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[1] We model the traction evolution and shear stress degradation near the tip of a
propagating dynamic rupture by solving the elastodynamic equation for a 2-D in-plane
fault obeying rate- and state-dependent friction laws and adopting a finite difference
numerical method. Modeling results clearly show that our dynamic solution implies a slip
dependence of fault friction, as previously observed either in laboratory experiments or in
theoretical models. However, the resulting equivalent slip-weakening distance (d0

eq) is
different from the length scale parameter (L) characteristic of the rate and state
formulation. We demonstrate that the state variable evolution controls the slip acceleration
and the absorbed fracture energy. The adopted constitutive parameters a, b, and L affect
the traction dependence on slip. We present the results of several numerical simulations,
performed after a careful control of the available resolution of the cohesive zone, to
unravel the dependence of the equivalent slip-weakening distance on the constitutive
parameters. We also propose analytical relations to interpret our numerical results, which
point out that the traction evolution within the cohesive zone cannot be prescribed a priori
in the framework of rate-and-state constitutive laws. In particular, the yield stress and
the kinetic friction level depend on particular slip velocity values characteristic of specific
stages of the breakdown process. Finally, we discuss how the adopted evolution law
affects the slip-weakening curve by comparing the simulations performed with a slip and a
slowness law. The former yields smaller equivalent slip-weakening distances than the
latter. INDEX TERMS: 7209 Seismology: Earthquake dynamics and mechanics; 7212 Seismology:

Earthquake ground motions and engineering; 7215 Seismology: Earthquake parameters; 7260 Seismology:

Theory and modeling; KEYWORDS: friction laws, earthquake dynamic ruptures, slip-weakening, cohesive zone
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1. Introduction

[2] Constitutive laws govern fault friction during the
nucleation and propagation of earthquake ruptures and are
required to have a finite fracture energy absorbed at the
crack tip. The relation between the adopted friction law
and the total dynamic traction represents one of the
fundamental equations to be solved to model spontaneous
dynamic ruptures. In the literature two main classes of
constitutive formulations have been proposed: the slip-
dependent and the rate- and state-dependent (RS) friction
laws. The former assumes that friction only depends on
slip, while the latter considers that friction depends on
slip velocity and state variables. The first class of con-
stitutive models includes the ‘‘classical’’ slip weakening
(SW) law [Barenblatt, 1959; Ida, 1972; Palmer and Rice,
1973; Andrews, 1976a, 1976b], although other modified
slip-weakening behaviors have been proposed including
a slip-hardening phase and an exponential decrease
of traction with displacement [see Ohnaka, 1996, and

references therein]. The second class of constitutive equa-
tions is based on the laboratory derived friction laws,
which were originally proposed by Dieterich [1979, 1986]
[see also Ruina, 1980, 1983; Perrin et al., 1995]. These
two constitutive formulations can both be applied to
model the dynamic crack propagation [see Bizzarri et
al., 2001, and references therein], but they provide a
completely different description of the nucleation process
[see Dieterich, 1992; Ohnaka and Shen, 1999] and the
healing mechanisms [Beeler and Tullis, 1996; Bizzarri et al.,
2001]. The main difference between these two constitutive
formulations concerns the time dependence of friction: in
fact only rate- and state-dependent friction laws consider
an evolution equation for the state variable that yields a
more complex time dependency of friction and accounts
for fault restrengthening. Therefore RS laws are suitable to
model the faulting process and repeated slip episodes on
the fault.
[3] Slip weakening is a characteristic feature of rate- and

state-dependent constitutive laws [Okubo and Dieterich,
1984; Guatteri and Spudich, 2000; Cocco and Bizzarri,
2002] because it describes the dynamic traction drop
associated with slip acceleration, which is a consequence
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of a dynamic failure process occurring at the crack tip in
a finite extended zone, named the cohesive zone [Ida,
1972; Andrews, 1976a, 1976b; Ohnaka, 1996]. Therefore
these two constitutive laws should not be considered as
alternative, at least to describe the dynamic propagation
during a single rupture event. However, an important
question arising from these considerations is what con-
trols the slip weakening behavior within the cohesive
zone; or which are the physical processes controlling the
evolution of the dynamic traction, and the consequent slip
acceleration, during the breakdown process? Adopting a
SW law implicitly means that the traction evolution in the
cohesive zone is assigned a priori and it represents the
most important phenomenon to be considered to model
earthquake propagation and the genesis of seismic waves
[see, e.g., Fukuyama and Madariaga, 1998]. On the
contrary, in the framework of RS constitutive laws slip
weakening might be considered as the result of a physical
process associated with the frictional control of dynamic
rupture growth. In this paper we aim to contribute to this
debate.
[4] According to these considerations it is clear that, in

order to simulate the dynamic rupture propagation during a
single earthquake [see, e.g., Olsen et al., 1997; Fukuyama
and Madariaga, 1998] with spontaneous models, the
adoption of a SW law has the important advantage to
prescribe the dynamic traction evolution within the cohe-
sive zone. This is exactly what is needed to allow the
crack to advance, the rupture to propagate and to generate
seismic waves. However, this does not answer to the
questions proposed before on the origin of weakening
processes. In this study we attempt to answer to these
questions and to study the dynamic rupture propagation
and the breakdown processes occurring within the cohe-
sive zone by using a 2-D in plane spontaneous crack
model obeying the RS law with a slowness evolution
equation.

2. Methodology

[5] In this work we solve the elastodynamic fundamental
equation

r�ui ¼ sij; j þ fi ð1Þ

for a 2-D in-plane shear crack for which the displacement
and the shear traction depend on time and on only one
spatial coordinate; we also neglect the body forces ( fi = 0).
In equation (1), r is the mass density, u is the displacement,
and sij,j is the spatial derivative of the stress tensor
components. In particular, we assume that the crack
propagates only in the x1 direction and the fault lies on
the x3 = 0 plane. A grid of nodes is introduced, and each
node is a vertex of an equilateral triangle; the slip velocity
components are staggered both in space and time with
respect to the total shear stress components sij. The latter are
defined in the center of the triangles and at integer time
steps, while the former are defined in the vertexes of the
triangles and at intermediate time steps. The medium is
supposed to be infinite, homogeneous and elastic every-
where except along the fracture line. We solve equation (1)
by using a finite difference (FD) approach with the traction

at split nodes (TSN) fault boundary condition, described by
Andrews [1973, 1999]:
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The details of the numerical solution are described by
Bizzarri et al. [2001]. We can use in our procedure either
RS laws with slowness (ageing) evolution equation
[Dieterich, 1986]:

t ¼ m*� a ln
v*
v
þ 1

� �
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or with slip evolution equation [Beeler et al., 1994; Roy and
Marone, 1996]:
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In equations (3) and (4), v is the slip velocity, m* and v* are
arbitrary reference values for the friction coefficient and for
the slip velocity, respectively; a, b, and L are the three
constitutive parameters, and sn

eff is the effective normal
stress. The quantities � and � are the state variables. These
two rate- and state-dependent laws differ only for the
evolution relation, which defines the temporal behavior
of the state variable. In this formulation, the state variable
has the physical meaning of an average contact time
between the sliding surfaces [Dieterich, 1986; Ruina, 1983].
The evolution equation (3b) is the slowness law [Beeler et
al., 1994; Roy and Marone, 1996], and it includes true
ageing, while that included in equation (4b) is named the
slip law. In this work we consider a velocity-weakening
behavior (that is, B > A, where A = asn

eff, B = bsn
eff ).

[6] In our numerical procedure, we can also use a slip-
weakening law as that used by Andrews [1973, 1985]:

t ¼ tu � tu � tf
� �Du

d0
; Du < d0

tf ; Du � d0

8

<

:

ð5Þ

where tu is the upper yield stress, tf is the final, or kinetic,
friction level, and d0 is the characteristic slip-weakening
distance.
[7] The characteristic length scale parameters of these

two constitutive formulations are the slip-weakening dis-
tance d0 and the parameter L: the former represents the slip
required for traction to drop from tu to tf, the latter is the
characteristic length controlling the evolution of the state
variable. In a recent paper, Cocco and Bizzarri [2002] have
investigated the slip-weakening behavior of rate- and state-
constitutive laws and have shown that these two length
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scale parameters are different. They propose a scaling law
between d0 and L, which states that their ratio is nearly 15.
In the present study we aim to investigate in greater detail
how the constitutive parameters control the slip-weakening
behavior in the framework of RS dependent laws and to
provide a theoretical explanation of numerical results.
[8] There is a lack of experimental evidence confirming

that these RS constitutive laws can be used to represent fault
friction at high slip rates. The constitutive laws defined in
equations (3) and (4) have been derived from laboratory
stick-slip experiments in which the slip velocities are in the
range of few microns to 10 mm/s [Mair and Marone, 1999].
Laboratory experiments made by Ohnaka and coworkers
[Ohnaka et al., 1987; Ohnaka and Shen, 1999] show slip
velocities within the preexisting crack up to 100 mm/s.
Therefore we are confined to extrapolate the adopted
constitutive laws at slip rates of the order of m/s as in real
earthquake ruptures. This extrapolation is quite common in
the literature (see, for instance, Ide and Takeo [1997], who
used a SW law, or Lapusta et al. [2000] and Guatteri et al.
[2001], who adopted RS laws). In this study we adopt the
slowness and the slip constitutive formulations to model the
breakdown process during the dynamic rupture propagation,
therefore implicitly assuming that these laws are valid at
relatively high slip rates.

3. Modeling a Spontaneous Rupture With Rate-
and State-Dependent Friction Laws

3.1. Reference Model

[9] In this section, we present and discuss the main
features of spontaneous crack propagation on a fault obey-
ing a RS slowness law (equation (3)). We chose a reference
set of parameters, which is typical of laboratory experi-
ments: the medium surrounding the crack is linear elastic,
homogeneous and Poissonian. The total fault length is equal
to 20 m and, after initiation, the crack propagates symmet-
rically with respect to the nucleation point x1 = 0. At the initial
stage, the fault is in the steady state, except in the nucleation
region, which is 3 m wide. Starting from the steady state, we
simulate a spontaneous nucleation by choosing an initial
configuration in which the nucleation stage is relatively
short. This is justified by our purpose to simulate the
breakdown process and the stress degradation at the crack
tip during the dynamic propagation. The whole set of model
parameters are listed in Table 1, and we refer to Bizzarri et
al. [2001] for a detailed description of the adopted nucle-
ation strategy for the simulations.
[10] Figure 1 shows the resulting total shear stress as a

function of slip as well as the phase diagram (that is the
traction as function of slip velocity) for a homogeneous
fault where the spatial discretization is �x = 0.01 m, and �t
is fixed from the Courant–Friedrichs–Levy (CFL) ratio
wCFL, defined as vS �t/�x. We emphasize that, adopting a
RS friction law, the dynamic traction clearly shows a slip–
weakening behavior, as previously pointed out by Okubo
[1989], Dieterich and Kilgore [1994] and Bizzarri et al.
[2001]. We identify the slip–weakening distance on this
plot, and according to Cocco and Bizzarri [2002], we
named it an equivalent SW distance d0

eq. In the following
of this study, we estimate the slip–weakening distance from
the traction versus slip curve by picking the slip value at the

traction minimum. The simulation shown in Figure 1
represents a reference model for our investigations. Because
we model here a homogeneous fault configuration, these
ruptures are not confined; they do not arrest by themselves
and propagate continuously. This is reasonable because we
are not interested in the present paper to study the healing
mechanisms. As pointed out by several authors [Okubo,
1989; Gu and Wong, 1991; Guatteri et al., 2001; Cocco and
Bizzarri, 2002], the equivalent SW distance d0

eq is not equal
to the L value adopted in the simulations. We will examine
and discuss this difference more in detail in following
sections.

3.2. Interpreting the Traction Evolution Within the
Cohesive Zone

[11] In order to understand the evolution of dynamic
traction within the cohesive zone and to identify the
physical quantities controlling the SW behavior, we com-
pare the time histories of total traction, slip velocity and
state variable (Figure 2a) calculated for the same model
parameters used in Figure 1 (i.e., the reference case) in the
same fault position (x1 = 3.0 m). By looking at Figures 2a
and 2b it emerges that the resulting total dynamic traction
reaches its peak value (the yield stress, tu

eq) earlier than slip
velocity, and that the state variable evolves from its initial
steady state value to a final one well before the other two.
This first consideration allows us to suggest that it is the state
variable that drives the slip acceleration and the traction drop
during the weakening phase. This result is more evident in
Figure 2b, where we compare the total dynamic traction to
the logarithm of slip velocity and to the logarithm of state
variable. We aim to discuss this topic in detail in the
following of this section. We subdivide the time window
shown in Figure 2 in five distinct stages, which comprise the
duration of the whole breakdown process. The first stage
(indicated as I in Figure 2) is characterized by a slight
decrease of the state variable (which starts evolving from
its steady state value) and a modest increase in traction; the
slip velocity slightly increases from its initial value (vinit).
Such an increase of traction is due to the contribution of
those points that are already slipping (i.e., the dynamic load).
During the phase II the shear traction continues to increase
and reaches its peak value, while the slip velocity shows a
fast increase only when the state variable decreases more
rapidly. We denoted the time interval starting with the sharp
slip velocity increase and lasting until the traction has

Table 1. Reference Model Constitutive and Medium Parameters

Parameter Value

l = m 27 GPa
vP 5196 m/s
vS 3000 m/s
m* 0.56
a 0.012
b 0.016
sn
eff 100 MPa

L 1 � 10�5 m
� (x1, t = 0) for x1
2 [�1.5 m, 1.5 m]

�nucl = 1 � 10�4 s

� (x1, t = 0) elsewhere �ss (vinit)
t0 	 t(x1, t = 0) tss(vinit)
�x 0.01 m
�t (0.95 � 31/2) �x/(2vP) = 1.58 � 10�6 s
wCFL = vS �t/�x 0.342
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Figure 1. Total dynamic traction as a function of slip (a) and slip rate (b) (the latter is also named the
phase diagram) in the fault position x1 = 3.0 m for a propagating rupture obeying a slowness evolution
law. Initial and constitutive parameters used for these calculations are listed in Table 1. We indicate with
roman numbers different stages of the dynamic rupture process identified by particular values of traction
and slip velocity (see text for a detailed description). The equivalent slip-weakening distance, the yield
stress and the kinetic friction level are also shown in both the panels. The dotted line in Figure 1b shows
the steady state friction.

Figure 2. (opposite) (a) Time histories of dynamic traction, slip velocity and the state variable computed for the same
simulation shown in Figure 1. (b) Comparison between the temporal evolution of total traction and the logarithm of slip
velocity (log(v)) and state variable (log(�)). The roman numbers identify the different stages of the dynamic rupture process
drawn in Figure 1 and described in the text. The slip velocity value reached when the traction is at its maximum value (tu

eq)
is named vu, while v0 is the slip velocity at the end of the weakening process when the fault slip is d0

eq. (c) Comparison
between state variable time evolution during the phase IVobtained from the numerical simulation and the theoretical steady
state curve (�ss(v)). This comparison confirms that during the stage IV the state variable is always at the steady state; v2 is
the final value of slip rate.
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reached the yield stress value (tu
eq) as a phase IIb. We

indicate with vu and �u the values of the slip velocity and
state variable corresponding to the peak value of dynamic
stress. We emphasize again that the total dynamic traction
does not reach its maximum in correspondence to the peak of
the slip velocity (vu < vmax). This latter result is in agreement
with the numerical results of Olsen et al. [2001] andMikumo
et al. [2003]. However, our results show that the maximum
of slip velocity is not simultaneous with the minimum of
dynamic traction. This result does not agree with those of
Mikumo et al. [2003], as we will discuss in the following.
Phases I and II represent the velocity–hardening phase
depicted in Figure 1b.
[12] The slip-weakening phase begins when the total

dynamic traction has reached tu
eq; we named this stage

(whose duration defines the breakdown zone time Tb) as
phase III, during which the state variable drops to its
minimum value �0 (see Figure 2c). Most of the state
variable evolution occurs during this short stage (phase III
in Figures 1 and 2) corresponding to weakening phase,
emphasizing that this temporal variation is extremely fast.
During the weakening phase (III) the slip velocity first
rapidly increases, reaches its maximum value (vmax), and
therefore decreases. We named v0 the slip velocity value at
the end of the weakening phase (III) when the traction is at
its minimum and the slip is equal to d0

eq. At this point, and for
the subsequent phase IV, the state variable is already close to
its steady state curve �ss(v): this is clear by looking at the
log–linear plot in Figure 2c, where we have represented a
zoom of the state variable time history plotted in Figure 2a
superimposed to the stationary state �ss(v) = L/v. Figure 2c
confirms that when the SW phase (stage III) is ended (the
traction drop is concluded), the state variable is at the steady
state. At this time the friction is m(v0,�

ss(v0))sn
eff = mss(v0)

sn
eff. This value corresponds to the kinetic traction tf

eq in the
SW model, as we will derive in a following section. This
phase IV is characterized by a slip velocity decrease down to
the final level v2, the state remain in its steady state and
therefore the friction is mss(v2) sn

eff. The slip velocity main-
tains its final value (v2 in our simulations) if no healing of
slip occurs [see Perrin et al., 1995].
[13] These considerations can be easily summarized by

looking at the 3–D phase trajectories shown in Figure 3: the
state variable drives the slip acceleration (Figure 3a) and
the traction drop during the weakening phase (Figure 3b).
The SW begins when the state variable is already evolving
(see Figures 2a and 3b) and the accelerating phase is already
started (see Figures 2b and 3c). Nevertheless, a relevant
fraction of the state is lost during the weakening phase (see
Figures 2b and 3a). Several recent papers [Olsen et al.,
2001; Mikumo et al., 2003] have shown that, adopting a SW

Figure 3. (opposite) Three-dimensional trajectories repre-
senting the total dynamic traction as a function of (a) slip
velocity and state variable, (b) slip and state, and (c) slip and
slip velocity. These plots refer to the same simulations and to
the same fault position used for previous figures. The arrow
in Figure 3a has been drawn to point out the increase of slip
velocity driven by the state variable evolution. Figure 3b
clearly shows that SW begins when the state variable is
already evolving from its initial (steady state) value.
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constitutive law, the slip velocity reaches its peak value
when the dynamic traction is at its minimum value (i.e., the
kinetic friction) and the slip is equal to d0. Our simulations
clearly show that, adopting rate- and state-dependent laws,
peak slip velocity is not simultaneous with the minimum
traction.
[14] Several stimulating questions arise from these

results: if the traction drop during the weakening phase is
controlled by the state variable, does it mean that the
SW behavior and the breakdown process depends on the
properties of the contacts on the surface within the cohesive
zone? And how much the analytical expression chosen for
the evolution law controls the SW behavior? We aim to
discuss these questions in the present study. To this goal we
must investigate the temporal evolution of slip, slip velocity
and dynamic traction within the cohesive zone (as done in
Figure 2). This requires discussing the available resolution
and the stability conditions before to present the results of
numerous simulations performed with different constitutive
parameters and initial conditions. We face this problem in
the following section.

4. Testing the Resolution of the Cohesive Zone

[15] The investigation of the temporal evolution of the
physical quantities that characterize the breakdown process
requires an accurate control of the stability of the solutions
and the available resolution of the cohesive zone, which are
needed to model the slip acceleration. In order to solve the
elastodynamic equation with numerical algorithms, such as
the finite difference approach used in this study, this control
is usually done by verifying a precise set of relations (see
Appendix A). Bizzarri et al. [2001] discussed these relations
in detail. They are used to check the capability of the
numerical simulation to resolve the temporal dynamic
evolution of the rupture process and to satisfy few spatial
discretization requirements. However, even if all the neces-
sary conditions for convergence and stability are satisfied,
this does not guarantees to have enough resolution to follow
the state variable evolution and the fast slip acceleration. We
have shown in Figure 2 that slip velocity reaches its peak
value in an extremely short time, and therefore the adopted
spatial and temporal discretization have to be appropriately
selected.
[16] In order to find the most convenient choice of �x

and �t, we repeat the simulation presented in Figure 1 by
choosing different spatial and temporal discretizations. In
a first analysis, we have selected different spatial grid
sizes �x and, because we do not change the Courant–
Friedrichs–Levy (CFL) ratio wCFL (wCFL = vS �t/�x), the
temporal step size �t is varied consequently. We show in
Figure 4 the traction versus slip (Figure 4a) and the
slip velocity time history (Figure 4b) for four different
cases, for which the discretization changes, but all the other
parameters and the fault position (x1 = 3.0 m) remain the
same used before and listed in Table 1. The slip-weakening
curves plotted in Figure 4a show that the increase in �x
(and consequently of �t) modifies both the weakening rate
and the equivalent slip-weakening distance. When we adopt
a smaller �x the decrease of traction with increasing slip
becomes close to a linear decay; on the contrary, with a
larger spatial and temporal discretization, the simulations

exhibit a more evident roll-off in correspondence of the
maximum shear traction (tu

eq). Therefore the estimate of
the equivalent characteristic distance (d0

eq) can be biased by
the adopted spatial and temporal discretization; for the case
considered here �x must be smaller than 0.01 m to properly
evaluate d0

eq. Moreover, Figure 4b shows that the peak of
slip velocity is well resolved only when �x is smaller than
0.01 m. It is important to note that by changing the temporal
step we also change the local stiffness k, that is expressed as
the inverse of the local compliance C (see Appendix A).
Because the ratio k/kcrit is known to control the stability of
the fault frictional behavior [Scholz, 1990; Dieterich, 1992],
as �t decreases the local stiffness increases and the fault
begins to be more stable (and, in fact, the dynamic insta-
bility occurs later, see Figure 4b). This might explain the
change in the shape of the SW curve, which we observe also
when the convergence, continuity, and stability criteria are
strictly verified.
[17] In order to investigate the importance of the coupling

between spatial and temporal steps, we have simultaneously
varied�x and the wCFL ratio, which allows us to maintain�t
constant (and therefore to fix the fault stiffness); wCFL is
known to control the convergence of numerical methods,
both for BIE and FD approaches: Fukuyama and Madariaga
[1998], by using a 3-D BIE code with a SW equation, noted
that wCFL is responsible for fluctuations and oscillations in
slip velocity and rupture velocity. The results of our 2-D
simulations are shown in Figure 5. While the SW curve,
and the d0

eq are completely independent on the CFL ratio
(Figure 5a), as expected because the fault stiffness is
constant in this case, the phase diagram strongly exhibit
a dependence on wCFL. In particular, we emphasize the
different values of peak slip velocity, which increases as
wCFL decreases (i.e., as �x increases).
[18] We summarize in the Appendix A the conditions that

must be satisfied to have enough resolution of the cohesive
zone. We use them to select the appropriate time and spatial
steps that allow us to resolve the traction evolution and
the slip velocity time history. We emphasize that, when
the spatial and temporal discretization are appropriately
selected, the traction drop for increasing slip is nearly
constant, which results in a linear decay with a constant
weakening rate. We remark that the resolution of the fast
state variable evolution (see Figure 2a) guarantees to
appropriately model the fast slip acceleration. This later
result has important implications for the actual capability to
model radiated waveforms with dynamic consistent source
models, as well as to use ground motions to constrain fault
constitutive parameters [see Guatteri and Spudich, 2000;
Guatteri et al., 2001].

5. A Scaling Law for the Two Characteristic
Length Scale Parameters

[19] In this section we discuss the dependence on the
parameter L of the equivalent characteristic distance d0

eq

inferred from numerical simulations. The constitutive
parameters adopted for the simulations are those used in
the previous figures and listed in Table 1, and only the
parameter L is varied. We adopt an appropriately selected
spatial (and temporal) discretization, which allows us to
model the dynamic traction evolution for all the cases
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considered here: we assume �x = 0.005 m and the calcu-
lations are performed with 1401 points in space (x1) and
5000 points in time (t). In Figure 6, we show five different
SW curves obtained with different L, which shows quite
different traction behaviors. This figure suggests a direct

dependence of d0
eq on L and a weak inverse dependence of

tu
eq on L, implying that the weakening rate decreases for

increasing L. We note however that, when L is large enough
to change the critical stiffness of the system (as in the two
simulations presented here having the largest L values), the

Figure 4. (a) Slip-weakening curves and (b) slip velocity time histories computed for different spatial
and temporal discretization (�x and�t, respectively). The temporal grid spacing �t is varied because we
maintain constant the Courant-Friedrichs-Levy ratio (wCFL). This implies that the local fault stiffness k is
different among the different simulations presented here.
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dependence of the yield stress on L is more evident. It is
important to point out that when L increases the fault
undergoes to the instability more slowly, because the
evolution of the state variable is slow. Because the critical
patch size (lc), which in turn controls the rupture nucle-

ation, is analytically expressed as hmL/(b � a) sn
eff (h being

a geometrical, dimensionless, numerical parameter), when
L increases, lc increases too, and therefore the fault had to
spend a longer time and had to produce a larger slip to
reach an extension equal to lc.

Figure 5. (a) Slip-weakening curve and (b) phase diagram resulting from simulations performed with
different spatial grid size and constant time steps. The Courant-Friedrichs-Levy ratio, wCFL, is now
different, which implies that the local fault stiffness k is now constant among all the simulations
presented here.
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[20] The top right insert in Figure 6 shows the d0
eq values

resulting from the simulations and the ratio d0
eq/L. We now

derive an analytical relationship between these two length
scale parameters (d0

eq and L) accordingly to the results of
Cocco and Bizzarri [2002]. To this aim, we rewrite the
evolution equation (3b) (i.e., the slowness law) in the
following way:

d

du
� ¼ 1

v
� �

L
: ð6Þ

During the stage III (see Figure 2a), we have that u 
 d0
eq

but v is large enough to allow the term 1/v in equation (6) to
be neglected. Because the condition 1/v � �/L is always
satisfied within the cohesive zone in all our simulations, the
integration of the approximated evolution equation yields

� uð Þ ffi � u ¼ 0ð Þe�u=L ¼ �inite
�u=L ð7Þ

where �init is the initial value of the state variable. We have
defined in Figure 2a that when the slip equals d0

eq the slip
velocity is v0 and the state variable is at the steady state,
�ss(v0). Thus, from equation (7) we have

�inite
�

d
eq

0
L ¼ L

v0
; ð8Þ

which yields

d
eq
0 ffi L ln

�initvo

L

� �

: ð9Þ

As in the work by Cocco and Bizzarri [2002], we assume in
the following of this paper that the initial value of state
variable is a steady state value: �init = �ss(vinit) = L/vinit. For
this particular initial condition (i.e., steady state) equation
(9) becomes

d
eq
0 ffi L ln

vo

vinit

� �

; ð10Þ

which corresponds to the relation previously derived by
Cocco and Bizzarri [2002]. Equation (9) represents a more
general scaling law than equation (10). These two equations
show that the equivalent slip-weakening distance d0

eq

depends on L and the initial state, which at the steady state
is identified by the initial velocity. In order to estimate the
theoretical value of the equivalent slip-weakening distance
through equation (10), we have to evaluate the slip velocity
v0 that is a priori unknown in the framework of rate- and
state-constitutive formulation. We have derived an approxi-
mated expression in Appendix B that relates the slip
velocity v0 to the constitutive parameters, using the shear
impedance relation [Scholz, 1990]. By means of this
approximation and of equation (10) we have calculated
the theoretically derived values of the equivalent SW
distance for the different parameters used in Figure 6, and
we have inserted these values in the panel of that figure. We
will discuss in a following section the problems related to
the lack of knowledge of the slip velocity values associated
with the different stages of the breakdown process
represented in Figure 2.

Figure 6. SW curves calculated for different length scale parameters L. All the model parameters are
the same used in Figures 1 and 2, but we modify the spatial discretization in order to correctly resolve
the cohesive zone (see Appendix A for details), this is required for the simulations with small L (we
use �x = 0.005 m). In the box are showed the modeled and the approximated values of d0

eq (see text
for the details).
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[21] The important result emerging from these numerical
simulations is that the scaling law between d0

eq and L is very
close to a linear relation and the proportionality ratio is
nearly 15, only when the initial state is a steady state and
equation (10) holds. This is in agreement with the results of
Cocco and Bizzarri [2002]. However, for a more general
case with an arbitrary initial value of the state variable
equation (9) holds; in this case the proportionality factor
between d0

eq and L can be much larger (for instance, 50, for
values of the initial state variable of 100 years). We also note
that, as L increases, tu

eq decreases and, on the contrary, tf
eq

increases. We will further discuss these results in the next
sections. We point out that, the velocity-hardening effects
(phases I and II in Figures 1 and 2) are always present
independently of the adopted constitutive parameters, but the
slip-hardening distance (i.e., the amount of slip necessary to
dynamic traction to reach the equivalent upper yield stress) is
negligible unless the value of the parameter L becomes very
large (see Figure 6). The former result is intrinsic in the RS
formulation: the rate dependence implicitly involves the
existence of both velocity-hardening and weakening effects
[see Bizzarri et al., 2001]. Slip-weakening is also a pecu-
liarity of RS laws [see Guatteri et al., 2001; Cocco and
Bizzarri, 2002], but the slip-hardening effects depend on the
evolution of the state variable, which in this formulation is
controlled by the value of the constitutive parameter L.

6. Dependence on the Constitutive Parameters
a and b

[22] We discuss the results of numerical simulations per-
formed by using different values of the constitutive param-
eters a and b, but keeping L constant. We choose different a
and b values, within the velocity-weakening frictional re-
gime, ranging between 0.008 and 0.0125 and between
0.0155 and 0.020, respectively. The other model parameters
are constant and are listed in Table 1; we have used 701 grid
points in space (x1) and 10000 in time (t). All the plots
discussed in the following are referred to the fault position
x1 = 3.0 m, as in the previous calculations. In Figure 7 we
show the results of five simulations obtained using different a
values. The behavior of total shear traction as function of
displacement (Figure 7a) shows that the upper yield stress
tu
eq and the equivalent characteristic distance d0

eq depend on
the a parameter: when a increases, both tu

eq and d0
eq

decreases. Moreover, Figure 7b shows that when a increases
the peak slip velocity decreases. This is due to the direct
effect of friction, which reduces peak slip velocity and yield
stress. These results are in agreement with those obtained by
He et al. [2003], who analyzed stick-slip instabilities simu-
lated through a spring slider dynamic system. According to
their conclusions, vpeak is reduced when the yield stress
decreases because the stored available elastic strain energy
driving the stress drop is lower. We observe that the weak-
ening rate does not change with the adopted value of the a
parameter, as clearly shown in Figure 7a.
[23] Figure 8 shows the results of similar calculations,

but adopting different b values. We note a dependence on
the b parameter of both the yield stress and the equivalent
characteristic distance: they increase for increasing b,
while the weakening rate is nearly constant in all the
cases considered here. The peak slip velocity increases

with the adopted b value, in agreement with He et al.
[2003]. Figure 9 points out the effect of different b � a.
Symbols and colors show the SW curves for the same
(b � a) value: open symbols indicate the curve resulting
from the reference a value (a = 0.012) with different b, while
solid symbols refer to different a values with the same
reference b value (b = 0.016). Figure 9 emphasizes that the
kinetic friction (tf

eq) only depends on the difference b � a,
and not on the absolute values of a and b. On the contrary,
our simulations show that the maximum yield stress depends
on the individual adopted values of a and b (Figure 9a)
and the same behavior is found for the peak slip velocity
(Figure 9b). As expected, a smaller value of the difference
(b � a) implies a smaller stress drop [see Boatwright and
Cocco, 1996]. We observe that, for the same b � a, the
simulations with bigger b determine a larger value of the
yield stress tu

eq and of the peak slip velocity. This result
seems not to be consistent with the conclusions of He et al.
[2003]. This discrepancy can be partially explained consid-
ering that we assume a steady state as initial condition.
Therefore, changing a or b we vary the starting stress
value, which is not the same in all the simulations presented
in Figures 7, 8, and 9. However, also accounting for
the different initial stress, the equivalent strength excess
(tu

eq � t0) depends on the individual values of constitutive
parameters, because peak slip velocity also depends on these
parameters.

7. Theoretical Interpretation

[24] We aim to propose analytical relations to express
the SW parameters (yield and kinetic stress values) as a
function of the input constitutive parameters, to be asso-
ciated with the scaling law between the two length scale
parameters, expressed in equations (9) and (10). We
derive an expression of the dynamic friction which is
valid when the slip acceleration phase is already started
and equation (7) holds. By inserting equation (7) in
equation (3a), and neglecting the +1 term in the argument
of logarithms, we can express fault friction as a function
of slip velocity and slip:

t ¼ m* þ a ln
v

v*

� �

þ b ln
v*
vinit

� �

� b
u

L

� �

seffn ð11Þ

Equation (11) expresses the governing equation for friction
during the breakdown process as a function of slip and slip
velocity and it is analogous to equation (3a) when the state
variable is expressed by equation (7). This equation allows
us to derive the analytical expression for the kinetic friction
level: in fact, when the slip is equal to the d0

eq and the slip
velocity is v0 we have:

t ¼ m* þ a ln
vo

v*

� �

þ b ln
v*
vinit

� �

� b
deqo
L

� �

seffn ; ð12Þ

by substituting equation (10) in (12) and with simple
algebra we can derive the following relation for the kinetic
stress (tf

eq):

t
eq
f ¼ m* þ b� að Þ þ ln

v*
vo

� �� �

seffn : ð13Þ
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[25] It is interesting to observe that this expression
coincides with the steady state value of fault friction for v =
v0 (tf

eq = tss(v0)). This is a further theoretical corroboration
of the numerical results plotted in Figure 2c. Equation (13)
confirms our interpretation of the numerical simulations

(presented in Figures 7, 8, and 9) that the kinetic friction only
dependson thedifferenceb�a (it has tobenotedhere that also
v0 depends only on the difference (b� a), see equation (B4)).
[26] The derivation of the analytical expression for the

yield stress is slightly more complex. Figures 2 and 3

Figure 7. Dependence on the a parameter: (a) and the SW curve and (b) the phase diagram calculated
with different values of a, leaving unchanged all the others. The initial parameters are the same used in
previous calculations and the plots are computed at x1 = 3.0 m. The reference case (plotted in Figure 1) is
included in this figure (solid curve with squares).
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clearly show that when the total dynamic traction
increases to the peak yield stress the state variable is
evolving and driving the slip acceleration. Fault friction
(i.e., the total dynamic traction) reaches its peak value
(i.e., the yield stress) well before than slip velocity. In
other words, the traction behavior within the cohesive zone
is associated with the state variable evolution toward its
final steady state value. We therefore rewrite the governing
equation for fault friction as defined in equation (3a),

neglecting the + 1 term in the arguments of logarithms,
as follows:

tequ ¼ m* þ a ln
vu

v*

� �

þ b ln
�uv*
L

� �� �

seffn ; ð14Þ

denoting with vu and �u the slip velocity and the state
variable when traction is at the yield stress (see Figures 2a
and 2b). It has to be noted that the values of slip velocity

Figure 8. Same as Figure 7 but using different values of the b parameter.
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(vu) and state variable (�u) at the peak stress (which
appears in equation (14)) are unknown a priori, as well as
the slip velocity v0 that appears in equations (10) and (13).
We have listed in Table 2 the values of slip-weakening
parameters evaluated through the analytical relations (10),
(13), and (14), by approximating vu, �u, and v0 with the

empirical relations discussed in Appendix B. Table 2
allows the comparison between analytical values of SW
parameters and those resulting from numerical simulations.
Each line in Table 2 corresponds to different a and b
parameters but constant (b � a). Equations (13) and (14)
represent from an analytical point of view the concept that

Figure 9. Traction dependence on the difference (b � a): colors correspond to the same difference
(b � a). Open symbols refer to fixed a value (a = 0.012) and different b; solid symbols refer to different a
values and a fixed b (b = 0.016).
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the traction behavior within the cohesive zone cannot be
assigned a priori in the framework of RS constitutive
formulation. In our opinion, this might represent a
limitation in using rate- and state-dependent constitutive
laws in dynamic model of earthquake rupture propagation
during a single earthquake. For such purposes, the
adoption of a classical slip-weakening law (as defined in
equation (5)) is numerically more convenient, because it
allows prescribing the traction evolution and therefore to
control the fracture energy absorbed at the crack tip. In the
framework of a RS formulation, the slip velocity values
controlling the traction evolution within the cohesive
zone are not specified or assigned (see equations (10),
(13), and (14)): therefore the yield stress, the kinetic
friction and the characteristic slip-weakening distance
cannot be prescribed a priori. These parameters, which
are commonly assigned as input values in SW models,
depend in the RS formalism on the constitutive parameters
and initial conditions.
[27] Equation (10) shows a dependence of the equivalent

slip-weakening distance on the initial slip velocity vinit. As
discussed before, this parameter influences the initial value
of the state variable, which in our simulations starts from a
steady state �ss(vinit) = L/vinit, and consequently the initial
stress value. This means that the (equivalent) strength
parameter S (as defined by Das and Aki [1977a, 1977b]
[see also Bizzarri et al., 2001]) changes varying the initial
slip velocity. This is well represented in Figure 10, where
we plot the SW curve and the phase diagram for different
values of the initial slip velocity, which shows that the fault
response varies by changing vinit. This observation corrob-
orates our interpretation that the evolution of the state
variable from its initial value drives slip acceleration and
the unstable response (i.e., the weakening effects). In this
study we use a relatively small value of the initial state
variable (see Table 1), only because we are interested to the
crack propagation and in order to reduce the computational
times of the nucleation stage. We have verified, however,
that our results do not depend on this assumption and that
similar traction and slip velocity behaviors have been
obtained using larger initial values of the state variable.
Figure 10 also shows that for small value of vinit we have
high values of the yield stress and larger equivalent SW
distances. The correspondence between the modeled and
the theoretical (resulting from equation 10) values of d0

eq is
shown in the panels of Figures 6 and 10a. In Figure 10b we
plot the traction as a function of slip rate (in a log scale) to
emphasize the contribution of the direct effect of friction
and the different steady state friction values (for v = v0) in
each configuration.

[28] In conclusion, we note that the slip velocity and the
state variable values (vu and �u) appearing in equation (14)
depend on the adopted a, b, and L values as well as on the
initial slip velocity. Therefore the dependence of the yield
stress on the constitutive parameters is quite complex. The
same is true for the slip velocity value v0. While we are able
to derive an analytical expression for the equivalent SW
distance and for the kinetic friction expressing the depen-
dence on the constitutive parameters found in numerical
simulations, the same cannot be easily done for the yield
stress.

8. Discussion

[29] The simulations discussed above have been per-
formed using a fault parameterization at the laboratory scale
dimension, adopting values of constitutive parameters de-
rived from laboratory experiments. A major problem that
we have therefore to face is the scaling of our results from
laboratory to actual fault dimensions. We have used in our
calculations values of the L parameter ranging between 1
and 10 mm and, according to the derived scaling law
(equation (10)), we found values of the equivalent slip-
weakening distance comprised between 0.02 and 0.2 mm, or
in general d0

eq < 1 mm when we use a different initial state
for the state variable (as in equation (9)). These values are
much smaller than those recently proposed for actual faults
and constrained by modeling ground motion waveforms
recorded during large earthquakes [see Guatteri et al., 2001,
and reference therein]. In fact, recent investigations have
proposed d0 values larger than 0.2 m [Ide and Takeo, 1997;
Olsen et al., 1997]. A first solution to this problem consists
in assuming the scaling from laboratory-derived values to
those appropriate for earthquake fault dimension. We thus
consider L to be of the order of 1 cm for actual faults
[Scholz, 1988]; this implies to scale the L values obtained in
laboratory, for instance during experiments with gauge
materials [see Mair and Marone, 1999] to real faults.
According to the proposed scaling law, this would yield
critical slip-weakening values of d0

eq  0.2 m (d0
eq < 0.5 m)

in agreement with observations. However, it must be
pointed out that there exist several concerns about the
reliability of such large values of the critical slip-weakening
distance: Guatteri and Spudich [2000] discussed this topic
and concluded that estimates of SW distance inferred from
kinematic inversions of seismograms are biased because of
the trade-off between strength excess and slip-weakening
distance and because of the effects of smoothing constraints
used in inversion algorithms. Marone and Kilgore [1993]
suggested that the critical slip distance is controlled by the

Table 2. Comparison Between Numerically Modeled and Theoretically Approximated Valuesa

Different a
b = 0.016

Different b
a = 0.012 d0

eq(mod), m d0
eq(app), m tu

eq(mod), Pa tu
eq(app), Pa tf

eq(mod), Pa tf
eq(app), Pa

0.020 1.80E-04 1.30E-04 8.46E+07 8.29E+07 6.08E+07 6.08E+07
0.008 1.65E-04 1.30E-04 7.96E+07 7.86E+07 6.01E+07 6.01E+07

0.019 1.78E-04 1.28E-04 8.27E+07 8.10E+07 5.99E+07 5.99E+07
0.009 1.63E-04 1.28E-04 7.87E+07 7.78E+07 5.90E+07 5.90E+07

0.018 1.66E-04 1.27E-04 8.06E+07 7.91E+07 5.96E+07 5.96E+07
0.010 1.58E-04 1.27E-04 7.82E+07 7.70E+07 5.96E+07 5.96E+07
0.012 0.016 1.51E-04 1.22E-04 7.62E+07 7.51E+07 5.87E+07 5.87E+07
aRead 1.80E-04 as 1.80 � 10�4.
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Figure 10. Dependence of total dynamic traction on the adopted initial slip velocity vinit. (a) The usual
SW curves computed using different values of the initial velocity keeping fixed all the other constitutive
parameters and the fault discretization. (b) The dynamic traction as a function of the logarithm of slip
velocity for different vinit. The straight line in this logarithmic plot indicates the steady friction. By
changing the initial velocity we modify the initial value of the state variable (�init = �ss(vinit) = L/vinit).
The box in Figure 10a lists the values of the equivalent characteristic SW distance (d0

eq) resulting from the
numerical modeling and those inferred from the approximated relation (equation (10)).
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thickness of the fault zone of localized shear strain. There-
fore the discrepancy between laboratory measurements
and values obtained from modeling earthquakes might be
attributed both to the differences in roughness between
laboratory surfaces and natural faults [Scholz, 1988] as well
as in the thickness of the localized shear strain zone
[Marone and Kilgore, 1993].
[30] The numerical results presented in this study dem-

onstrate that the state variable evolution controls the
absorbed fracture energy and the traction drop within the
cohesive zone. Our simulations suggest that the adopted
evolution law characterizing the state variable and the rate-
and state-constitutive parameters produce different traction
evolutions and slip-weakening behaviors. In order to un-
derstand how the analytical expression adopted for the
evolution law in the RS formulation affects the traction
evolution within the cohesive zone, we have performed a set
of simulations using slowness and slip evolution laws
(equations (3) and (4)). In particular, we use the rate- and
state-dependent slip law [see Ruina, 1983; Beeler et al.,
1994] in the formulation proposed by Roy and Marone
[1996] as defined in equation (4). We show in Figure 11 the
comparison between the SW curve resulting from a slip and
a slowness evolution law, keeping fixed all the constitutive
and initial parameters. In these simulations the evolution
law is different, while the governing equation for fault
friction is nearly the same. Figure 11 shows that the SW
behavior and the equivalent slip-weakening distance depend
on the analytical expression adopted for the evolution law.
The characteristic SW distance is strongly reduced (roughly

by a factor 3) when a slip evolution law is used. The
weakening rate for a slip evolution law is not constant,
which results in a nonlinear decay, the opposite of what
observed with a slowness evolution law. An evident traction
roll-off characterizes the traction evolution for slip values
near to the equivalent slip-weakening distance. The kinetic
friction level is exactly the same, confirming that the final
steady state value is unchanged, but the yield stress is
different. This implies that the fracture energy resulting
from the simulations performed with these two distinct
evolution laws is different: a slip law involves fracture
energy five times smaller than that resulting from a slow-
ness law. This result further confirms that the evolution law
and the state variable control the traction drop and the finite
fracture energy absorption at the crack tip.
[31] Several papers were recently aimed to discuss the

implications of the adopted analytical formulation of rate-
and state-dependent friction laws [see Roy and Marone,
1996; Belardinelli et al., 2003; He et al., 2003, and
references therein]. Most of them focused on the different
expressions adopted for the evolution law. In the present
study we deal with the traction evolution within the
cohesive zone and in particular with the slip-weakening
behavior intrinsic in the RS formulation. The results shown
in Figure 11 further emphasize the problem of the most
appropriate analytical representation of friction. It is impor-
tant to remark that these constitutive laws attempt to provide
a macroscopic representation of frictional process. In the
literature, the evolution law and the state variable have been
interpreted in different ways. The most widely adopted

Figure 11. Comparison between the slip-weakening curve computed using a slowness (used in all
previous simulations; DR equations (3)) and slip evolution law (RD; equations (4)) for the same
constitutive parameters and initial conditions.

BIZZARRI AND COCCO: SLIP-WEAKENING DURING DYNAMIC RUPTURES ESE 3 - 17



interpretation consists in assuming that the state variable
represents the properties and the roughness of the contact
surface, but alternative interpretation have related the
evolution law and the state variable to the porosity of fault
zones [see Segall and Rice, 1995; Sleep, 1997]. In the
present study we have shown that, in the framework of rate-
and state-constitutive laws, the state variable evolution
controls the weakening mechanisms characterizing the
breakdown process. Although we can explain the traction
evolution within the cohesive zone in terms of the state
variable evolution, we cannot provide a unique physical
interpretation of the shear stress degradation during the
breakdown process. Moreover, other physical processes
can contribute to the weakening mechanisms, such as
thermal-weakening [Sleep, 1997], fluid pressurization
[Andrews, 2002] or mechanical lubrication [Brodsky and
Kanamori, 2001]. They certainly play a dominant role to
explain the raise of pore pressure and the consequent
reduction of frictional resistance. Therefore our opinion is
that different phenomena can contribute to the traction
evolution and the weakening mechanisms associated with
the rupture growth, which can affect either the friction
coefficient or the effective normal stress. The increase of
fluid pressure reduces the effective normal stress, thus
affecting the friction law. These phenomena may coexist,
since the friction coeffici ent depends on slip, slip rate-and-
state variables (see equation (3)) and pore pressure affects
the effective normal stress. The solution of this problem is
well above the goal of the present study. We only aim
to contribute to the debate concerning the constitutive
properties in the achievable perspective to find a unified
constitutive law to describe the earthquake dynamic rupture
growth.

9. Conclusions

[32] In this paper we have numerically solved the fully
dynamic problem for a 2-D, in-plane, spontaneous fault,
obeying rate- and state-dependent friction laws. We have
shown that, in the framework of a RS-dependent constitu-
tive formulation, the traction drop for increasing slip (i.e.,
the slip-weakening behavior) occurring within the cohesive
zone during the dynamic rupture propagation is controlled
by the state variable evolution, which drives the fast slip
acceleration. The characteristic length scale parameter of a
dynamic rupture obeying a RS constitutive law (i.e., the
parameter L) is different from the critical (named here
‘‘equivalent’’) slip-weakening distance d0

eq. The character-
istic SW parameters (the equivalent SW distance, the yield
stress and the kinetic friction level) depend on the consti-
tutive parameters of the RS formulation and the slip velocity
values at particular stages of the breakdown process. The
proposed scaling laws and analytical relations derived in
this study allow to associate RS and SW constitutive
parameters for modeling the spontaneous rupture propaga-
tion and arrest [see Bizzarri et al., 2001; Cocco and
Bizzarri, 2002] during a single earthquake rupture.
[33] We have demonstrated that the adopted evolution

law affects the slip-weakening behavior. We have compared
the SW curves resulting from slowness and slip evolution
laws and we point out that the critical SW distance in these
two cases is different. This result corroborates that the

state variable controls the traction behavior and the slip
acceleration during the breakdown process. The main
implications resulting from these considerations concern
the absorbed fracture energy and the duration of the
weakening process. A slip evolution law implies an ex-
tremely fast evolution of the state variable that produces
large slip accelerations and perhaps unrealistic large
peak slip velocities. We emphasize that a rate- and state-
dependent formulation allows a quantitative description of
the dynamic rupture nucleation, propagation and arrest [see
also Bizzarri et al., 2001]. Moreover, a slowness evolution
law yields a very simple SW behavior, surprisingly similar
to the classical constitutive law proposed by Ida [1972], and
realistic behavior within the cohesive zone.
[34] The results presented in this study suggest that the

temporal evolution of traction and slip velocity resulting
from the adoption of a RS constitutive law is different from
that resulting from a classical SW law. Both these consti-
tutive representations of friction predict that the peak of
dynamic traction occurs before the peak in slip velocity [see
also Olsen et al., 2001; Mikumo et al., 2003]. However, the
simulations performed in this study assuming a RS formu-
lation clearly show that the peak slip velocity does not occur
at the minimum traction (i.e., at the kinetic stress level). In
other words, the value of slip velocity when the fault slip is
equal to the slip-weakening distance is smaller than its peak
value. This result restricts the possibility to evaluate the
critical slip distance from near-field ground motion records,
as recently proposed in the literature.

Appendix A: Convergence and Stability
Conditions

[35] In this appendix we briefly summarize the conver-
gence and stability conditions that have to be satisfied in
order to correctly resolve the dynamic traction evolution
and the slip velocity behavior within the cohesive zone
during the propagation of a dynamic rupture obeying rate-
and state-dependent friction laws. The first condition that
has to be satisfied is a requirement introduced by Rice
[1993] to demonstrate that artificial numerical complexity
can appear if the medium is not correctly discretized as a
continuum; it depends on the fault geometry and on the
boundary conditions. In full of generality it can be
expressed as kdiag � kcr, where kdiag is the diagonal term
of stiffness matrix and kcr is the critical stiffness. The
requirement kdiag � kcr corresponds to impose that locally
each single element of the discretized fault is conditionally
stable (Scholz, 1990). This avoids that a single point may
fail independently of the neighbors (artificial complexity
and numerical noise) and guarantees that the discrete
medium can be considered as a continuum. The local
stiffness is expressed as kdiag = 1/C, where C is the local
compliance [Andrews, 1985]. C represents the proportion-
ality constant between instantaneous traction and dynamic
slip and in our 2-D FD fault model is

C ¼ 31=2vSr= 8wCFL�tð Þ

where wCFL is the Courant-Friedrichs-Levy (CFL) ratio that
relates �x to �t (wCFL = vS �t/�x [see Fukuyiama and
Madariaga, 1998; Bizzarri et al., 2001]). The critical
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stiffness can be expressed as (b � a) sn
eff/L [Ranjith and

Rice, 1999], where the constitutive parameters a, b, sn
eff and

L have been assigned. When kdiag = kcr, we have the critical
grid size:

�t* ¼ vSrL

b� að Þseffn
8
ffiffiffi

3
p wCFL; ðA1Þ

or, alternatively,

�x* ¼ v2SrL

b� að Þseffn
8
ffiffiffi

3
p

The Rice condition can be therefore expressed as

�t � �t*; ðA2Þ

or, alternatively, as

�x � �x*

For our purposes we have to verify also that the numerical
integration is able to correctly resolve time scales typical of
the dynamic evolution of the state variable. Following
Ohnaka and Yamashita [1989] and Cocco and Bizzarri
[2002], we define here the equivalent breakdown zone
duration (or time) as Tb

eq and the equivalent cohesive zone
size as Xb

eq. We remind here that during the breakdown time
duration and over the cohesive zone distance the friction
decreases from the maximum yield value to the kinetic level
and, according to our interpretation, such a dynamic
behavior is controlled by the state variable evolution.
Therefore the requirement of resolution of this characteristic
time duration and spatial scale consists to impose the
following conditions:

�t � d
eq
0

vh iT eq

b

; ðA3aÞ

or, alternatively,

�x � 1

wCFL

vS

vh iTeq

b

d
eq
0

or, in a different way,

�t � wCFL

1

vS

vcrack

vh iTeq

b

d
eq
0 ; ðA3bÞ

or, alternatively,

�x � vcrack

vh iTeq

b

d
eq
0

where vcrack is the crack speed propagation and hviTb
eq is the

average slip velocity calculated within the equivalent
breakdown zone time (see Bizzarri et al. [2001] for further
details).

[36] Finally, the spatial and time steps are coupled by the
general condition [e.g., Andrews, 1985; Fukuyama and
Madariaga, 1998]

�x � vp�t; ðA4Þ

which states that no coupling exists between first neighbors.

Appendix B: A Priori Estimation of Equivalent
Slip-Weakening Parameters

[37] We have derived a set of approximated relations to
express the equivalent slip-weakening distance (equations (9)
and (10)), the equivalent kinetic friction level tf

eq (equa-
tion (13)) and the equivalent upper yield stress tu

eq

(equation (14)) as a function of the RS constitutive
parameters. We aim to use these equations to compare
analytical predictions with estimates from numerical
simulations. As pointed out in the text, these equations
also depend on slip velocity and state variable values
associated to particular stages of the breakdown process,
which are a priori unknown (such as v0, vu and �u;
see Figure 2). One possible solution to overcome this
limitation is to find useful equations relating these unknown
slip velocity and state variable values to the final slip
velocity value v2 (see Figures 2a and 2b). These empirical
relations depend on the adopted constitutive law and the
parameters a, b, and L, as well as on vinit. We have verified
that, for our set of constitutive parameters and initial
conditions, the following empirical approximated relations
hold:

v0 ffi 2v2

vu ffi 2v2=3

�u ffi 2�init=3

ðB1Þ

where �init = L/vinit. The velocity v2 is derived from the
shear impedance relation [see, e.g., Scholz, 1990]:

v2

2vS
¼ �td

m
; ðB2Þ

where �td is the dynamic stress drop, defined as the
difference existing between the initial and the final shear
stress values [Brune, 1970]. This equation expresses the
asymptotic level at which the slip velocity drops when
the crack tip has propagated a sufficient distance beyond the
target point, so that the influence of crack tip energy
concentration is absent. We remark here that the friction at
the end of phase IV (Figure 2c) is at the steady state and it is
equal to tss(v2). Therefore we have

�td ¼ b� að Þseffn ln
v2

vinit

� �

: ðB3Þ

The final velocity v2 is therefore determined by solving the
following transcendental equation:

mv2 ¼ 2vS b� að Þseffn ln
v2

vinit

� �

ðB4Þ
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from which we can simply obtain a rough estimate of the v2
value, that depends on the difference (b � a) and on the
initial slip velocity. Once this slip velocity value is known,
we can measure d0

eq, tf
eq, and tu

eq through equations (10),
(13), and (14) after expressing all the other unknown values
in terms of v2, by using the approximated relations proposed
here (equations (B1)). This is a practical approach to have
an a priori estimate of the equivalent slip-weakening
parameters.
[38] We emphasize however that the approximated rela-

tions (B1) are valid only if the simulation starts form the
steady state and if we adopt a slowness (ageing) evolution
law.
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