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Slipping motion of large neutrally-buoyant
particles in turbulence

Mamadou Cisse, Holger Homann, and Jérémie Bec

Laboratoire Lagrange UMR 7293, Université de Nice-Sophia Antipolis,
CNRS, Observatoire de la Côte d’Azur, Bd. de l’Observatoire, 06300 Nice, France.

Direct numerical simulations are used to investigate the individual dynamics of large
spherical particles suspended in a developed homogeneous turbulent flow. A definition
of the direction of the particle motion relative to the surrounding flow is introduced
and used to construct the mean fluid velocity profile around the particle. This leads to
an estimate of the particle slipping velocity and its associated Reynolds number. The
flow modifications due to the particle are then studied. The particle is responsible for a
shadowing effect that occurs in the wake up to distances of the order of its diameter: the
particle pacifies turbulent fluctuations and reduces the energy dissipation rate compared
to its average value in the bulk. Dimensional arguments are presented to draw an analogy
between particle effects on turbulence and wall flows. Evidence is obtained on the presence
of a logarithmic sublayer at distances between the thickness of the viscous boundary layer
and the particle diameterDp. Finally, asymptotic arguments are used to relate the viscous
sublayer quantities to the particle size and the properties of the outer turbulence. It is
shown in particular that the skin-friction Reynolds number behaves as Reτ ∝ (Dp/η)

4/3.

1. Introduction

Several natural and industrial phenomena require to model the transport of finite-size
and mass particles suspended in a turbulent incompressible flow. This is for instance
the case for air pollutants, plankton in the ocean, and industrial mixtures. When the
particle size is much smaller than the smallest active scale of the flow (the Kolmogorov
dissipative scale η in turbulence) and when their Reynolds number defined with their
relative velocity to the fluid is sufficiently small, the surrounding flow can be described
by the linear Stokes equation (see Gatignol 1983; Maxey & Riley 1983). This approach
leads to model small particles in terms of point-particles for which an equation of motion
can be explicitly written. It has then been shown that inertia is responsible for particle
clustering, a phenomenon usually referred to as preferential concentration, and for non-
trivial dynamical and statistical properties that can be characterized in terms of the
particle Stokes number and of the flow properties (see, e.g., Toschi & Bodenschatz 2009).
However much less is known for particles with sizes comparable or larger than η, which
can typically have Reynolds numbers larger than unity. Their dynamics can hardly be
modeled because writing an explicit equation of motion requires fully solving the non-
linear Navier–Stokes equation in the vicinity of the particle. To tackle this problem,
one has to make use either of advanced experimental particle-tracking techniques or of
demanding direct numerical simulations.

Many recent experimental developments aimed at characterizing the dynamical prop-
erties of finite-size, neutrally buoyant particles (with the same mass density as the fluid).
Detailed measurements by Qureshi et al. (2007), Xu & Bodenschatz (2008), Volk et al.
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(2011) and Zimmermann et al. (2011) of the translation and angular accelerations sug-
gested that, to a large extent, finite-size effects can be related to known turbulent prop-
erties calculated at a length scale given by the particle size. Such approaches are thus
implicitly assuming that the presence of the particle is not altering the fine scaling proper-
ties of the velocity and pressure fields in its vicinity. While in direct numerical simulations
both the particle motion and the surrounding fluid flow are by essence always known, such
simultaneous measurements require in experiments an astute setup, as those described
by Khalitov & Longmire (2002), by Bellani et al. (2012) or by Klein et al. (2012). In
any case, tracking experimentally or numerically a particle together with the surround-
ing flow requires a heavy machinery that complicates the obtention of acute statistics.
It can be for instance particularly laborious to determine joint distributions of the fluid
velocity and the particle acceleration for an isolated particle in a high-Reynolds turbulent
flow. Primarily for that reason, most of the numerical studies have focused either on a
fixed particle in a developed turbulent flow or on the modulation of turbulence by many
particles (see, e.g., Balachandar & Eaton 2010, for a review).
In this paper we make use of a pseudo-spectral solver for the Navier–Stokes equation,

associated to an immersed boundary method to impose no-slip boundary conditions, in
order to study neutrally buoyant spherical particles which are suspended in a developed
turbulent flow and whose diameters Dp are within the inertial range. Our focus is mainly
on the local modifications of the flow in the neighborhood of the particle. A first objective
is to understand the instantaneous direction of the particle slip with respect to the fluid.
We propose a definition that is based on the averaged direction of the fluid flux in
several shells surrounding the spherical particle. This allows us to compute a mean flow
around the moving particle and to estimate an effective particle Reynolds number. We
then investigate the local modifications of the surrounding turbulent flow due to the
presence of the particle. We show that, while kinetic energy dissipation is enhanced in
the boundary layer, the particle is calming down turbulent fluctuations in its wake up
to distances of the order of its diameter Dp. Scaling arguments are used to understand
the growth of the turbulent fluctuations as a function of the distance to the particle.
Similarly to usual wall flows, they show the presence of a logarithmic law involving a
friction velocity and a wall distance that can be used to collapse the data associated to
different particle sizes. Such arguments, once put together with Kolmogorov scaling for
the outer turbulence, can also be used to show that the particle friction Reynolds number
scales as Reτ ∝ (Dp/η)

4/3.
The paper is organized as follows. In §2, after a short description of our settings and

of the numerical method, we introduce a definition of the instantaneous direction of
the particle slip to obtain the mean flow around it. The effects of the particle on the
surrounding turbulent fluctuations are then discussed in §3. Finally, concluding remarks
are encompassed in §4.

2. The slip velocity

To address numerically the problem of large-particle dynamics in a turbulent flow, we
make use of a standard pseudo-Fourier-spectral solver of the Navier–Stokes equations in
which the no-slip boundary condition at the particle surface is imposed by an immersed
boundary technique. The neutrally buoyant particle translational and rotational dynam-
ics is integrated using Newton’s equations. Details and benchmarks of the method for
fixed particles can be found in Homann et al. (2013). A similar method has been used in
Homann & Bec (2010) to investigate the dynamics of particles with sizes of the order of
the Kolmogorov scale η. We report here results on larger particles. Three independent
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N3 δx ν urms ε η τη L TL Reλ

10243 6.13 · 10−3 1.8 · 10−4 0.19 4.5 · 10−3 6.0 · 10−3 0.20 1.6 8.2 160

Table 1. Parameters of the numerical simulations. N3: number of collocation points, δx: grid
spacing, ν: kinematic viscosity, urms: root-mean-square velocity, ε: mean kinetic energy dissipa-
tion rate, η = (ν3/ε)1/4: Kolmogorov dissipation length scale, τη = (ν/ε)1/2: Kolmogorov time

scale, L = u3
rms/ε: integral scale, TL = L/urms: large-eddy turnover time, Reλ =

√

15urmsL/ν:
Taylor-microscale Reynolds number.

(a) ~u · ~ex (b) |~ω|

Figure 1. (Colour online) Snapshot of one component of the velocity (a) and of the vorticity
modulus (b) in a thin slice of the flow around the particle.

simulations are performed with three different particle diameters Dp ≃ 17, 34, and 67η.
In each case, a large-scale forcing is maintaining the transporting turbulent flow in a
statistical steady state with a Taylor-microscale Reynold number Reλ ≈ 160. The pa-
rameters of the simulations are listed in Tab. 1. Three different runs have been performed,
each with a single particle of size Dp = 0.1 = 17 η = L/16, Dp = 0.2 = 34 η = L/8, and
Dp = 0.4 = 67 η = L/4, respectively. The turbulent quantities reported in Tab. 1 vary
by less than 2% between the different runs.
Figure 1 shows snapshots (at the same time) of a component of the fluid velocity

(a) and of the modulus of the vorticity (b) in a plane passing through the center of the
particle forDp = 34η. One clearly sees that in both cases, being focusing on either large or
small-scale fluctuations, the fluid flow around the particle varies on scales of the order of
its size. This points out one of the key questions in understanding the dynamics of finite-
size particles, that is to define the fluid velocity at the particle position. This quantity
is of particular importance to evaluate the relative motion (the slip) of the particle with
respect to the carrier flow. All models for particle dynamics consist in expressing the
drag and lift forces exerted by the flow in terms of this slip velocity.

We aim here at defining an instantaneous direction of the motion of the particle rel-
ative to the fluid. The idea we propose is to evaluate this direction on different shells
surrounding the particle and at each instant of time. For that we have stored with a
sufficiently high frequency the velocity field in several concentric spheres centered on the
particle. On the shell Sr, which is at a distance r from the particle surface, we define the
direction of motion ~er as

~er(t) = ~Φr(t)/|~Φr(t)|, where ~Φr(t) =

∫

Sr

(

~u(~x, t)− ~Vp(t)
)

· ~n d~S, (2.1)
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Figure 2. (Colour online) Sketch of the definition of the direction of slip ~er on a shell of
radius r and of the associated instantaneous coordinates z and ρ.

200 100 0 100 200
0

100

200

300

z/η

ρ
/
η

(d) Dp = 67η

 

 

200 100 0 100 200
0

100

200

300

z/η

ρ
/
η

(c) Dp = 34η

200 100 0 100 200
0

100

200

300
(a) Tracer

z/η

ρ
/
η

 

 

1.5

1

0.5

0

200 100 0 100 200
0

100

200

300

z/η

ρ
/
η

(b) Dp = 17η

Urel/urms

Figure 3. (Colour online) Temporal- and angle-averaged relative velocity (definition with flux)
of the fluid projected on the direction of motion for (a) a tracer and (b) Dp = 17η, (c) Dp = 34η,
and (d) Dp = 67η.

where ~u and ~Vp are the fluid and the particle translational velocity, respectively, ~n is
the vector normal to the shell (see Fig. 2). In other words, we perform on each shell
an average of the direction weighted by the fluid mass flux, so that ~er points in the
direction of the flux on the shell at distance r. This choice is physically motivated as the
fluid enters such a shell upstream and exits in the wake. If the particle was moving in
a laminar flow, the direction ~er would be, by symmetry, independent of r and exactly
aligned with this motion. When the particle creates a wake in an unsteady flow, the
direction ~er(t) depends on both time and r. Once the direction ~er is defined, one can

project on it the velocity difference ~u− ~Vp and perform a time average to construct the
mean velocity profile of the flow relative to the particle

Urel(ρ, z) =
〈(

~u(~x, t)− ~Vp(t)
)

· ~er
〉

, (2.2)

with z = (~x− ~Xp(t))·~er and ρ = [‖~x− ~Xp(t)‖2−z2]1/2. The angular brackets 〈·〉 designate
here the temporal average. The coordinates z and ρ, which are defined at each instant
of time, are in the direction of ~er and perpendicular to it, respectively. By rotational
symmetry around the axis defined by ~er, the mean profile Urel depends on z and ρ only
and not on the angle.

Figure 3 represents the measured average velocity profile for a tracer and for the
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Figure 4. (Colour online) (a) slip velocity Uslip for Dp = 34η defined as the difference between
the mean relative velocity profile Urel around the particle and that around a tracer; the two
black dashed circles represent distance equal to Dp and 2Dp from the particle surface. (b) Time

correlation C(r, τ) = 〈~F (t+τ) ·~er(t)〉/〈|~F |2〉1/2 between the force at time t+τ and the direction
of motion at time t for three values of the shell distance r and for Dp = 34η.

three particle sizes. The relative motion of the fluid with respect to the particle is from
z > 0 to z < 0. In all four cases, the upstream and downstream velocities are clearly
asymmetric. Also, when the particle radius increases, one observes the development in the
wake of a region where the flow is calmed down. However a large part of the information
contained in the mean relative velocity Urel is purely due to kinematics. This is clear
when interested in the case of the tracer: the surrounding flow is trivially not affected
by its presence but the conditioning in terms of the instantaneous flux direction ~er
prevents the average relative velocity profile from vanishing and singles out the growth
of turbulent velocity increments ∼ r1/3. The observed asymmetry relates to the fact that
the negative longitudinal velocity differences (on the right) are more likely to be larger
than the positive ones (on the left); this can be interpreted as a consequence of the 4/5
law and of the resulting skewness of velocity differences in turbulence.

Actually, the details of the particle slip and of the flow modifications due to its presence
can be obtained by comparing the average profiles with a particle to that without it. One
observes in Fig. 3 that the most noticeable differences occur on scales of the order of the
particle diameter. This is even clearer in Fig. 4(a), which represents for Dp = 34η the
“slip velocity” profile defined as

Uslip(ρ, z) = Urel(ρ, z)− U tracer
rel (ρ, z). (2.3)

This quantity is the difference between two velocity differences. The four terms it con-
tains can in principle be grouped in two contributions: the difference between the fluid
velocity with and without the particle, which accounts for the flow modifications due to
its presence, and minus the difference between the particle velocity and the velocity of a
tracer that would be at the particle location. The first term comprises all the space de-
pendency. One observes from Fig. 4(a) that the flow modifications due to the particle are
up to distances of the order of its diameter and vanish far from the particle. At sufficiently
large distances, Uslip attains a positive constant coming from the second contribution.
This limit, that we denote U∞

slip can be used to define a difference between the particle
velocity and that of the fluid at the particle location, that is a typical slip velocity. We
can make use of U∞

slip in order to define a particle Reynolds number Rep = U∞
slip Dp/ν.

We obtain:
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- for Dp = 17η: U∞
slip ≈ 0.049 and Rep ≈ 27,

- for Dp = 34η: U∞
slip ≈ 0.052 and Rep ≈ 58,

- for Dp = 67η: U∞
slip ≈ 0.057 and Rep ≈ 126.

The typical turbulent fluid velocity fluctuation ∝ (εDp)
1/3 at a separation Dp is from

1.5 to 2 times larger than these values of the slip velocity. Note that the definition of a
slip velocity that we are using here is based on the instantaneous direction of motion ~er
introduced earlier. It thus differs from the slip definitions based on statistical arguments,
such as that used by Bellani & Variano (2012).
One step further to assess the validity of the proposed definition of the relative motion

direction ~er consists in looking at its alignement with the force ~F exerted by the fluid
onto the particle. For that we define the correlation C(r, τ) = 〈~F (t+ τ) ·~er(t)〉/〈|~F |2〉1/2
between the force at time t + τ and the direction of motion of the shell at distance
r and at time t. As seen from Fig. 4(b) the two vectors are anti-correlated. The anti-
correlation is maximal very close to the particle surface where the flow is trivially enslaved
to the solid motion because of the no-slip boundary condition. However, the optimal lag
τ which maximizes the anti-correlation is there negative. This means that the force is
there imposing the direction ~er of the local motion. The anti-correlation decreases when
r increases and becomes very small when r ≫ Dp. At sufficiently large distances, the
minimum of correlation is attained for a positive value of the time lag τ . It means that
sufficiently far from the particle, the flow direction is in advance on that of the force.
There is thus a specific value of r, of the order of Dp/2, for which the optimal lag vanishes
and the direction of the force is almost synchronized with that of the relative motion.
This indicates that the fluid-particle interactions occur at distances up to the order of
the particle diameter Dp, as already observed by Naso & Prosperetti (2010). Also, we
find that a part of the force exerted by the fluid corresponds to a drag in the direction
~er of the relative motion.

3. Turbulence statistics in the vicinity of the particle

3.1. Imprint on the kinetic energy and the dissipation rate

We now turn to the influence of the particle on higher-order statistics of the fluid veloc-
ity field. Figure 5(a) shows the “particle-anchored” second-order longitudinal structure
function defined as

S
‖
2 (r) =

〈

[(

~u(~x, t)− ~Vp(t)
)

· ~n
]2
〉

, (3.1)

where ~n is the unit vector in the direction of ~x − ~Xp and r = ‖~x − ~Xp‖ − Dp/2 is
the distance from ~x to the particle surface. Using the instantaneous and r-dependent
definition of the relative motion direction ~er(t) of previous section, the average can be
decomposed in an upstream contribution (for ~x in a cone of 90o in the direction of ~er),
a downstream contribution (in a cone of 90o in the direction of −~er) and a transverse
contribution (remaining values). One observes in Fig. 5(a) that the velocity fluctuations
are apparently enhanced upstream the particle. This is essentially due to the average flow
modifications as the flow is accelerated when approaching the particle and encounters
steep gradients. In principle one would expect a similar behaviour downstream as the
flow is there decelerated. However we observe the reverse phenomenon as the large-r
asymptotics is reached from below. This indicates that the particle is calming down
turbulence in its wake.
This effect is even more visible in the profile of the average kinetic energy dissipation

rate εloc(r) computed as a function of the distance r to the particle surface and con-
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Figure 5. (Colour online) (a) Particle-anchored second order structure function (the K41 line

stands for S
‖
2 = C2(εr)

2/3 with C2 = 2.1) and (b) local dissipation rate in different regions
around the particle as a function of the distance to its surface for Dp = 34η.

ditioned on the upstream, downstream and transversal sectors. As seen from Fig. 5(b),
while energy dissipation is strongly enhanced in all directions in the vicinity of the parti-
cle, its downstream value is below 90% of its average up to distances of the order of the
particle diameter. This indicates again that turbulence is more quiet downstream.

The particle is thus creating a shadow in its wake. An explanation relies on the fact
that all turbulent structures of sizes of the order of Dp are not anymore present in
the downstream flow. In addition, given the pretty low values of the Reynolds numbers
estimated in previous section, the particle wake is not strong enough to inject a significant
amount of turbulent kinetic energy. This shadowing effect seems to depend only weakly
on the particle size, up to the short range of values we have investigated and the accuracy
of our simulations.

3.2. Analogy with wall turbulence

To analyse more precisely the particle size dependence of the disturbed flow, we make
use of an approach similar to that used in wall turbulence. A first important difference
is that in the case of particles the “bulk flow” is not a input data, so that our approach
relies on what is happening in the immediate neighborhood of the boundary. A second
difference is that, because of the isotropy of the particle dynamics, the velocity field
averages to zero and there is no notion of mean velocity profile. For this reason, we make
use of the root-mean-square velocity difference between the flow and the particle surface
in the tangential directions

U(r) =

〈

1

2

∥

∥

∥

∥

~u− (~u · ~n)~n− ~Vp − Dp

2
~Ωp × ~n

∥

∥

∥

∥

2
〉1/2

, (3.2)

where ~n is the unit vector normal to the spherical particle and ~Ωp is the particle angular
velocity. U2(r) is nothing but the second-order “particle-anchored” transverse structure
function. Our numerical data allows us to measure a wall shear stress as

τw = ν

[

dU

dr

]
∣

∣

∣

∣

r=0

, (3.3)

As in the case of wall flows (see, e.g., Pope 2000), this quantity, together with the viscosity
ν, defines all relevant quantities of the viscous boundary layer surrounding the particle,
namely the friction velocity uτ =

√
τw, the viscous lengthscale δν = ν/uτ , and the
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Figure 6. (Colour online) Average transverse velocity amplitude U as a function of the distance
to the particle surface in wall units for three different particle sizes; the black solid curve on the
left refers to the viscous sublayer; the black solid line is a fit to the logarithmic law of the form
U+ = 2.8 + 0.45 ln r+; the three dashed vertical lines represents the values of Dp in wall units.
Inset: Friction Reynolds number Reτ as a function of the particle diameter (crosses); the black

line corresponds to Reτ = 0.35 (Dp/η)
4/3.

friction Reynolds number Reτ = uτ Dp/ν. Also, U and r can be written in wall units by
introducing U+ = U/uτ and r+ = r/δν .

The fluid velocity at a distance r from a particle is completely determined by uτ , δν ,
Dp, L, and Reλ. Dimensional analysis then suggests to write

dU

dr
=

uτ

r
Ψ(r/δν , r/Dp, r/L,Reλ), (3.4)

where we have non-dimensionalized lenghtscales with r and velocities with uτ . We next
make use of the scale separation δν ≪ Dp ≪ L to evidence different layers.

• r ≪ δν corresponds to the viscous sublayer where by construction U+ ≃ r+.
• δν ≪ r ≪ Dp is the outer layer. We have dU/dr ≃ (uτ/r)Ψ⋆(Reλ), where Ψ⋆(Reλ) =

Ψ(∞, 0, 0,Reλ). As in wall turbulence, this leads to the log-law

U+ = C +Ψ⋆(Reλ) ln r
+. (3.5)

• Dp ≪ r ≪ L corresponds to distances far from the particle where turbulent fluid
statistics are recovered. In the limit of very large Reynolds numbers we can assume that
r/L → 0. At large distances from the particle, the behaviour of U should be given by the
fluid velocity second-order structure function. According to Kolmogorov 1941 scaling,
we expect U2 ≃ (4/3)C2 (εr)

2/3. This implies that for r/Dp → ∞, the dimensionless
function Ψ has to diverge as a power law (with exponent α and a constant Ψ∞ that
depends on the outer Reynolds number), so that dU/dr ≃ Ψ∞(Reλ) (uτ/r) (r/Dp)

α.
when r ≫ Dp. We hence find that α = 1/3 and uτ ∝ (εDp)

1/3.
These three asymptotics can be observed in Fig. 6 where the amplitude U of the

tangential velocity difference is represented as a function of the distance to the particle
surface. One clearly sees a log-law region that becomes wider when Dp increases. The
relationship uτ ∝ (εDp)

1/3 that was obtain by matching the large-r asymptotics to the
behaviour of turbulent structure functions implies that the viscous lengthscale obeys
δν/η ∝ (Dp/η)

−1/3 and that the friction Reynolds number depends on the particle size
as Reτ ∝ (Dp/η)

4/3. This latter behaviour is confirmed numerically as seen from the
inset of Fig. 6. Note that these values differ roughly by a factor 2 from those obtained
in §2 from our estimate of the slip velocity. To conclude this analysis, let us stress that
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the simple dimensional arguments developed here and which seem to be numerically
confirmed, show that the important parameter to specify the fluid flow in the particle
neighborhood is the non-dimensional ratio Dp/η.

4. Concluding remarks

In this paper, we have investigated the interactions between a large particle and the
turbulent flow surrounding it. We proposed a definition of an instantaneous direction
in which the particle slips with respect to the fluid using the mass fluxes in different
concentric shells centered on the particle. This definition allowed us to construct a mean
flow around the particle and to define a typical slip velocity. We next turned to the effect
of the particle on the properties of the surrounding turbulence. We have seen that kinetic
energy dissipation is reduced in the wake, so that particles are responsible for a kind of
shadowing effect on the flow. Finally, we have presented dimensional arguments analogous
to those used for wall turbulence in order to characterize the velocity fluctuations in the
direction transverse to the particle surface. We have shown the presence of a log law and
related the viscous sublayer properties to the particle size and the carrier flow turbulence.

A potential application of our work relates to the design of models for the dynamics
of large-size particles suspended in a turbulent flow. In most practical situations that
are encountered in engineering or atmospheric sciences, the flow is under-resolved (as for
instance in large-eddy simulations) and the dynamics of particles with large inertial-range
sizes still below the cutoff scale is approached by point particles (see, e.g., Balachandar
2009, for more details). The force acting on the particle is then approximated by the
standard drag model, possibly including empirical corrections due to the presence of
turbulence in the particle surrounding. The approach we have proposed here opens new
ways in tackling such issues in terms of slip direction, shell averages, and log layer.
This goes beyond the scope of the present work as it will require a huge computational
investment to study, for instance, the correlations between the force and the surrounding
flow.

Finally, it is important to mention that we have focused here on isolated large-size
particles. Our results do not straightforwardly extend to the interactions between several
of them. However, in very dilute settings, we expect the modulation of turbulence by
a dispersed phase to be affected by our findings. As seen in §3.1, the change in energy
dissipation is two-fold: on the one hand, it is increased in the immediate vicinity of the
particle and, on the other hand, it is weakened in its wake. This non-uniform effect can
have non-trivial consequences on the coupling between the flow and the particles, to
which possible collective effects can add up. One can for instance imagine that particles
gather even if they are neutrally buoyant and unaffected by preferential concentration,
the main mechanism being a collective shadowing of turbulent fluctuations that prevent
eddies from separating them.

We thank M. Gibert for useful discussions. This work was performed using HPC
resources from GENCI-IDRIS (Grant 026174) and from FZ Jülich (project HBO22).
Support from COST Action MP0806 is kindly acknowledged. The research leading to
these results has received funding from the European Research Council under the Euro-
pean Community’s Seventh Framework Program (FP7/2007-2013, Grant Agreement no.
240579).
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