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SLM and PTS Peak-Power Reduction of OFDM Signals
Without Side Information

A. D. S. Jayalath, Member, IEEE, and C. Tellambura, Senior Member, IEEE

Abstract—Selected mapping (SLM) and partial transmit se-
quence (PTS) are well-known techniques for peak-power reduc-
tion in orthogonal frequency-division multiplexing (OFDM). We
derive a simplified maximum likelihood (ML) decoder for SLM
and PTS that operates without side information. This decoder
exploits the fact that the modulation symbols belong to a given
constellation and that the multiple signals generated by the PTS or
SLM processes are widely different in a Hamming distance sense.
Pairwise error probability (PEP) analysis suggests how SLM and
PTS vectors should be chosen. The decoder performs well over
additive white Gaussian noise (AWGN) channels, fading channels,
and amplifier nonlinearities.

Index Terms—Orthogonal frequency-division multiplexing
(OFDM), partial transmit sequences, peak-to-average power
ratio, selected mapping.

I. INTRODUCTION

O RTHOGONAL frequency-division multiplexing (OFDM)
has been standardized in many wireless applications

with high-speed data transmission due to many advantages that
it offers in fading channels [1]. However, the OFDM signal
consists of a large number of independently modulated sub-
carriers, which can yield a large peak-to-average power ratio
(PAR) when the subcarriers add up coherently. A large PAR
leads to disadvantages such as increased complexity of the
analog-to-digital converter and a reduced efficiency of the
radio frequency amplifier. Many solutions to the PAR problem
have recently been proposed [2]–[7].

Partial transmit sequences (PTSs) and selected mapping
(SLM) reduce the PAR by generating U > 1 statistically inde-
pendent OFDM symbols for a given data frame and transmitting
the ũth symbol with the lowest peak power [8]. The value of ũ
(side information) is required to recover the signal successfully.
Clearly, log2(U) bits are required to represent this information,
which is of critical importance to the receiver. One solution is
to reserve several subcarriers (i.e., pilot tones) for side informa-
tion. In a frequency-selective fading channel, such pilot tones
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may be lost and an irrevocable decoding error can occur. Extra
protection bits may need to be sent and the total redundancy can
thus exceed log2(U) bits.

Consequently, recent research has modified the original
SLM concept to make it operate without side information.
Breiling et al. propose a scrambling scheme that does not use
explicit side information [9]. A multimode coding technique
based on guided scrambling is proposed in [10]. Modified
repeat accumulate codes are used to generate statistically inde-
pendent symbols in [11]. Although the techniques in [9]–[11]
do not use explicit side information, a small amount of redun-
dancy is introduced at the transmitter. Standard arrays of linear
block codes are proposed in [12], and this technique sacrifices
the error-correcting ability of the channel code for recovering
side information at the receiver.

In this letter, we develop a new decoder for SLM and PTS
without side information. The key idea is to exploit the fact
that the set of the U symbols have large Hamming distances
and therefore contain inherent diversity that can be exploited
at the receiver. We therefore derive the maximum likelihood
(ML) decoder for SLM and, using optimum hard decision for
each subcarrier, obtain the new decoder with drastically reduced
complexity. The performance loss of the simplified ML decoder
over the ML decoder is negligible.

For coded orthogonal frequency-division multiplexing
(COFDM), the receiver can use minimum-distance decoding
via the Viterbi algorithm. As linear block codes, convolutional
codes, and trellis codes have well-defined trellises, our receiver
can be integrated into the channel decoder itself. For uncoded
OFDM, it is prohibitive to search all possible sequences, and
we thus derive a suboptimal metric. We compare our decoder
against an idealized receiver that has perfect side information.
We show that the performance degradation is negligible for two
particularly important cases: 1) a nonlinear amplifier is applied
to OFDM signals with SLM; and 2) subcarriers experience
Rayleigh fading. Moreover, for AWGN channels, our decoder
shows a performance virtually identical with the ideal receiver.

II. PAR OF ORTHOGONAL

FREQUENCY-DIVISION MULTIPLEXING

An OFDM symbol is formed by a block of N modulation
symbols and N orthogonal subcarriers, such that the adjacent
subcarrier separation ∆f = 1/T and T is the OFDM signal
duration. The resulting signal may be expressed as

s(t) =
1√
N

N−1∑
n=0

cnej2πn∆ft, 0 ≤ t ≤ T. (1)
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The subcarrier vector in (1), c ∈ C, c = (c0, c1, . . . , cN−1) is a
vector of N constellation symbols from a constellation Q. The
size of Q is q. For COFDM, C is an optional channel code such
as a convolutional code or a trellis code. A cyclic prefix (CP)
is added to the signal s(t) in order to avoid the intersymbol
interference (ISI) that occurs in multipath channels. Since the
CP does not impact the PAR issue, we ignore it. The PAR of
OFDM is given by

ξ =
max |s(t)|2

E
{
|s(t)|2

} (2)

where E{.} denotes expectation. PAR does not greatly depend
on the constellation Q. The theoretical maximum of the PAR
for N number of subcarriers is 10 log(N) dB.

III. SELECTED MAPPING WITHOUT SIDE INFORMATION

The SLM encoder uses U vectors (SLM vectors) given by

Pu =
[
ejφu

0 , ejφu
1 , . . . , ejφu

N−1

]

where φu
n ∈ (0, 2π] and u ∈ {0, 1, . . . , U − 1}. Let a ⊗ b rep-

resent the vector product of a and b. For a given input frame
c, the lowest PAR sequence c ⊗ Pũ, ũ ∈ {0, 1, . . . , U − 1}, is
selected for transmission. In the subsequent development, the
value of the optimal transmit sequence number ũ is “NOT”
transmitted to the receiver.

We derive the new decoder using the following properties.
1) cn’s are restricted to a given signal constellation Q. 2) The set
of Pu’s is fixed and known a priori. 3) c ⊗ Pu and c ⊗ Pv are
sufficiently different for u �= v. The necessary condition for this
method to work is cnejφu

n �∈ Q for all n and u. The set of Pu

can be chosen readily to ensure this. We expect the performance
of the decoder to be very good, as the Hamming distance
between any Pu and Pv is very large. For simplicity, let us
assume a distortionless and noiseless channel. Now, the receiver
gets r = c ⊗ Pũ and computes r ⊗ P∗

u for u = 0, . . . , U − 1.
Note that r ⊗ P∗

u will not be a vector of symbols from the
constellation Q unless u = ũ. This observation allows us to
dramatically reduce the complexity of the ML decoder.

Consider the received signal rn after the FFT demodulation
at the receiver

rn = Hncnejφũ
n + nn (3)

where Hn is the frequency response of the fading channel
at the nth subcarrier and nn is a complex additive white
Gaussian noise (AWGN) sample. The signal-to-noise ratio
(SNR) is defined as γs = E{|Hncn|2}/E{|ηn|2} where E{} is
the statistical expectation operator. Let r = [r0, r1, . . . , rN−1]
and H = [H0,H1, . . . , HN−1]. Without side information (not
knowing ũ) the optimal ML decoder uses the decision metric

D = min
[ĉ0,ĉ1,...,ĉN−1]∈C
Pû,û∈{0,1,...,U−1}

N−1∑
n=0

∣∣∣rne−jφû
n − Hnĉn

∣∣∣2 . (4)

This minimization can be performed as follows. The minimum
distance H ⊗ ĉ to r ⊗ P∗

0 is determined, where P∗
0 is the conju-

gate of P0. This can be done by the Viterbi algorithm for coded
systems or by searching all qN data sequences for uncoded
q-ary modulation. This process is repeated for P1,P2, . . . ,
PU−1. The global minimum distance solution yields the best
estimates for c and ũ. The overall complexity is U times that of
COFDM without SLM.

Consider the quaternary phase-shift keying (QPSK) constel-
lation given by

QQPSK =
{

e
jπm

2 ,m = 0, 1, . . . , 3
}

. (5)

For the uncoded case, there are U4N , |.|2 operations to solve
(4). This is of very high complexity and can be performed only
for small N . Thus, a suboptimal decoding metric with reduced
complexity is derived next.

Let rn be detected into the nearest constellation point ĉn,
by comparing rn with Ĥnĉnejφû

n , where Ĥn is the estimated
channel response. That is, a hard decision is made for each sub-
carrier. This whole process is repeated for 0 ≤ û ≤ U − 1. The
minimum Euclidean distance solution yields the data sequence.
The simplified new decision metric can thus be written as

DSLM = min
Pû,û∈{0,1,...,U−1}

N−1∑
n=0

min
ĉn∈Q

∣∣∣rne−jφû
n − Ĥnĉn

∣∣∣2 .

(6)

Fig. 1 depicts the proposed decoder structure. For COFDM with
a given trellis structure, the metric (6) can be computed using
the Viterbi algorithm. The branch metric of the trellis may be
given by

B =
∣∣∣rne−jφû

n − Ĥnĉn

∣∣∣2 . (7)

Here, ĉn is a branch label of the trellis. Initial results of this
receiver have been presented in [13].

SLM vectors for the proposed system are constructed by
selecting each φu

n randomly between 0 and 2π, subject to the
constraint that ejφu

n is not a member of Q.

IV. PARTIAL TRANSMIT SEQUENCES

The input data vector c is partitioned into disjoint subblocks,
as {cm|m = 0, 1, . . . , M − 1}, and these are combined to min-
imize the PAR. Phase angles of subcarriers in each subblock are
changed, and several iterations are performed before obtaining
the optimally combined sequence. The inverse discrete Fourier
transform (IDFT) of the cm are called PTSs. Let yk,m for
k = 0, 1, . . . , LN − 1, m = 0, 1, . . . ,M − 1, be the LN point
IDFT of the cm appropriately zero-padded

yk,m =
∑

n∈Im

cne
j2πnk

LN (8)

where Im ∈ {0, 1, . . . , N − 1} is the subset of indices belong-
ing to the mth subblock and L is the oversampling factor.
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Fig. 1. Proposed decoder structure.

Using the linearity property of the IDFT, the time domain
samples can be represented as

sk =
M∑

m=1

bmyk,m, k = 0, 1, . . . , LN − 1 (9)

where {bm, m = 0, 1, . . . ,M − 1} are weighting factors. They
are further assumed to be pure rotations (i.e., bm = ejφm ).
The weighting factors are chosen to minimize |sk|. Finally, the
optimal PAR (ξopt.) can be found using

ξopt. = min
b1,...,bM


 max

0≤k≤LN

∣∣∣∣∣
M∑

m=1

bmyk,m

∣∣∣∣∣
2

 . (10)

If the weighting factors (b = [ejφ1 , ejφ2 , . . . ejφM ]) are limited
to v phases, (10) requires vM−1 iterations to obtain the optimal
solution. Note that the above development is similar to [14]
except for the use of oversampling.

For coherent demodulation, the optimized weighting factors
b̂m are required at the receiver. When b̂m is a continuous value,
an infinite number of bits will be required as side information.
The solution to this problem is to select b̂m from a finite set
of quantized weighting factors. However, the proposed decoder
allows us to select arbitrary values for the weighting factors as
the receiver does not depend on the side information [15].

We now limit the weighting factors to a codebook, which
is constructed as follows. Select a vector of M − 1 weighting
factors, which are equally distributed along the unit circle

v =
[
ej(( 2π

M−1+θ)), ej((2 2π
M−1+θ)), . . . , ej(2π+θ)

]
. (11)

TABLE I
SYSTEM AND CHANNEL PARAMETERS USED FOR SIMULATIONS

The phase offset θ (0 < θ < π/2) can be any value such that
components of v do not belong to Q. The codebook B will then
consists of all (M − 1)! permutations of v. The PTS transmitter
may try all b = [1,v], where v ∈ B to reduce PAR or the PAR
optimization can be stopped as soon as the PAR drops below
a given threshold [16]. The identity of the optimal weighting
sequence ṽ is “NOT” transmitted to the receiver.

A. Decoding PTS-OFDM Signals Without Side Information

Consider the received signal rn after the FFT demodulation
at the receiver is given by (3). However, the encoded data is
now given by cnejφ̃m , where ejφ̃m (b̃m ∈ v) is the optimized
weighting factor used in the mth subblock. The objective is
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Fig. 2. System block diagram with channel interleaver and proposed decoder.

to determine the optimal weighting sequence ṽ. Letting r =
[r0, r1, . . . , rN−1] and Ĥ = [Ĥ0, Ĥ1, . . . , ĤN−1], the decision
metric used at the proposed PTS-OFDM decoder to determine
the weighting factor of the mth subblock becomes

Dm
PTS = min

m∈{0,1,...,M−1}

N(m+1)
M−1∑

n= Nm
M

min
ĉn∈Q

∣∣∣rn − Ĥnĉnb̂m

∣∣∣2 (12)

where b̂m ∈ b and Ĥn is the estimated channel. This met-
ric can be evaluated as follows. For the nth subcarrier
(0 ≤ n ≤ N/M) of a subblock, the received symbol is de-
tected into its nearest constellation point ĉn by comparing
rn with value Ĥ−1

n rnb̂−1
m . The Euclidean distance correspond-

ing to this detection is stored. This process is repeated for
all the subcarriers (N/M) in the mth subblock 0 ≤ n < N/M .
The minimum Euclidean distance solution is obtained by eval-
uating the metric for all weighting factors (0 ≤ m ≤ M − 1),
which yields the correct weighting factor (b̃m) used for the mth
subblock. Similarly, weighting factors for all the subblocks are
determined. The proposed decoder does not rely on side infor-
mation and can select the weighting factors without confining
them to a set of quantized values.

V. PERFORMANCE ANALYSIS

The bit error rate (BER) performance of the decoder (4) is
analyzed here. The decoder must decide both the transmitted
sequence c and the SLM vector Pû. The pairwise error proba-
bility (PEP) P [(c,Pũ) → (ĉ,Pû)] is the probability of choos-
ing ĉ and Pû when indeed c and Pũ were transmitted. We
consider the case where Ĥn (an estimate of Hn) is known
to the receiver and M -PSK signaling is used. The PEP is
approximated using (13), which is defined at the bottom of the
page (see Appendix). When the channel estimation (CE) SNR
is high (γe −→ ∞), (13) further simplifies to

P [(c,Pũ) → (ĉ,Pû)]

	
(

2N − 1
N

)N−1∏
n=0

1

γs

∣∣cnejφũ
n − ĉnejφû

n

∣∣2 . (14)

This PEP expression is very insightful. Note that this clearly
resembles the well-known asymptotic results of maximal ratio
combining (MRC) of order N (see [20, pp. 14.4–18]). There-
fore, this has an error equivalent of N th order (MRC). This is
called a diversity order. This explains that if an ML decoder
is used, the error rate decrease as γ−N

s . Note that without the
SLM expansion process, the diversity order would be much

P [(c,Pũ) → (ĉ,Pû)]

	
(

2N − 1
N

)N−1∏
n=0

[
γs+γe−1
γs(γe−1)

]2
{(

1
γs

+ 1
(γe−1) +

∣∣cnejφũ
n − ĉnejφû

n

∣∣2)( 1
(γe−1) + 1

γs

)
−
∣∣∣ 1
γs

+ 1
γe

ĉnc∗nej(φû
n−φũ

n)
∣∣∣2} (13)
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Fig. 3. Performance of the proposed SLM-OFDM decoder in AWGN channel
and with a soft limiting nonlinear amplifier having backoff values of 2, 3,
and 7 dB.

less than N . Since we choose φu
n uniform in (0, 2π), the prob-

ability that φũ
n = φû

n for ũ �= û is zero. Note that if φũ
n was

chosen from a finite constellation such as QPSK, the achievable
diversity order would be less than N . If SLM is “NOT” used at
the transmitter, the numbers of n for which cn �= c̃n relate to
the dmin (minimum Hamming distance) of the channel code (if
used). If no channel code is used, dmin = 1. The asymptotic
error rate should then decrease as γ−dmin

s . We conclude that the
use of long random phase sequence in SLM provides a diversity
order of N . Since N is large, this ensures that our proposed
decoders can achieve nearly ideal performance levels. Equation
(14) also suggests the following decision rules for SLM code
book generation.

1) For maximum diversity order, make sure that φk
n �= φl

n

for all l �= k.
2) Choosing φk

n from a uniform distribution ensures maxi-
mum diversity benefits.

VI. SIMULATION RESULTS

Proposed decoders for both SLM and PTS are evaluated over
AWGN and fading channels and in the presence of a nonlinear
amplifier using Monte Carlo simulations. System and channel
parameters are shown in Table I. The system block diagram for
both uncoded and TCM-coded OFDM is shown in Fig. 2. The
interleaver and deinterleaver pair is used for the simulation on
frequency-selective fading channels to randomize the bit errors
across subcarriers providing the frequency diversity.

Fig. 3 compares the performance of the proposed decoder
(6) with an ideal SLM decoder using perfect side information
(PSI-SLM) in AWGN. The two systems show virtually identical
performance in AWGN. Comparative performance in AWGN
for a soft limiter (nonlinearity) with backoff values of 2, 5, and
7 dB in Fig. 3 shows that both the decoders perform nearly
identically.

Given the excellent decoder performance over AWGN
and nonlinear channels, we next investigate its performance

TABLE II
POWER DELAY PROFILE OF THE FREQUENCY-SELECTIVE

FADING CHANNEL

Fig. 4. BER of the several TC-OFDM systems with (a) uncoded OFDM
with pilot-assisted CE, (b) TC-OFDM with pilot-assisted CE, (c) TC-OFDM
with perfect CSI, and (d) TC-OFDM in an AWGN (no fading). Normalized
Doppler frequency is 0.011.

for trellis-coded orthogonal frequency-division multiplexing
(TC-OFDM) in frequency-selective fading channels. The
frequency-selective channel model is given by h(t) =∑L

k=1 hkδ(t − kT ) with E[|hk|2] decaying exponentially with
k (Table II). A normalized Doppler frequency of 0.011 is
assumed in the simulations. We use a nonsystematic, eight-state
encoder with eight-phase-shift keying (8-PSK) mapping, which
has the same spectral efficiency as uncoded QPSK-OFDM.
Each OFDM symbol consists of 64 pilot symbols for CE.

Fig. 4 shows that the proposed decoder has identical perfor-
mance to a decoder with PSI in all the channels considered
(a–d). Fig. 4 also shows the effect of imperfect channel state
information (CSI). The proposed decoder performs well even
with imperfect CSI and recovers COFDM completely in both
AWGN and fading channels even in the presence of a nonlinear
amplifier.

Fig. 5 compares the performance of the proposed decoder
(12) with an ideal PTS receiver that has perfect side information
(PSI-PTS) in AWGN and Rayleigh fading. As expected, the
proposed decoder almost perfectly recovers the received data
in AWGN. It performs nearly as good as the ideal receiver
in Rayleigh fading. The slight performance degradation of the
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Fig. 5. Comparison of BER performance of the proposed decoder for
PTS-OFDM in AWGN and fading with perfect CSI. Normalized Doppler
frequency is 0.011.

proposed decoder in the fading channel may be overcome by a
suitable channel coding scheme, as in the case of SLM.

The performance of the proposed decoder with higher order
constellations (8-PSK and 16-QAM) was also simulated. In the
high SNR region, the proposed decoder performs fairly close to
the ideal case.

VII. CONCLUSION

Selected mapping (SLM) and partial transmit sequence
(PTS) detection without using side information for coded or-
thogonal frequency-division multiplexing (COFDM) and or-
thogonal frequency-division multiplexing (OFDM) has been
developed. These decoders recover received COFDM in addi-
tive white Gaussian noise (AWGN), fading, and the presence
of nonlinear amplifiers. Analytical results show that the ML
decoder for SLM has an N th-order diversity effect in fading.
As N is typically large, excellent performance can be obtained
even though a suboptimal decoder (6) is used. The proposed
SLM and PTS systems neither lose throughput due to side
information nor degrade bit error rate (BER) due to errors in
side information. However, a reduction in throughput occurs
due to the pilot tones used for channel estimation (CE). Some
increase in the receiver complexity is the price paid for these
benefits.

APPENDIX

PEP ANALYSIS

PEP analysis is a widely used approach for designing coding
schemes such as trellis codes and space–time codes. This
approach begins with the union bound for the BER. The union
bound is a weighted sum of all the PEPs for a given code. As
the SNR goes to infinity, the union bound is dominated by a
handful of PEPs, which can be expressed in terms of distance
properties of the code. In general, if the largest PEP decays as
γ−d

s , the coded system is said to have a diversity order of d.

Note that this analysis is valid only in the high SNR regime.
The interested reader is referred to [18] and [19]. We use this
approach here to show that a side benefit of the SLM expansion
process is to generate an equivalent system with a diversity
order reaching N . We derive the PEP as a complex contour
integral with distinct single-order poles. However, more insight
can be gained by considering the high SNR regime where the
multiple poles coalesce into an N th-order pole. The resulting
PEP expression is presented in Section V.

Let Ĥn = Hn + εn where εn is a complex Gaussian noise
affecting the CE process. We assume the estimation error εn to
be independent of the channel additive noise and the channel.
That is, E[nnε∗m] = 0 and E[Hnε∗m] = 0. While this assump-
tion may not be realistic in some cases, it greatly facilitates the
subsequent analysis. Without loss of generality, we assume

E
{
|Hn|2

}
= 1, n = 0, 1, . . . , N − 1. (15)

We define the CE SNR as

γe =
E
{
|Ĥn|2

}
E {|εn|2}

for n = 0, 1, . . . , N − 1. (16)

This means E{|Ĥn|2} = γe/(γe − 1) and E[|εn|2] = 1/(γe −
1). We also have E{H∗

nĤn} = E{H∗
n(Hn + εn)} = 1. We

consider MPSK only for brevity.
From (3), we find E{|nn|2} = 1/γs and E{|rn|2} = 1 +

(1/γs). The PEP is given by

P [(c,Pũ) → (ĉ,Pû)] = Pr

{
N−1∑
n=0

∣∣∣rn − Ĥncnejφũ
n

∣∣∣2

>

N−1∑
n=0

∣∣∣rn − Ĥnĉnejφû
n

∣∣∣2
}

. (17)

Let us consider a term

Dn =
∣∣∣rn − Ĥnĉnejφû

n

∣∣∣2 − ∣∣∣rn − Ĥncnejφũ
n

∣∣∣2
= |Xn|2 − |Yn|2. (18)

This is a special case of the quadratic form, which has been
analyzed by Proakis [20]. The complex Gaussian random
variable Xn and Yn are zero mean and correlated. We need
their variances and the covariance for deriving the moment
generating function (mgf) of Dn

µxx =
1
2
E
{
|Xn|2

}
=

1
2
E

{
|rn|2 +

∣∣∣Ĥnĉnejφû
n

∣∣∣2

− 2Re
{

r∗nĤnĉnejφû
n

} }

=
1
2

{
1 +

1
γs

+
γe

(γe − 1)

− 2Re
{

c∗nĉnej(φû
n−φũ

n)
} }

. (19)
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For MPSK symbols, |cn − ĉn|2 = 2 − 2Re{cnĉ∗n}, therefore,

µxx =
1
2

{
1
γs

+
1

(γe − 1)
+
∣∣∣cnejφũ

n − ĉnejφû
n

∣∣∣2} .

The variance of Yn is given by

µyy =
1
2
E

{∣∣∣−εncnejφũ
n + nn

∣∣∣2}

=
1
2

{
1

(γe − 1)
+

1
γs

}
.

The covariance is given by

µxy =
1
2
E
{(

rn − Ĥnĉnejφû
n

)(
ε∗nc∗nejφũ

n + n∗
n

)}

=
1
2

{
1
γs

+
1

(γe − 1)
ĉnc∗nej(φû

n−φũ
n)
}

. (20)

In Proakis [20, eq. B-6], we use α1 = α2 = 0, A = 1, B = −1,
and C = 0 and get

ωn =
µxx − µyy

4 (µxxµyy − |µxy|2)
(21)

[
v1n

v2n

]
=

√
ω2

n +
1

4 (µxxµyy − |µxy|2)
± ωn. (22)

Note that for high SNR and high CE SNR (γe), we have µxx ≥
µyy and µxy 	 0. In this case

ωn 	 1
4µyy

=
γs(γe − 1)

2(γs + γe − 1)
.

The mgf of Dn is given by

ΦDn
(s) = E{esDn} =

v1nv2n

(v1n − s)(v2n + s)
. (23)

To facilitate the analysis, we assume that the availability of
perfect interleaving, making Dn, n = 0, 1, . . . , N − 1 indepen-
dent. Consider a block interleaver of size Nd × Ns. As a result
of interleaving, the effective Doppler is increased by a factor of
Nd (the interleaving depth) and this reduces temporal correla-
tion. Perfect interleaving implies Nd being infinity. However, in
practical cases, fairly small values of Nd are sufficient [21].

Assuming perfect interleaving, Dn, n = 0, 1, . . . , N − 1 are
independent. The mgf of D =

∑
Dn is given by

ΦD(s) =
N−1∏
n=0

v1nv2n

(v1n − s)(v2n + s)
. (24)

We assume that all v1n �= v1m for m �= n and v2n �= v2m for
m �= n. From (17), we find

P [(c,Pũ) → (ĉ,Pû)] = Pr(D < 0). (25)

Using a complex variable theory, this can be written as

P [(c,Pũ) → (ĉ,Pû)] = −Res
{

ΦD(s)
s

at poles in LHP
}

(26)

where LHP stands for left half plane. Under the assumption in
(24), there are only first-order poles at s = −v2n. The exact
average PEP is given by

P [(c,Pũ) → (ĉ,Pû)] =
N−1∑
k=0

v1kv2k

v2k(v1k + v2k)

×
N−1∏
n=0
n �=k

v1nv2n

(v1n + v2k)(v2n − v2k)
. (27)

However, this exact average PEP does not immediately give
any insight. It is suitable for numerical computation only. We
therefore device an approximation valid at high SNRs. From
(22), for high SNR, we find that

v1n 	 0 and

v2n 	 γs(γe − 1)
(γs + γe − 1)

= ∆,

n = 0, 1, . . . , N − 1. (28)

Using (28) in the denominator of (24) and using (26), we have

P [(c,Pũ) → (ĉ,Pû)]

	 Res
{

G

(−s)N+1(s + ∆)N
at s = −∆

}
(29)

where G is defined by (30), shown at the bottom of the page.

G =
N−1∏
n=0

1
4 (µxxµyy − |µxy|2)

=
N−1∏
n=0




1(
1
γs

+ 1
(γe−1) +

∣∣cnejφũ
n − ĉnejφû

n

∣∣2)( 1
γs

+ 1
(γe−1)

)
−
∣∣∣ 1
γs

+ 1
γe

ĉnc∗nej(φû
n−φũ

n)
∣∣∣2

 (30)
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The N th-order residue is evaluated as

Res
{
− 1

sN+1(s + ∆)N
at s = −∆

}

=
(−1)N+1

(N − 1)!
dN−1

dsN−1

(
1

(−s)N+1

)∣∣∣∣
s=−∆

=
1

(N − 1)!
(N + 1)(N + 2) . . . (2N − 1)

(−∆)2N

=
(

2N − 1
N

)
1

(∆2)N
. (31)

Combining (29) and (31), we finally get

P [(c,Pũ) → (ĉ,Pû)] 	
(

2N − 1
N

)
G

(
γs + γe − 1
γs(γe − 1)

)2N

.

(32)

Upon combining (30) and (32), we get (13).
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