det(M−1∗∗∗ M∗)
. (26)

Similarly, the slip-back mapping defined by Equation (20) is
represented in coordinates by

S−t : (u1, u2)

Πt︷ ︸︸ ︷
(W1 ,W2)−→ (w1, w2)

F−t︷ ︸︸ ︷(
W1

0
,W2

0

)
−→

(
w1

0, w
2
0

)
Π0︷︸︸︷

(U1
0

,U2
0

)

−→

(
u1

0, u
2
0

)
Ft︷︸︸︷

(U1 ,U2)−→ (u1, u2), (27)

so that its Jacobian matrix is determined by the following
product of individual Jacobian matrices:

Dsb ≡
[
∂U i

∂uj

]
=
[
∂U i

∂u
p

0

]∗∗∗

︸ ︷︷ ︸
M

∗∗∗

[
∂U

p

0

∂w
q

0

]∗∗

︸ ︷︷ ︸
D∗∗

0

[
∂W

q

0

∂ws

]∗

︸ ︷︷ ︸
M−1∗

[
∂W s

∂uj

]

︸ ︷︷ ︸
D

. (28)

This composition implies that the respective squashing factor
Qsb can be obtained from suitably modified Equations (2)–(4) as

Qsb =
tr
(
DT

sb G
∗∗∗∗ Dsb G−1

)

∣∣det
(
DT

sb G
∗∗∗∗ Dsb G−1

)∣∣1/2
.

Rewriting the denominator in this expression as a product of
individual determinants of the entering matrices and using con-
servation of a magnetic flux in the initial and final configurations,
we finally obtain

Qsb =
(

g
∗∗∗
0 g∗

g∗∗
0 g

∗∗∗∗

)1/2 ∣∣∣∣∣
B

∗∗∗
n0B

∗
n

B∗∗
n0Bn

∣∣∣∣∣
tr
(
DT

sb G
∗∗∗∗ Dsb G−1

)

det(M
∗∗∗ M−1∗)

. (29)
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By construction, the Qsf factor is defined on the boundary of
the initial magnetic configuration by its subsequent evolution
within time t, while the Qsb factor is defined on the boundary
of the final magnetic configuration by its preceding evolution
within time t. Both slip-squashing factors depend only on the
two Jacobian matrices of the field-line mapping, D0 and D,
corresponding, respectively, to the initial and final moments.

To better understand the meaning of these characteristics,
consider a situation where the variation of the footpoint positions
due to nonideal processes in the volume is much larger than that
due to the surface flows at the boundary. From the physical point
of view, this is actually the most interesting situation, because
it corresponds to the case where magnetic reconnection going
on in the volume is so quick on the timescale under study that
the boundary motion of plasma can be neglected. The whole
paths of the slip mappings are formed in this case only by field
lines of the initial and final configurations, while Ft and F−t in
(19)–(20) are approximately identity mappings characterized by
unit Jacobian matrices. Taking into account these observations,
one can approximate Equations (26) and (29) by

Qsf ≈
(

g∗∗g∗
0

g∗g∗∗
0

)1/2 ∣∣∣∣
B∗∗

n B∗
n0

B∗
nBn0

∣∣∣∣ tr
(
DT

0 DT∗ G∗∗
0 D∗D0 G−1

0

)
,

(30)

Qsb ≈
(

g∗∗
0 g∗

g∗
0g

∗∗

)1/2 ∣∣∣∣
B∗∗

n0B∗
n

B∗
n0Bn

∣∣∣∣ tr
(
DTDT∗

0 G∗∗ D∗
0D G−1

)
,

(31)

which show that, in general, if some of the matrix elements in
D0 or D are large in absolute value, Qsf or Qsb should be large
as well. Such matrices, however, are related to the Q factor of
the initial or final magnetic field in a similar way. Thus, Qsf or
Qsb should be large at the mapping paths (see Equations (24)
and (27)) that include the field lines belonging to the initial or
final QSLs of the evolving configuration.

By analogy with the QSLs, one can expect that the flux
tubes assembled from such field lines have a layer-like structure.
We will call these flux tubes reconnection fronts (RFs). Their
determination is of great importance for analyzing magnetic
reconnection in complicated three-dimensional configurations.
Such configurations, however, require special consideration, and
so the discussion of them is postponed to Section 2.3. We note
here only that both slip mappings have two RFs, one of which,
called the instantaneous RF, corresponds to the present moment
(0 or t, respectively, for the slip-forth or slip-back mappings).
Equations (30) and (31) suggest that such a reconnection front
should approximately coincide with the set of QSLs existing
at a present moment (see an example in Section 3). However,
the situation is different for the second RF, which is called the
future RF or past RF, respectively, for the slip-forth or slip-back
mapping. The future RF consists of those initial flux tubes whose
footprints will turn after reconnection into the footprints of the
final QSLs. The past RF consists of those final flux tubes whose
footprints are formed by reconnection from the footprints of the
initial QSLs. These definitions of RFs are slightly modified if
the advection of footpoints is essential in the evolution under
study.

2.3. To-be-reconnected and Reconnected Magnetic Fluxes

It might seem surprising at first glance that our description
of magnetic reconnection does not invoke an electric field at

all, even though the component of the electric field parallel
to a magnetic field is at the cornerstone of the GMR theory
(Schindler et al. 1988; Hesse & Schindler 1988). The physical
ground for this omission of the electric field becomes clear
if one recalls that its parallel component appears generally
in very strong current layers (CLs), in particular, when the
corresponding resistive voltage drop is not negligible. However,
QSLs are likely to be favorable sites for the formation of strong
CLs under very general conditions (Longcope & Strauss 1994;
Priest & Démoulin 1995; Titov et al. 2003; Galsgaard et al.
2003; Aulanier et al. 2005). This makes it possible to put QSLs
at the core of general reconnection theory by reformulating
it in purely geometrical terms. Such a reformulation has the
advantage of being able to directly relate the reconnection
process with an accompanying variation of the structure of
evolving magnetic configurations. More details illustrating these
general statements are given in Sections 3 and 4.

What is particularly important is that our approach enables
us to identify reconnecting flux tubes in a given magnetic
evolution as well as to estimate the reconnected fluxes by tracing
the footprints of the RFs. To describe this more precisely, let
us introduce first the lines going along the ridges of the Q
distributions by denoting such lines as QSS and RF, respectively,
for the field-line and slip mappings. QSS abbreviates here a
quasi-separatrix surface, which is a magnetic surface passing
through the ridge of the respective Q distribution at the boundary.
QSSs play the role of the middle surfaces for QSLs (see some
examples of QSSs in (Titov et al. 2008)), so that QSS lines
serve as midlines for the footprints of QSLs. Similarly, the RF
lines serve as midlines for the footprints of RFs.

Consider first the simplest case, where the advection of the
footpoints is negligible in comparison with their displacements
due to reconnection, which means that both Ft and F−t are
approximately identity mappings in composition (24). Assume
in addition that there are QSLs at both time moments and
that their footprints are sufficiently separated in distance. This
implies that the squashing of the St mapping on its composite
path passing through a given footprint of the QSL is mainly
provided by the field-line mapping corresponding to this QSL.

By noticing also that Π
−1
0 = Π0, we obtain then from relation

(24) that

RF±
0 ≈ QSS±

0
, (32)

RF±
t ≈ Π0(QSS∓

t
), (33)

where the subscripts 0 or t correspond, respectively, to instan-
taneous or future RFs, while the superscripts + or − denote the
positive or negative magnetic polarity, to which the RF or QSS
line belongs.

These equalities establish a direct relationship between RFs
and QSLs and provide a simplified algorithm for determining
RFs in the described situation. As discussed in Section 1, QSSs
and boundary surfaces do not necessarily bound closed volumes
in the corona, and so RF0 and RFt lines might not form closed
contours at the boundary. The latter may happen, however, if
QSSs, for example, turn out to be NP SSs. In this case, the closed
contours, formed by RF0 and RFt lines, outline in the initial
configuration the footprints of the flux tubes that will reconnect
within time t. We will call them to-be-reconnected magnetic
flux tubes. In a more general situation with open RF lines, the
footprints of to-be-reconnected flux tubes are the boundary areas
that are swept by RFt lines in the initial configuration with time
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running from 0 to t. The integral of the normal component of the
initial magnetic field over such areas determines the magnetic
fluxes that will be reconnected within time t.

Thus, the RF lines play a crucial role in determining the re-
connecting magnetic fluxes—the more accurately we determine
the geometry and kinematics of the RF lines, the better we can
quantify the reconnecting flux tubes for a given magnetic evolu-
tion. Therefore, it is important to understand also what happens
if the reconnection is not fast enough to neglect the advection
of footpoints. To understand this question, let us turn again to
Equation (24) and its more compact form (22)–(23), from where
one can see that the location of RF0 lines should be given by
Equation (32) if the paths of St (see Equation (24)), on which the
field-line mappings Π0 or Π

ie
0 are mostly distorted, are different.

The latter is probably valid if the time interval t under study is
not too small and so the footprints of QSLs of the Π0 or Π

ie
0

mappings do not overlap each other.
Yet the situation with the RFt lines is more complicated,

even if the latter is true. The answer in this case depends on
whether or not the boundary flows Ft and F−t significantly
interlock or unlock the field lines in the volume of the final
magnetic configuration. This, in turn, depends on whether or
not these flows contain substantial shearing motions applied
in transverse directions to the conjugate footprints of QSLs.
Because a twisting pair of such shearing motions is able to
seriously modify the Π

ie
0 mapping compared to the Πt mapping.

In fact, this kind of advection can even destroy the original
QSL or, in contrast, it can create a new one, depending on the
sign of the twist and the resulting values of shear (Titov et al.
2003; Galsgaard et al. 2003; Titov et al. 2008). If such an
interlocking or unlocking effect of the boundary flows is small
(but the footpoint advection is still not negligible), the RFt lines
can be approximated by

RF±
t ≈ Π0 ◦ F−t

(
QSS∓

t

)
. (34)

Otherwise, one needs to use a more accurate approximation,
namely,

RF±
t ≈ Π0

(
Q̃SS

∓
0

)
, (35)

where Q̃SS
∓
0

denotes QSS lines of the Π
ie
0 mapping defined by

Equation (23). Thus, the sequence of Equations (33), (34), and
(35) provides more and more accurate approximations of the
RFt lines of the slip-forth mapping with respect to its distortion
by footpoint advection.

Using Equations (27), (21), and (20), a similar sequence
of approximations can be found for the RFs of the slip-back
mapping. In the case of a negligible footpoint advection, one
obtains that the RF lines of the instantaneous and past RFs,
respectively, are given by

RF±
t ≈ QSS±

t
, (36)

RF±
0 ≈ Πt

(
QSS∓

0

)
. (37)

If footpoint advection is not negligible but capable of producing
only a moderate distortion of the slip-back mapping, the RF
lines of the past RFs should be determined by

RF±
0 ≈ Πt ◦ Ft

(
QSS∓

0

)
. (38)

The presence of substantial interlocking or unlocking shears in
the boundary motion requires, however, even a more accurate
approximation, namely,

RF±
0 ≈ Πt

(
Q̃SS

∓
t

)
, (39)

where Q̃SS
∓
t

denotes the QSS lines of the Π
ie
t mapping in the

corresponding polarities. With time running backward, the RF±
t

lines of the instantaneous RF will remain practically unchanged
(see Equation (36)), while the RF±

0 lines of the past RF will
change and move on the boundary by sweeping the footprints
of the flux tubes that have been reconnected within the time t
under study.

The evolving topology of these RF lines and footprints may be
rather nontrivial, since the reconnection process may generally
occur at different moments and places in the configuration
by causing changes in its structure. Such an intimate link of
reconnection to the magnetic structure is expressed by the
above approximate relationships between the RF and QSS lines.
The accuracy of these relationships can always be proved by
using exact Equations (26) and (29) for the slip-squashing
factors. But even using these exact expressions, the reconnected
or to-be-reconnected magnetic fluxes may be estimated only
approximately. The reason for this is that, in general, there is no
strict difference between reconnection and magnetic diffusion,
because the diffusion is always a part of the reconnection
process. In our formulation, this fact manifests itself in an
inherent uncertainty of the end points of the unclosed RF lines.
Such end points can be identified by some threshold value
Qthresh of the slip-squashing factors. Physically, this value is
the degree of squashing of the elemental flux tubes that start
at the end points of the RF lines and pass through the border
of the reconnection region. Since the location of this border is
defined up to a fraction of the thickness of the reconnecting
current layer, the threshold values Qthresh and the end points of
the unclosed RF lines also cannot be defined exactly.

From the physical point of view, the most accurate method for
estimating them seems to rely on the voltage drop at the initial
and final moments along the magnetic field lines that belong
to the paths of the slip mappings starting at the respective RF
lines. Analyzing the distribution of this voltage drop along the
RF lines would give us the most precise criterion for the end
points of these lines—they would be simply the points where the
voltage drop decreases to a fixed fraction of its nearest maximum
at the RF line. However, such an approach requires additional
computations involving additional data on electric fields in a
given magnetic evolution, which seems to be hardly justifiable
from the practical point of view. The final result obtained by this
electric field method will still not be unique but dependent on
the threshold value of the voltage drop that is selected. In this
situation, it seems to be more practical to choose some large
value of Qthresh for identifying the end points of the RF lines
by keeping in mind that the final result depends on the chosen
Qthresh. It should be emphasized that such an ambiguity of our
method appears only in the case of the unclosed parts of the RF
lines—their closed parts provide an unambiguous description
of the reconnection process (see an example in Section 3). It is
interesting that the closed RF lines seem to appear less often
than the open ones.

There may also be the cases, where the transverse displace-
ments of the RF lines are negligible, so that the RF lines evolve
mainly by changing their length (see an example in Section 4).
The reconnecting magnetic fluxes in such cases should be
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determined via the corresponding RF footprints defined at
the boundary as areas with the slip-squashing factors larger
than Qthresh. Thus, this generalized definition of reconnecting
flux tubes also does depend on Qthresh, which reflects an in-
herent property of the reconnection process in general three-
dimensional configurations.

3. EXAMPLE 1. FORMATION AND RISE OF A FLUX
ROPE

Let us illustrate now our theory of reconnection by consid-
ering a particular example of magnetic field evolution. For this
purpose, we choose the evolving configuration analyzed previ-
ously by Hesse et al. (2005) with the help of the GMR theory,
whose major element is a nonvanishing voltage drop along the
reconnecting magnetic field lines. The consideration of this ex-
ample will significantly facilitate a comparison between the two
theories.

In a Cartesian system of coordinates (x, y, z), the correspond-
ing components of the magnetic field are given by

Bx = − 1 −
ε(t)
(
1 − z2/L2

z

)
(
1 + y2/L2

y

)(
1 + z2/L2

z

)2 , (40)

By = 0.2, (41)

Bz = x, (42)

where Ly and Lz are length-scale parameters, and ε(t) is a
monotonically growing function of time t. In contrast to Hesse
et al. (2005), the variables y and z are swapped, so that the
plane z = 0 corresponds to the photosphere. Also the power
degree 2 is recovered in the denominator of the second term
in Bx to correct a misprint in the original formula. Only the Bx

component evolves with time via the function ε(t) > 0, whose
time derivative ε̇ is assumed here to be strictly positive. This
implies the presence of an electric field with a nonvanishing
component

Ey = − ε̇(t) z(
1 + y2

/
L2

y

)(
1 + z2

/
L2

z

) (43)

such that Faraday’s law for the evolving Bx is satisfied.
By construction, By is nonvanishing and constant, so that the

magnetic field (Equations (40)–(42)) has no null points. It is
easy to prove also that, for the assumed ε(t) > 0, Bx < 0 at
the photospheric polarity inversion line defined by x = z = 0.
Therefore, the transverse field at this line is always directed
from the positive to negative polarity, which, in turn, means
(Titov et al. 1993) that this configuration has no coronal field
lines touching the photosphere. Thus, under these assumptions,
the topology of magnetic field lines remains trivial during the
evolution of the configuration.

Nevertheless, its magnetic structure changes dramatically,
which can be immediately seen from the evolution of the
transverse magnetic field Btrans ≡ (Bx, Bz) in the middle plane
y = 0. Note that the field lines of Btrans in this plane are contours
of the function

f (x, z, t) = x2

2
+ z

(
1 +

ε(t)

1 + z2
/
L2

z

)
. (44)
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Figure 4. Field lines of the transverse magnetic field (Bx , Bz) in the middle
plane y = 0 at two different instances of the evolving magnetic configuration
defined by Equations (40)–(42).

Figure 4 shows several such field lines at two different instances
corresponding to ε = 8 ≡ ε1 and ε = 13 ≡ ε2. They clearly
demonstrate the formation of a magnetic island from the initial
arcade-like configuration within the respective time interval.
This two-dimensional plot provides, of course, only a first
glimpse of the evolution of the magnetic structure, which is in
fact fully three dimensional, since the vector field B depends on
all three coordinates. This suggests, however, that the minimum
points of B2 might help to characterize the evolving magnetic
structure. In this approach, the formation of the magnetic island
in the two-dimensional plane can be viewed as a bifurcation of
the cusp-type minimum into elliptic and hyperbolic minima.
This point of view is confirmed by a closer inspection of
Equations (40)–(41).

Indeed, one can see from them that the minima of B2 coincide
with the nulls of Bx, whose locations are determined explicitly
by

zO,X

Lz

=

⎧
⎨
⎩±

[
2ε

1 + y2
/
L2

y

(
ε

8
(
1 + y2

/
L2

y

) − 1

)]1/2

+
ε

2
(
1 + y2

/
L2

y

) − 1

}1/2

. (45)

The upper and lower signs at the inner square root of this
expression correspond to the loci of elliptic and hyperbolic
minima, respectively, with heights zO and zX. The heights have
real values only if ε � 8 and |y| < ymax, where

ymax

Ly

=
(ε

8
− 1
)1/2

. (46)
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Figure 5. Loci of minima of B2 at four different times in the plane x = 0.
The solid and dotted lines, respectively, represent the minima of hyperbolic and
elliptic types which emerge with growing ε from the initial cusp point, present
at ε = 8.

As ε increases from ε1 = 8, a single minimum point of cusp-

type (yC = 0, zC =
√

3Lz) bifurcates into two curves of elliptic
and hyperbolic minima (see Figure 5). It will be clear soon that
some of these minima play a key role in the nonideal evolution
of this configuration.

In a highly conducting plasma, the perpendicular component
of an electric field E⊥ = Ey( ŷ − By B/B2) mainly sustains
the advection of plasma elements with a drift velocity v =
E⊥ × B/B2. In our example, this component vanishes at
the photosphere (z = 0) together with the total electric field
Ey (see Equation (43)), which implies that the photospheric
plasma elements remain at rest during the evolution of the
configuration. It is of particular importance that, in the volume,
there is a nonvanishing parallel electric field E‖ = EyBy B/B2,
whose presence in the configuration provides a slippage of the
footpoints with respect to the stationary photospheric plasma
elements. The latter was clearly demonstrated by Hesse et al.
(2005), who have also shown that such a slippage is most
intensive at the magnetic field lines with the highest values
of the voltage drop, called by them pseudopotential. The latter
is defined by

Ξ = −
∫

E‖ dl, (47)

where l is an arc length of the magnetic field lines along
which E‖ is integrated between their end points, so that Ξ is a
function of these points. For convenience, we have reproduced

the photospheric distribution of Ξ, the same as in (Hesse et al.
2005), except that, in our case, E‖ was integrated along the
entire magnetic field lines without a cutoff by the lateral and top
boundaries of a numerical box. This was done to eliminate the
artificial distortion of the Ξ distribution due to such a boundary
effect. The resulting Ξ distributions at ε = ε1 and ε = ε2 are
shown, respectively, in panels (a) and (b) of Figure 6. The second
distribution differs only slightly from that calculated by Hesse
et al. (2005), which means that the mentioned boundary effect
is not large for the chosen size of the numerical box.

For the same values of ε, panels (c) and (d) in Figure 6
present the photospheric distributions of the Q factor in a
logarithmic scale with the gray shading saturated at log Q = 4.0.
Depending on the value of ε, the actual maxima of log Q in these
distributions are two–three times larger than the saturation level.
So the largest values of Q are concentrated here in extremely
narrow ridges, tracing the footprints of the corresponding QSSs.
Comparison between the Q and Ξ distributions in Figure 6
(panels (c) and (d) versus (a) and (b)) shows that the footprints of
the QSSs pass exactly along the lines of the steepest gradient of
Ξ, or, in other words, along the lines where the spatial variation
of the footpoint slippage is the highest. This indicates that the
respective QSLs are indeed instantaneous RFs, as inferred in
Section 2.3 from the general argument. Further confirmation
of this fact is obtained by considering the corresponding
distributions of the slip-squashing factors.

Before starting such a consideration, let us look first at the
structure of the magnetic field lines in the vicinity of the QSSs.
Figure 7(a) shows a set of the field lines at ε = ε1, with the
launch points chosen to be very close to the cusp minimum point
of B2. It is clearly seen there that the footpoints of these field lines
are distributed exactly along the ridges of the Q distribution. So
such field lines approximate the QSS by showing that it has a
wedge-like shape with the sharpest corner at the cusp minimum
point. Panels (b) and (c) in Figure 7 depict a set of field lines
at ε = ε2 with the launch points near the loci of the hyperbolic
minima of B2 defined by Equation (45). The footpoints of these
field lines are also distributed exactly along the ridges of the
corresponding Q distribution. So such field lines approximate
the QSS by demonstrating that it consists of two parts attached
to each other. The lower part has a wedge-like shape with a sharp
corner along the loci of the hyperbolic minima. The upper part is
a tube-like surface enclosing a twisted flux rope that lies on the
top of this wedge. It starts at the photosphere as a narrow, very
flat, and almost untwisted flux tube spreading along the slopes
of the wedge and blows up near the wedge corner into a very
large, elongated, and highly twisted plasmoid. The cross section
of the resulting QSS by the middle plane y = 0 coincides with
the separatrix line of the transverse magnetic field shown in the
right panel of Figure 4. Thus, the QSLs in our example are due
to the presence of the hyperbolic or cusp minima of B2—this
fact will be explained in Section 5 from the general point of
view.

In the strict sense, the oval-like parts of the QSS lines
(Figure 6(d)) are not closed but open lines—the ridges of the
Q distribution here approach very close to one another when
making their turns but they never completely merge. We believe
that this was also the case in the twisted configuration analyzed
previously by Démoulin et al. (1996b) with the help of the
norm N rather than Q. Such a behavior of QSLs in both cases
has a simple explanation: due to a relatively large twist of the
rope, there are field lines with a different number of windings
(larger than one) in the neighborhood of the hyperbolic magnetic
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Figure 6. Photospheric distributions of pseudopotential Ξ (normalized to ε̇(t)) [(a), (b)], squashing factor Q [(c), (d)] at ǫ = 8 and ǫ = 13 (left and right panels,
respectively) and slip-forth and slip-back squashing factors Qsf and Qsb, respectively, between these two instants.

minima in the corona. A relative proximity of such field lines
to these minima is translated into the apparent closeness of the
respective QSS lines at the photosphere due to an enormous
squashing that the elemental flux tubes experience on their way
from the minima to the photosphere. From the observational
point of view, however, this seems to be a atypical situation,
since the observed flaring bright loops rarely show multiple
windings. Therefore, the QSL footprints in realistic magnetic
configurations should look like open rather than closed curves,
as actually demonstrated by Titov (2007a) for a flux rope
configuration with a realistic amount of twist.

Consider now the distributions of the slip-forth and slip-back
squashing factors calculated numerically for the variation of

ε in the interval [ε1, ε2]. These calculations are significantly
simplified due to the above-mentioned line-tying condition
E|z=0 = 0 that implies the absence of plasma flows at
the photosphere. As discussed in the previous section, the
calculation of Qsf or Qsb in such a case requires knowledge only
of B at the initial and final moments, which can be obtained here
from Equations (40)–(42). The resulting distributions of Qsf and
Qsb are shown in panels (e) and (f), respectively, in Figure 6.
The inner or outer pairs of the ridges of the Qsf distribution
trace the instantaneous or future RF lines, respectively; and
vice versa the outer or inner pairs of the ridges of the Qsb

distribution trace the instantaneous or past RF lines, respectively.
Comparing panels (e) and (f) versus (c) and (d) in Figure 6
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(i)(h)(g)

(f )(e)(d)

(c)(b)(a)

Figure 7. Magnetic field lines passing in the vicinity of the minimum points of the cusp [(a), ε = 8] and hyperbolic types [(b) and (c), ε = 13] and the respective
photospheric Q distributions. To-be-reconnected [(d)–(f)] and reconnected [(g)–(i)] magnetic flux tubes at the initial (ε = 8) and final (ε = 13) moments, respectively;
their launch footprints are shaded in orange and superimposed on the corresponding photosperic Qsf and Qsb distributions. The respective orientation of the coordinate
axes are shown by red (x), green (y) and blue (z) arrows.

shows that the instantaneous RF lines practically coincide with
the instantaneous QSS lines—exactly as previously inferred
from the general consideration (see Equations (32) and (36)). In
contrast, the future and past RF lines are noticeably distorted in
comparison with the corresponding QSS lines, which is also in
accord with the inferred general Equations (33) and (37). Such a
distortion is sufficiently smooth, that it causes the oval-like parts
of the corresponding RF footprints to appear nearly as closed as
their corresponding QSL footprints.

It is useful also to consider the behavior of the RF lines in
response to the variation of ε2 or ε1 for the slip-forth or slip-
back mappings, respectively. In both cases, the footprints of
the instantaneous RF lines remain practically unchanged under
such a variation by recurring the shape of the corresponding
QSS lines shown in panels (c) and (d) of Figure 6. In contrast,

the future and past RF lines change their locations, shapes, and
even topology.

Let ε1 = 8 be kept constant and ε2 be increasing in value from
8 to 13. Then the future RF line in each of the magnetic polarity
will split and move outward from the respective instantaneous
RF line by gradually increasing its length and bending itself in
the middle part. In addition to these transformations, two small
and very flat ovals emerge in the future RF lines by stretching
themselves out from the conjugate footpoints of the field line
that passes in the volume through the cusp minimum point.
Such ovals enclose the footprints of the initial flux tubes that
will reconnect at the moment ε2 and form the above-mentioned
flux rope—these flux tubes are shown in Figure 7(d). The areas
swept out by the major parts of the future RF lines determine
the footprints of the flux tubes that will reconnect and form the
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“flare loops” below the flux rope. One can see from Figures 7(e)
and (f) that, as expected, their conjugate footprints also include
the magnetic flux that will belong to the flux rope. Finally, the
areas that are swept by the ovals in the exterior determine the
footprints of the flux tubes that will pass through the flux rope
formed during this evolution.

Let ε2 = 13 be kept constant and ε1 be decreasing in
value from 13 to 8. Then the past RF line in each of the
magnetic polarity will split and move inward from the respective
instantaneous RF line by gradually decreasing its length and
contracting the ovals that enclose the footprints of the flux
rope (see Figure 7(g)). At the moment ε1 = 8, the ovals
will completely shrink to the conjugate footpoints of the field
line that passes in the volume through the cusp minimum
point. The areas swept out by the major parts of the past RF
lines determine the footprints of the reconnected flux tubes
manifesting themselves as “flare loops” formed below the flux
rope (panels (h) and (i) in Figure 7). This kind of flux tube
may have been directly observed in X-rays as coronal loops
slipping along their respective QSL footprints (Aulanier et al.
2007). Finally, the areas that are swept by the ovals in the
exterior determine the footprints of the flux tubes that have
passed through the flux rope formed during this evolution.

Thus, this example clearly demonstrates that the slip-
squashing factors allow one to identify reconnecting magnetic
fluxes in a given magnetic evolution with an unprecedented level
of detail.

4. EXAMPLE 2. RECONNECTION IN A
CURRENT-LAYER PATCH

Let us consider now an alternate magnetic evolution, where,
in contrast to Example 1 (Section 3), the footprints of the initial
and final QSLs overlap each other. This causes the resulting
RFs to behave in a less predictable way than before, and it
also provides some new insights into the significance of the
slip-squashing factors.

As the initial configuration, let us take the force-free magnetic
field depending only on the x coordinate as

B0 = sin θ (x) ŷ + cos θ (x) ẑ, (48)

θ (x) = θ0 tanh(x/lsh). (49)

The corresponding magnetic field lines are straight and tilted
toward the z-axis at the angle θ (x), which changes smoothly
with x from −θ0 to θ0 to form a sheared structure. Most of the
magnetic shear, and its associated electric current density,

j = θ ′(x)B0 = θ0/lsh

cosh2(x/lsh)
B0 (50)

are concentrated in a slab-like layer of half thickness lsh. Let this
configuration be bounded from the top and bottom by ideally
conducting plates located at z = ±L ≡ ±1. Then using the
straightness of the magnetic field lines and Equations (1)–(5), it
is not difficult to calculate the respective squashing factor

Q = 2 +
4θ2

0 L2
/
l2
sh

cosh4(x/lsh) cos4 θ (x)
. (51)

Figure 8(a) shows the profiles of Q at different θ0 and other
fixed parameters by demonstrating that at sufficiently small lsh

and large θ0 our current layer becomes a QSL, in which both
Q and current density increase together with the total shear
angle 2θ0. Since |B0| = 1 everywhere in the configuration, the
appearance of such a QSL is not related to the presence of any
magnetic minima in contrast to Example 1 (Section 3). Instead,
this particular QSL is the result of a large magnetic shear present
inside a thin layer with a strong current density.

If the latter reaches a certain threshold value defined through
other plasma parameters, a nonideal plasma effect may come
into play. For example, the onset of some plasma instability
might be triggered. This would, in turn, cause the appearance
of an electric field with a nonvanishing component along B0

inside the layer. One can assume also that in reality some of
the plasma parameters may have nonuniform distributions and
so the threshold conditions would be reached first at some spot
in the layer. This would, in turn, lead to a localization of the
parallel electric field in the spot. We can model such a process
in our case by introducing into the configuration the following
electric field:

E = ε̇(t)f (x, y, z) ẑ. (52)

The time and space variation of E is described here by the time
derivative of some function ε(t) and the function

f (x, y, z) =
[
x2
/
L2

x + y2
/
L2

y + cosh(z/Lz)
]−1

, (53)

respectively. Taking the curl of E and integrating it over time,
we obtain in accord with Faraday’s law the resulting magnetic
field

B = B0 + ε ẑ × ∇f. (54)

This is, of course, a very approximate model of the respective
real process, since E is prescribed here in an ad hoc way rather
than derived from the appropriate plasma dynamics. However,
the model is accurate enough to qualitatively demonstrate the
difference between magnetic reconnection and diffusion in a
simple, but generic, case.

The field-line equation does not admit an analytical solution
for the derived magnetic field B, so the corresponding squashing
factors have been calculated numerically for the following set of
parameters: θ0 = π/3, lsh = 0.05, Lx = 0.025, Ly = Lz = 0.3,
and ε = 0.001 k with integers k = 1 . . . 6. In all these cases,
the assumed electric field is localized in a patch-like region
that has the shape of a very flat ellipsoid compressed in the x
direction. Figure 8(b) shows an example of the Q distribution in
the plane z = −1 at ε = 0.006, when the transverse gradients
of the perturbed and unperturbed y components of the magnetic
field become comparable in value at the center of the patch. The
respective Q distribution at the top plate z = +1 is obtained from
the one below by its mirror reflection about the y-axis. These
distributions show that two well-pronounced QSLs adjacent to
one another eventually emerge inside the initial QSL. Such an
evolution of the QSLs is very different from the one studied in
Example 1 (Section 3).

By definition, Q is invariant to the direction of mapping
along the field lines, so its footpoint value can be prescribed
by any other point of the respective field line, thereby extending
the boundary Q distribution into the volume. This allows one
to study the three-dimensional structure of the QSLs via the
distribution of Q at different cross sections. Figure 8(c) displays
one such distribution in the plane z = 0 at ε = 0.006 together
with the respective set of contours of B2 = const in this plane.
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Figure 8. Profiles of Q across the initial slab configuration (ε = 0, lsh = 0.05, Lx = 0.025 and Ly = Lz = 0.3) at θ0 = k π/18, with integers k = 1, . . . , 6 (a). The
distributions of Q at z = −1 (b) and z = 0 (c), the distributions of −Ξ/ε̇ (d) and Qsb (e) at z = −1 in the perturbed slab configuration with ε = 0.006 and θ0 = π/3
(the remaining parameters are the same); the contours of B2 = 0.91 + 0.01 k, k = 0, . . . , 9, are superimposed on the respective Q distribution in panel (c). Panel (f)
shows for the same parameters the gray-shaded areas in the plane z = −1 where log Qsb � 2 for four different times corresponding to ε = 0.001 k, k = 2, . . . , 6,
with a stepwise decrease of shading from the initial to the final times.

One can see from this figure that the positions of local maxima of
Q and minima of B2 in the plane z = 0 are relatively close to one
another, although not identical. A noticeable shift between them
is probably the result of the relative shallowness of the minima
of B2, whose values are just 10% lower in comparison with the
background, while the characteristic sizes of the minima are of
the order of lsh. In other words, the appearance of the new QSLs
seems to be related again to the formation of the minima of B2 in
the configuration, as was the case in Example 1 (Section 3). The
only difference is that such a relation in Example 1 (Section 3)
is stronger because of a much larger depth of the corresponding
minima.

For the same set of parameters, Figure 8(d) shows the
distribution of the pseudopotential Ξ (defined by Equation (47))
in the plane z = −1, which suggests that a substantial change
of magnetic connectivity must occur in our configuration along
the diagonal of the computational rectangular area. This is
confirmed by Figure 8(e) that presents the respective distribution
of the slip-back squashing factor Qsb for the time period, where ε
increases from 0 to 0.006. Since the assumed electric field drops
exponentially with growing |z| toward the boundary plates (see
Equations (52)–(53)), the Qsb distribution is calculated here
under the assumption that the line-tying condition is strictly
fulfilled at the plates. In other words, a possible small footpoint
advection is neglected in calculating the respective slip-back
mapping, which is composed of the final and initial field-line
mappings only, as described in Section 2.2. The Qsb so obtained

demonstrates that a major change of connectivity occurs along
a narrow strip that is aligned with both the respective new QSL
footprints and the area with large values of |Ξ|. The latter
is in good agreement with the analysis of a similar nonideal
evolution in the so-called X-line configuration (Hesse et al.
2005). The indicated narrow strip can be identified here only
with the footprint of the instantaneous RF, since the past RF is
absent at the initial moment (simply because the new QSLs just
start to emerge at that moment).

To see how this RF footprint evolves, we determine it as the
area at the boundary plate, where Qsb � Qthresh = 102, for
several pairs of ε, whose initial values equal 0. This value is
used same for all the pairs, while the final values vary within
the interval [0, 0.006]. These RF footprints, represented in
Figure 8(f) by gray shadings of different intensity, form a clearly
nested structure such that the area that is swept out by the final
time approaches asymptotically to the area of the instantaneous
RF footprint at this time. In terms of the corresponding RF
lines, this means that they grow in length by remaining nearly
self-aligned and not by moving in the transverse direction
(in contrast to Example 1, Section 3). Therefore, in order to
determine the reconnected flux tubes in situations like this,
one should extend our previous definition of the reconnected
boundary area by replacing the sweeping RF lines in this
definition with the sweeping RF footprints. Since both of them
depend on the chosen value Qthresh, such an extension does
not increase the ambiguity in determining the reconnected
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magnetic fluxes. It does, however, make this definition more
general.

The reconnected flux tubes as defined above are shown in
Figure 9 with the help of the magnetic field lines that are
launched from the contours log Qsb = 2.0 at the boundary plates
z = ±1. These flux tubes intersect but do not coincide with
one another, which is evident from the locations of the target
footpoints being scattered partly outside of the RF footprint
at the other boundary plate. Nevertheless, such footpoints also
outline a very elongated oval that is slightly turned with respect
to the corresponding RF footprint around their common center
(x = 0, y = 0). This is a manifestation of the characteristic
plasma rotation in magnetic flux tubes passing through a
nonideal region—an effect that was previously described in the
framework of the GMR theory (Schindler 2006).

Our second example suggests that the characteristic feature
that distinguishes reconnection from diffusion is RFs with
narrow ribbon-like footprints. Such footprints are characterized
by two length scales, one of which is much smaller than the
other. Displacement of plasma elements in the nonideal region
across the corresponding RFs causes a large change in magnetic
connectivity along the RF footprints. In other words, the high
values of slip-squashing factors at the flux tubes that pass
through and in the vicinity of a nonideal region is the major
signature of reconnection compared to diffusion. The transition
from one process to the other is not abrupt but continuous
both in time and parameter space, and only in this sense it
is just a matter of semantics of how one refers to this process—
reconnection or diffusion. Generally, the appearance of such
nonideal regions in configurations is closely related to locally
enhanced current density, which corresponds to large magnetic
shear, large values of the squashing factor, and hence large
values of the slip-squashing factors. Because of this causal chain,
it seems preferable to refer to the process in the nonideal regions
as reconnection rather than magnetic diffusion.

Note also that strong outflow jets of plasma from the nonideal
regions have been a feature of traditional two-dimensional
reconnection models. We may conjecture that perhaps this
is also a property of many three-dimensional reconnection
regimes, although perhaps some types of three-dimensional
reconnection do not possess rapid outflow jets (e.g., Schindler
et al. (1988)). The accurate proof of such a conjecture must
rely on a self-consistent analysis of the full system of MHD
equations, which is beyond the scope of the present work.
However, some indications of its validity can be seen from
our present consideration as well. In particular, Equations (53)
and (54) show that the considered nonideal process causes an
X-type perturbation of the transverse magnetic field. Therefore,
the Lorentz force due to interaction of this perturbation with
the initial strong current layer will tend to accelerate plasma out
of the nonideal region and to produce outflow jets. Thus, the
thinner the current layer, the stronger the acceleration, which
corresponds, in turn, to the narrower RFs developing in the
configuration, as demonstrated in this section.

5. MAGNETIC MINIMUM POINTS

Determining QSLs and RFs via computation of the corre-
sponding squashing factors is conceptually simple but techni-
cally difficult. However, the particular examples of magnetic
evolution considered in Sections 3 and 4 strongly suggest that
there is a close relationship between QSLs, RFs, and magnetic
minimum points. If the presence of such a minimum point is

a sufficient condition for the existence of the respective QSL,
this might significantly simplify determining QSLs in a given
configuration. Finding magnetic minima is technically as simple
as finding magnetic null points, so locating such minima would
significantly facilitate the localization of QSLs and RFs. This
motivates us to study the local properties of magnetic minima
in the most general terms.

Note first that, for any point with B2 ≡ B2
0 �= 0, the

system of coordinates can always be chosen in such a way
that Bx = By = 0, while Bz ≡ B0. If the point is a magnetic

minimum, then ∇B2 = ∇B2
z = 0 or simply ∇Bz = 0 in such a

system of coordinates. Taking also into account that ∇ · B = 0,
we obtain the following general expression for the matrix of
gradients of magnetic field at its minimum point:

B ≡ [∇ B] =
(

∂xBx ∂yBx ∂zBx

∂xBy −∂xBx ∂zBy

0 0 0

)
≡

⎛
⎝

a b̃ c
b −a d
0 0 0

⎞
⎠ .

(55)

Rotating the system of coordinates about the z-axis does not
change the components of B at the minimum point, but it reduces
B at a certain rotation angle to the form

B =
(

a −b c
b −a d
0 0 0

)
, (56)

where all matrix elements are generally different from those in
Equation (55). Thus, in this rotated system of coordinates, we
obtain the canonical linearized form for a magnetic-minimum
field

Bx = ax − by + cz, (57)

By = bx − ay + dz, (58)

Bz = B0. (59)

Using these expressions, one can easily find from Equation (7)
the corresponding magnetic field lines. Depending on the values
of parameters a and b, there are only three different types of
minimum: hyperbolic, cusp, and elliptic minima, exactly as in
the example considered in Section 3. Assuming that the field
lines start in the plane z = 0, so that (x, y, z)|τ=0 = (x0, y0, 0),
we have for all these types of minimum

z = B0 τ, (60)

which simply represents linear dependence of z on the differ-
ential flux tube volume τ . For hyperbolic minima, which exist
when |a| > |b|, the field lines are given by

x = x0 + (ax0 − by0)
sinh μτ

μ
+ cB0

cosh μτ − 1

μ2

+ (ac − bd)B0

sinh μτ − μτ

μ3
, (61)
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(b)(a) (b)

Figure 9. Magnetic field lines in the slab configuration at ε = 0.006 with other parameters, the same as in Figure 8. The launch points are located in the planes z = −1
(a) and z = +1 (b) along the contours log Qsb = 2.0. The respective orientation of the coordinate axes are shown by red (x), green (y), and blue (z) arrows. The length
scale in the x-direction is stretched ten times.

y = y0 + (bx0 − ay0)
sinh μτ

μ
+ dB0

cosh μτ − 1

μ2

+ (bc − ad)B0

sinh μτ − μτ

μ3
, (62)

where μ = (a2 − b2)1/2. In the limit μ → 0 yielding |a| = |b|,
one can retrieve from here the field-line structure at cusp minima
described by

x = x0 + a(x0 − y0)τ + cB0

τ 2

2
+ a(c − d)B0

τ 3

6
, (63)

y = y0 + a(x0 − y0)τ + dB0

τ 2

2
+ a(c − d)B0

τ 3

6
. (64)

The same expressions can also be retrieved in the limit ω → 0
from the elliptic minima, which exist when |a| < |b| with
neighboring field lines determined by

x = x0 + (ax0 − by0)
sin ωτ

ω
+ cB0

cos ωτ − 1

ω2

+ (ac − bd)B0

sin ωτ − ωτ

ω3
, (65)

y = y0 + (bx0 − ay0)
sin ωτ

ω
+ dB0

cos ωτ − 1

ω2

+ (ad − bc)B0

sin ωτ − ωτ

ω3
, (66)

where ω = (b2 − a2)1/2.
The above analytical expressions show that the highest

divergence of field lines in response to the variation of x0 or
y0 is achieved in the vicinity of hyperbolic magnetic minima
(see Equations (61) and (62)). The corresponding gradients of x
and y with respect to x0 or y0 grow exponentially with z, and the
rate of this growth increases with decreasing B0. In the case of
cusp minima, however, such a growth is only linear in z, while
for elliptic minima it is even saturated via the sine-function. This
provides a strong general argument in favor of the idea that the
hyperbolic and cusp minima of a magnetic field are responsible
for the appearance of QSLs and corresponding RFs in evolving
magnetic configurations.

Although both of the examples considered in Sections 3
and 4 possess some symmetry, we do not think that this is
a crucial factor for the emergence of QSLs and RFs. The
really important parameters that control the thickness of the
emerging QSLs should be the depth of the respective hyperbolic
magnetic minima and their characteristic sizes compared to the
global length scale of the configuration. In this respect, the
magnetic null points are just a degenerate case of magnetic
minima, whose associated QSLs are transformed into genuine
separatrix surfaces. More detailed studies are certainly needed
in the future to quantify the relation between QSLs and magnetic
minima.

6. SUMMARY

We have developed a general theory for the evolution of
magnetic connections between boundary plasma elements in
an arbitrary three-dimensional magnetic configuration with an
arbitrarily shaped boundary. The theory assumes that at each
instant the magnetic field is known everywhere throughout the
volume domain including the boundary, where the tangential
flow of plasma elements is also known.

The major quantity that is used for characterizing the mag-
netic connectivity and its evolution is the squashing factor Q
(Titov et al. 1999; Titov 2007a). After being applied to the
magnetic field-line mapping, the Q factor allows one to identify
in a given configuration all separatrix and quasi-separatrix sur-
faces, as well as their hybrids. We have demonstrated first how
the Q factor is determined for any ideal evolution of the magnetic
configuration in terms of the initial magnetic field and tangential
boundary flows without reference to the magnetic field at other
moments in time. This result is itself of great importance for the
further development of the theory of current-layer formations
in magnetic configurations with a highly conducting plasma via
its motion at the boundary.

In order to describe the nonideal evolution of magnetic con-
nectivity, we have introduced the so-called “slip mapping,”
which characterizes the change of magnetic connections be-
tween the boundary plasma elements due to violation of the
frozen-in law in the plasma volume. This mapping can be de-
fined either forward or backward in time to give correspondingly
slip-forth or slip-back mappings, which operate on the initial or
final configurations, respectively, within a chosen time interval.
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By calculating the squashing factor for these new mappings,
we have defined new quantities called slip-forth and slip-back
squashing factors, Qsf and Qsb, respectively. The large values of
these quantities identify the reconnecting magnetic flux tubes,
called reconnection fronts (RFs), at the initial and final time
instances. The boundary areas that are swept by RFs within a
chosen time interval correspond to the footprints of reconnect-
ing magnetic flux tubes. In this way, the Qsf factor determines
in the initial configuration the to-be-reconnected magnetic flux
tubes, while the Qsb factor determines in the final configura-
tion the reconnected magnetic flux tubes. The dependence of
the properties of the RFs on tangential boundary flows is also
analyzed.

The general results are illustrated with two specific examples
based on evolving magnetic configurations. The first of these
was considered earlier by Hesse et al. (2005) in the framework
of the general magnetic reconnection (GMR) theory (Schindler
et al. 1988; Hesse & Schindler 1988; Hesse et al. 1991; Hesse &
Birn 1993). Revisiting this example, we have demonstrated that
our approach is consistent with GMR theory but complements
it in several important aspects. The second example describes
a magnetic evolution that is driven by a thin current layer
with a field-line voltage drop at a small patch inside it. This
example enables us to show that the localization of such a
nonideal process in a small region may indeed cause the
structural changes that are characteristic for reconnection rather
than for magnetic diffusion. The latter example, in particular,
demonstrates the formation of magnetic flux tubes with narrow,
ribbon-like footprints, which is a typical feature of reconnection
process.

In comparison with GMR theory, our approach handles
regions with small or large amounts of reconnected flux on
an equal footing. This is because the slip-squashing factors,
in contrast to the voltage drop of GMR, are dimensionless
geometrical quantities measuring only a relative spatial rate of
magnetic slippage at the boundary. For the same reason, the slip-
squashing factors discriminate between regions of reconnection
and simple diffusion much better than the voltage drop method.
Moreover, since the slip mappings are composed of the field-
line mappings and both types of mappings are characterized
by the same quantity, the analysis of reconnection based on
our theory is intimately related to the analysis of magnetic
structure. As we have demonstrated here, the latter provides
intriguing opportunities for analyzing magnetic reconnection in
three-dimensional configurations with an unprecedented level of
detail. The use of slip-squashing factors opens new perspectives
for the comparing reconnecting flux tubes predicted by the
theoretical models with the different morphological features
observed in the solar flares and coronal mass ejections (e.g.
brightening coronal loops, chromospheric kernels and ribbons,
see the recent review by Démoulin (2007)).

Our analysis of these examples also reveals the special role of
hyperbolic and cusp minimum points in three-dimensional mag-
netic field configurations. The elemental magnetic flux tubes
passing in the vicinity of such points may become extremely
squashed, which implies the formation of the respective QSLs.
We have extended these examples by studying the field-line
structure in the neighborhood of generic magnetic minima and
confirmed this particular result. Hence, similar to magnetic null
points, hyperbolic and cusp minima provide an important local-
ization of plausible reconnection sites. More detailed investiga-
tions in this direction promise to lead to even more interesting
results.

It should be emphasized that, similar to GMR theory, our ap-
proach is applicable to the analysis of reconnection in magnetic
configurations described not only by MHD, but also by any other
plasma model. The algorithm of calculating slip-squashing fac-
tors admits a straightforward implementation and it is highly
parallelizable. Our experience shows that, even without paral-
lelization, the squashing factor may be computed for known
magnetic field data with a modest demand on computing re-
sources. Thus, the whole approach is practical enough to pursue
the implementation of the proposed algorithms for calculating
slip-squashing factors for the solar corona. The solar physics
group at SAIC is presently working on this project.
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