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Abstract

We introduce a new estimator for the vector of coefficients β in the linear model y = Xβ+z,
where X has dimensions n × p with p possibly larger than n. SLOPE, short for Sorted L-One
Penalized Estimation, is the solution to

min
b∈Rp

1
2‖y −Xb‖

2
`2 + λ1|b|(1) + λ2|b|(2) + . . .+ λp|b|(p),

where λ1 ≥ λ2 ≥ . . . ≥ λp ≥ 0 and |b|(1) ≥ |b|(2) ≥ . . . ≥ |b|(p) are the decreasing absolute
values of the entries of b. This is a convex program and we demonstrate a solution algorithm
whose computational complexity is roughly comparable to that of classical `1 procedures such
as the lasso. Here, the regularizer is a sorted `1 norm, which penalizes the regression coefficients
according to their rank: the higher the rank—i. e. the stronger the signal—the larger the penalty.
This is similar to the Benjamini-Hochberg procedure (BH) [9], which compares more significant
p-values with more stringent thresholds. One notable choice of the sequence {λi} is given by
the BH critical values λBH(i) = z(1 − i · q/2p), where q ∈ (0, 1) and z(α) is the quantile of a
standard normal distribution. SLOPE aims to provide finite sample guarantees on the selected
model; of special interest is the false discovery rate (FDR), defined as the expected proportion
of irrelevant regressors among all selected predictors. Under orthogonal designs, SLOPE with
λBH provably controls FDR at level q. Moreover, it also appears to have appreciable inferential
properties under more general designs X while having substantial power, as demonstrated in a
series of experiments running on both simulated and real data.

Keywords. Sparse regression, variable selection, false discovery rate, lasso, sorted `1 penalized
estimation (SLOPE).

Introduction

Analyzing and extracting information from datasets where the number of observations n is smaller
than the number of variables p is one of the challenges of the present “big-data” world. In response,

∗Corresponding author
†An earlier version of the paper appeared on arXiv.org in October 2013: arXiv:1310.1969v2
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the statistics literature of the past two decades documents the development of a variety of method-
ological approaches to address this challenge. A frequently discussed problem is that of linking,
through a linear model, a response variable y to a set of predictors {Xj} taken from a very large
family of possible explanatory variables. In this context, the lasso [42] and the Dantzig selector [19],
for example, are computationally attractive procedures offering some theoretical guarantees, and
with consequent wide-spread application. In spite of this, there are some scientific problems where
the outcome of these procedures is not entirely satisfying, as they do not come with a machinery
allowing us to make inferential statements on the validity of selected models in finite samples. To
illustrate this, we resort to an example.

Consider a study where a geneticist has collected information about n individuals by having
identified and measured all p possible genetics variants in a genomic region. The geneticist wishes
to discover which variants cause a certain biological phenomenon, as an increase in blood cholesterol
level. If we ponder a minute on how the results of this first study shall be followed up, we realize
that (1) measuring cholesterol levels in a new individual is cheaper and faster than scoring his or her
genetic variants, so that predicting y in future samples given the value of the relevant covariates
is not an important goal. Instead, correctly identifying functional variants is relevant: on the
one hand, (2) a genetic polymorphism correctly implicated in the determination of cholesterol
levels points to a specific gene and to a biological pathway that might not be previously known
to be related to blood lipid levels and, therefore, promotes an increase in our understanding of
biological mechanisms, as well as providing targets for drug development. On the other hand,
(3) the erroneous discovery of an association between a genetic variant and cholesterol levels will
translate in considerable waste of time and money, which will be spent in trying to verify this
association with direct manipulation experiments. Moreover, it is worth emphasizing that (4) some
of the genetic variants in the study have a biological effect while others do not—there is a ground
truth that statisticians can aim to discover. Finally, to be able to share his/her results with the
scientific community in a convincing manner, (5) the researcher needs to be able to attach some
finite sample confidence statements to her findings. In a more abstract language, our geneticist
would need a tool that privileges correct model selection over minimization of prediction error, and
would allow for inferential statements to be made on the validity of her selections. This paper
presents a new methodology that attempts to address some of these needs.

We imagine that the n-dimensional response vector y is truly generated by a linear model of
the form

y = Xβ + z,

with X an n× p design matrix, β a p-dimensional vector of regression coefficients and z the n× 1
vector of random errors. We assume that all relevant variables (those with βi 6= 0) are measured
in addition to a large number of irrelevant ones. As any statistician knows, these are in themselves
quite restrictive assumptions, but they are a widely accepted starting point. To formalize our goal,
namely, the selection of important variables accompanied by a finite sample confidence statement,
we seek a procedure that controls the expected proportion of irrelevant variables among the selected.
In a scientific context where selecting a variable corresponds to making a discovery, we aim at
controlling the False Discovery Rate (FDR). The FDR is of course a well-recognized measure of
global error in multiple testing and effective procedures to control it are available: indeed, the
Benjamini and Hochberg procedure (BH) [9] inspired the present proposal. It goes without saying
that the connection between multiple testing and model selection has been made before (see e.g.
[5], [22], [1], [2], [16]) and others in the recent literature have tackled the challenges encountered by
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our geneticists: we will discuss the differences between our approach and others in later sections as
appropriate. The procedure we introduce in this paper is, however, entirely new. Variable selection
is achieved by solving a convex problem not previously considered in the statistical literature, and
which marries the advantages of `1 penalization with the adaptivity inherent in strategies like BH.

The reminder of the paper is organized as follows. Section 1 introduces SLOPE, our novel
penalization strategy, motivating its construction in the context of orthogonal designs, and placing
it in the context of current knowledge of effective model selection strategies. Section 2 describes
the algorithm we developed and implemented to find SLOPE estimates. Section 3 showcases the
application of our novel procedure in a variety of settings: we illustrate how it effectively solves
a multiple testing problem with positively correlated test statistics; we discuss how regularizing
parameters should be chosen in non-orthogonal designs; and we apply it to a genetic dataset not
unlike that of our idealized example. Section 4 concludes the paper with a discussion comparing
our methodology to other recently introduced proposals as well as outlining open problems.

1 Sorted L-One Penalized Estimation (SLOPE)

1.1 Adaptive penalization and multiple testing in orthogonal designs

To build intuition behind SLOPE, which encompasses our proposal for model selection in situations
where p > n, we begin by considering the case of orthogonal designs and i.i.d. Gaussian errors with
known standard deviation, as this makes the connection between model selection and multiple
testing natural. Since the design is orthogonal, X ′X = Ip, and the regression y = Xβ + z with
z ∼ N (0, σ2In) can be recast as

ỹ = X ′y = X ′Xβ +X ′z = β +X ′z ∼ N (β, σ2Ip). (1.1)

In some sense, the problem of selecting the correct model reduces to the problem of testing the p
hypotheses H0,j : βj = 0 versus two sided alternatives H1,j : βi 6= 0. When p is large, a multiple
comparison correction strategy is called for and we consider two popular procedures.

• Bonferroni’s method. To control the familywise error rate1 (FWER) at level α ∈ [0, 1], one
can apply Bonferroni’s method, and reject H0,j if |ỹj |/σ > Φ−1(1 − α/2p), where Φ−1(α) is
the αth quantile of the standard normal distribution. Hence, Bonferroni’s method defines a
comparison threshold that only depends on the number p of covariates and on the noise level.

• Benjamini-Hochberg procedure. To control the FDR at level q ∈ [0, 1], BH begins by sorting
the entries of ỹ in decreasing order of magnitude, |ỹ|(1) ≥ |ỹ|(2) ≥ . . . ≥ |ỹ|(p), which yields
corresponding ordered hypotheses H(1), . . . ,H(p). (Note that here, as in the rest of the paper,
(1) indicates the largest element of a set, instead of the smallest. This breaking with common
convention allows us to keep (1) as the index for the most ‘interesting’ hypothesis). Then
reject all hypotheses H(i) for which i ≤ iBH, where iBH is defined by

iBH = max{i : |ỹ|(i)/σ > Φ−1(1− qi)}, qi = i · q/2p (1.2)

(with the convention that iBH = 0 if the set above is empty).2 Letting V (resp. R) be the
total number of false rejections (resp. total number of rejections), Benjamini and Hochberg

1Recall that the FWER is the probability of at least one false rejection.
2To minimize clutter we are being somewhat sloppy in the definition of BH although we have not introduced any

error since our test statistics have continuous distributions.
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[9] showed that

FDR = E
[

V

R ∨ 1

]
= q

p0
p
, (1.3)

where p0 is the number of true null hypotheses, p0 := |{i : βi = 0}| = p− ‖β‖`0 .

In contrast to Bonferroni’s method, BH is an adaptive procedure in the sense that the threshold
for rejection |y|(iBH) is defined in a data-dependent fashion, and is sensitive to the sparsity and
magnitude of the true signals. In a setting where there are many large βj ’s, the last selected
variable needs to pass a far less stringent threshold than it would in a situation where no βj is
truly different from 0. It has been shown [2, 15, 25] that this behavior allows BH to adapt to the
unknown signal sparsity, resulting in some asymptotic optimality properties.

We now consider how the lasso [42] would behave in this setting. The solution to

min
b∈Rp

1
2‖y −Xb‖

2
`2 + λ ‖b‖`1 (1.4)

in the case of orthogonal designs is given by soft-thresholding. In particular, the lasso estimate β̂j
is not zero if and only if |ỹj | > λ. That is, variables are selected using a non-adaptive threshold λ.
Mindful of the costs associated with the selection of irrelevant variables, we can control the FWER
by setting λBonf = σ · Φ−1(1 − α/2p) ≈ σ ·

√
2 log p. This choice, however, is likely to result in a

loss of power, and not to strike the right balance between errors of type I and missed discoveries.
Choosing a value of λ substantially smaller than λBonf in a non-data dependent fashion, would
lead not only to a loss of FWER control, but also of FDR control since the FDR and FWER are
identical measures under the global null in which all our variables are irrelevant. Another strategy
is to use cross-validation. However, this data-dependent approach for selecting the regularization
parameter λ targets the minimization of prediction error, and does not offer guarantees with respect
to model selection (see Section 1.3.3). Our idea to achieve adaptivity, thereby increasing power
while controlling some form of type-one error is to break the monolithic penalty λ‖β‖`1 , which
treats every variable in the same manner. Set

λBH(i)
def
= Φ−1(1− qi), qi = i · q/2p,

and consider the following program

min
b∈Rp

1
2‖y −Xb‖

2
`2 + σ ·

p∑
i=1

λBH(i)|b|(i), (1.5)

where |b|(1) ≥ |b|(2) ≥ . . . ≥ |b|(p) are the order statistics of the absolute values of the coordinates
of b: in (1.5) different variables receive different levels of penalization depending on their relative
importance. While the similarities of (1.5) with BH are evident, the solution to (1.5) is not a series
of scalar thresholding operations, so that the procedures are not, even in this case of orthogonal
variables, exactly equivalent. Nevertheless, an important results is this:

Theorem 1.1. In the linear model with orthogonal design X and z ∼ N (0, σ2In), the procedure
(1.5) rejecting hypotheses for which β̂j 6= 0, has an FDR obeying

FDR = E
[

V

R ∨ 1

]
≤ q p0

p
. (1.6)
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Figure 1: FDR of (1.5) in an orthogonal setting in which n = p = 5000. Straight lines corre-
spond to q · p0/p, circles indicate the average FDP across 500 replicates, and bars correspond
to ± 2 SE.

Theorem 1.1 is proven in the Appendix. Figure 1 illustrates the FDR achieved by (1.5) in sim-
ulations using a 5, 000 × 5, 000 orthogonal design X and nonzero regression coefficients equal to
5
√

2 log p.
We conclude this section with several remarks describing the properties of our procedure under

orthogonal designs.

1. While the λBH(i)’s are chosen with reference to BH, (1.5) is neither equivalent to the step-up
procedure described above nor to the step-down version.3

2. The proposal (1.5) is sandwiched between the step-down and step-up procedures in the sense
that it rejects at most as many hypotheses as the step-up procedure and at least as many as
the step-down cousin, also known to control the FDR [38].

3. The fact that (1.5) controls FDR is not a trivial consequence of this sandwiching.

The observations above reinforce the fact that (1.5) is different from the procedure known as FDR
thresholding developed by Abramovich and Benjamini [1] in the context of wavelet estimation and
later analyzed in [2]. With tFDR = |y|(iBH), FDR thresholding sets

β̂i =

{
yi |yi| ≥ tFDR

0 |yi| < tFDR.
(1.7)

This is a hard-thresholding estimate but with a data-dependent threshold: the threshold decreases
as more components are judged to be statistically significant. It has been shown that this simple
estimate is asymptotically minimax throughout a range of sparsity classes [2]. Our method is similar
in the sense that it also chooses an adaptive threshold reflecting the BH procedure. However, it

3The step-down version rejects H(1), . . . , H(i−1), where i is the first time at which |ỹi|/σ ≤ Φ−1(1− qi).
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does not produce a hard-thresholding estimate. Rather, owing to nature of the sorted `1 norm, it
outputs a sort of soft-thresholding estimate.

More importantly, it is not clear at all how one would extend (1.7) to nonorthogonal designs
whereas the formulation 1.5 is not in any way linked to the orthogonal setting (even if the choice
of the λ sequence in these more general cases is not trivial), as we are about to discuss.

1.2 SLOPE

While orthogonal designs have helped us define the program (1.5), this penalized estimation strategy
is clearly applicable in more general settings. To make this explicit, it is useful to introduce the
sorted `1 norm: letting λ 6= 0 be a nonincreasing sequence of nonnegative scalars,

λ1 ≥ λ2 ≥ . . . ≥ λp ≥ 0, (1.8)

we define the sorted-`1 norm of a vector b ∈ Rp as4

Jλ(b) = λ1|b|(1) + λ2|b|(2) + . . .+ λp|b|(p). (1.9)

Proposition 1.2. The functional (1.9) is a norm provided (1.8) holds.

Proof If is obvious that Jλ(b) = 0 if only if b = 0, and that for any scalar c ∈ R, Jλ(cb) = |c|Jλ(b).
Thus it remains to prove that Jλ(b) is convex.

At first, suppose that p = 2. Then we can write Jλ as

Jλ(b) = (λ1 − λ2)|b|(1) + λ2(|b|(1) + |b|(2)) = (λ1 − λ2)‖b‖`∞ + λ2‖b‖`1 ,

which implies that Jλ is the sum of two norms and is, therefore, convex.
Now for a general p, a simple calculation shows that

Jλ(b) =

p∑
i=1

(λi − λi+1)fi(b), fi(b) =
∑
j≤i
|b|(j)

with the convention that λp+1 = 0. Since each fi is convex, each term (λi − λi+1)fi is convex and,
therefore, their sum is also convex (a sum of convex functions is convex). To see why each fi is
convex, write

fi(b) = sup
ε∈Ci

fε(b),

fε(b) =
∑p

j=1 εj |bj |,

Ci = {ε : εj ∈ {0, 1}, #{j : εj 6= 0} ≤ i}.
.

Since each fε(b) is convex and that the supremum of convex functions is convex, fi is convex.

Now define SLOPE as the solution to

minimize 1
2‖y −Xb‖

2 + σ

p∑
i=1

λi|b|(i). (1.10)

4Observe that when all the λi’s take on an identical positive value, the sorted `1 norm reduces to the usual `1
norm (up to a multiplicative factor). Also, when λ1 > 0 and λ2 = . . . = λp = 0, the sorted `1 norm reduces to the
`∞ norm (again, up to a multiplicative factor).
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As a convex program, SLOPE is tractable: as a matter of fact, we shall see in Section 2 that
its computational cost is roughly the same as that of the lasso. Just as the sorted `1 norm is an
extension of the `1 norm, SLOPE can be also viewed as an extension of the lasso. SLOPE’s general
formulation, however, allows to achieve the adaptivity we discussed earlier. The case of orthogonal
regressors suggests one particular choice of a λ sequence and we will discuss others in later sections.

1.3 Relationship to other model selection strategies

Our purpose is to bring the program (1.10) to the attention of the statistical community: this is a
computational tractable proposal for which we provide robust algorithms, it is very similar to BH
when the design is orthogonal, and has promising properties in terms of FDR control for general
designs. We now compare it with other commonly used approaches to model selection.

1.3.1 Methods based on `0 penalties

Canonical model selection procedures find estimates β̂ by solving

min
b∈Rp

‖y −Xb‖2`2 + λ‖b‖`0 , (1.11)

where ‖b‖`0 is the number of nonzero components in b. The idea behind such procedures is to
achieve the best possible trade-off between the goodness of fit and the number of variables included
in the model. Popular selection procedures such as AIC and Cp [3, 33] are of this form: when
the errors are i.i.d. N (0, σ2), AIC and Cp take λ = 2σ2. In the high-dimensional regime, such a
choice typically leads to including very many irrelevant variables in the model yielding rather poor
predictive power in sparse settings (when the true regression coefficient sequence is sparse). In
part to remedy this problem, Foster and George [22] developed the risk inflation criterion (RIC):
they proposed using a larger value of λ effectively proportional to 2σ2 log p, where we recall that
p is the total number of variables in the study. Under orthogonal designs, if we associate nonzero
fitted coefficients with rejections, this yields FWER control. Unfortunately, RIC is also rather
conservative as it is a Bonferroni-style procedure and, therefore, it may not have much power in
detecting those variables with nonvanishing regression coefficients unless they are very large.

The above dichotomy has been recognized for some time now and several researchers have
proposed more adaptive strategies. One frequently discussed idea in the literature is to let the
parameter λ in (1.11) decrease as the number of included variables increases. For instance, when
minimizing

‖y −Xb‖2`2 + p(‖b‖`0),

penalties with appealing information- and decision-theoretic properties are roughly of the form

p(k) = 2σ2k log(p/k) or p(k) = 2σ2
∑

1≤j≤k
log(p/j). (1.12)

Among others, we refer the interested reader to [23, 14] and to [43] for a related approach.
Interestingly, for large p and small k these penalties are close to the FDR related penalty

p(k) = σ2
∑

1≤j≤k
λ2BH(i), (1.13)
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proposed in [2] in the context of the estimation of the vector of normal means, or regression under
the orthogonal design (see the preceding section) and further explored in [8]. Due to an implicit
control of the number of false discoveries, similar model selection criteria are appealing in gene
mapping studies (see e.g. [26]).

The problem with the selection strategies just described is that, in general, they are computa-
tionally intractable. Solving (1.12) would involve a brute-force search essentially requiring to fit
least-squares estimates for all possible subsets of variables. This is not practical for even moderate
values of p—e. g. for p > 60.

The decaying sequence of the smoothing parameters in SLOPE goes along the line of the
adaptive `0 penalties proposed in (1.12) in which the ‘cost per variable included’ decreases as more
get selected. However, SLOPE is computationally tractable and can be easily evaluated even for
large-dimensional problems.

1.3.2 Adaptive lasso

Perhaps the most popular alternative to the computationally intractable `0 penalization methods
is the lasso. We have already discussed some of the limitations of this approach with respect to
FDR control and now wish to explore further the connections between SLOPE and variants of this
procedure. It is well known that the lasso estimates of the regression coefficients are biased due to
the shrinkage imposed by the `1 penalty. To increase the accuracy of the estimation of large signals
and eliminate some false discoveries the adaptive or reweighted versions of lasso were introduced
(see e.g. [44] or [20]). In these procedures the smoothing parameters λ1, . . . , λp are adjusted to the
unknown signal magnitudes based on some estimates of regression coefficients, perhaps obtained
through previous iterations of lasso. The idea is then to consider a weighted penalty

∑
iwi|bi|, where

wi is inversely proportional to the estimated magnitudes so that large regression coefficients are
shrunk less than smaller ones. In some circumstances, such adaptive versions of lasso outperform
the regular lasso for selection [44].

The idea behind SLOPE is entirely different. In the adaptive lasso, the penalty tends to decrease
as the magnitude of coefficients increases. In our approach, the exact opposite happens. This comes
from the fact that we seek to adapt to the unknown signal sparsity while controlling the FDR. As
shown in [2], FDR controlling properties can have interesting consequences for estimation. In
practice, since the SLOPE sequence λ1 ≥ . . . ≥ λp leading to FDR control is typically rather large,
we do not recommend using SLOPE directly for the estimation of regression coefficients. Instead we
propose the following two-stage procedure: in the first step, SLOPE is used to identify significant
predictors; in the second step, the corresponding regression coefficients are estimated using the
least squares method within the identified sparse regression model. Such a two-step procedure can
be thought of as an extreme case of reweighting, where those selected variables are not penalized
while those that are not receive an infinite penalty. As shown below, these estimates have very
good properties when the coefficient sequence β is sparse.

1.3.3 A first illustrative simulation

To concretely illustrate the specific behavior of SLOPE compared to more traditional penalized
approaches, we rely on the simulation of a relatively simple data structure. We set n = p = 5000
and generate the entries of the design matrix with i.i.d. N (0, 1/n) entries. The number of true
signals k varies between 0 and 50 and their magnitudes are set to βi =

√
2 log p ≈ 4.1, while the

8



variance of the error term is assumed known and equal to 1. This choice of model parameters
makes the signal barely distinguishable from the noise.

We fit these observations with three procedures: 1) lasso with parameter λBonf = σ · Φ−1(1 −
α/2p), which controls FWER weakly; 2) lasso with the smoothing parameter λCV chosen with
10-fold cross-validation; 3) SLOPE with a sequence λ1, . . . , λp defined in Section 3.2.2, expression
(3.7). The level α for λBonf and q for FDR control in SLOPE are both set to 0.1. To compensate for
the fact that lasso with λBonf and SLOPE tend to apply a much more stringent penalization than
lasso with λCV—which aims to minimize prediction error—we have “de-biased” their resulting
β estimates when comparing the methods on the ground of prediction error: that is, we have
used ordinary least squares to estimate the coefficients of the variables selected by lasso–λBonf and
SLOPE.

We compare the procedures on the basis of three criteria: a) FDR, b) power, c) relative squared
error ‖Xβ̂ −Xβ‖2`2/‖Xβ‖

2
`2

. Note that only the first of these measures is meaningful for the case
where k = 0, and in such case FDR=FWER. Figure 2 reports the results of 500 independent
replicates.

As illustrated in Figures 2a and 2b, the three approaches exhibit quite dramatically different
properties with respect to model selection: SLOPE and lasso–λBonf control FDR, paying a corre-
sponding price in terms of power, while lasso–λCV offers no FDR control. In more detail, SLOPE
controls FDR at level 0.1 for the explored range of k; as k increases, its power goes from 45% to
70%. Lasso–λBonf has FDR =0.1 at k = 0, and a much lower one for the remaining values of k;
this results in a loss of power with respect to SLOPE: irrespective of k, power is less than 45%.
Cross-validation chooses a λ that minimizes an estimate of prediction error: this would increase if
irrelevant variables are selected, but also if important ones are omitted, or if their coefficients are
excessively shrunk. As a result, the λCV is quite smaller than a penalization parameter chosen with
FDR control in mind. This results in greater power than SLOPE, but with a much larger FDR
(80% on average).

Figure 2c illustrates the relative mean-square error, which serves as a measure of prediction
accuracy. We recall that we used de-biased versions of lasso–λBonf and SLOPE, while we left the
predictions from lasso–λCV untouched since these were chosen to minimize prediction error. It is
remarkable how, despite the fact that lasso–λCV has higher power, SLOPE has lower percentage
prediction error for all the sparsity levels considered.

2 Algorithms

In this section, we present effective algorithms for computing the solution to SLOPE (1.10), which
rely on the numerical evaluation of the proximity operator (prox) to the sorted `1 norm.

2.1 Proximal gradient algorithms

SLOPE is a convex optimization problem of the form

minimize f(b) = g(b) + h(b), (2.1)

where g is smooth and convex, and h is convex but not smooth. In SLOPE, g is the residual sum
of squares and, therfore, quadratic while h is the sorted `1 norm. A general class of algorithms for
solving problems of this kind are known as proximal gradient methods, see [36, 37] and references
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Figure 2: Properties of different procedures as a function of the true number of nonzero
regression coefficients: (a) FDR, (b) Power, (c) Relative MSE defined as the average of 100 ·
‖µ̂ − µ‖2`2/‖µ‖

2
`2

, with µ = Xβ, µ̂ = Xβ̂. The design matrix entries are i.i.d. N (0, 1/n),

n = p = 5, 000, all nonzero regression coefficients are equal to
√

2 log p ≈ 4.13, and σ2 = 1.
Each point in the figures corresponds to the average of 500 replicates.

therein. These are iterative algorithms operating as follows: at each iteration, we hold a guess b of
the solution, and compute a local approximation to the smooth term g of the form

g(b) + 〈∇g(b), x− b〉+
1

2t
‖x− b‖2`2 .

This is interpreted as the sum of a Taylor approximation of g and of a proximity term; as we shall
see, this term is responsible for searching an update reasonably close to the current guess b, and t
can be thought of as a step size. Then the next guess b+ is the unique solution to

b+ = arg minx

{
g(b) + 〈∇g(b), x− b〉+

1

2t
‖x− b‖2`2 + h(x)

}
= arg minx

{
1

2t
‖(b− t∇g(b))− x‖2`2 + h(x)

}
(unicity follows from strong convexity). Hence, in the case where h vanishes, this reduces to
straightforward gradient descent while in the case where h is an indicator function equal to 0 if b
lies in some convex set C and equal to +∞ otherwise, this reduces to the well-known projected
gradient method. (In the latter case, minimizing g(b)+h(b) is equivalent to minimizing g(b) subject
to b ∈ C.) In the literature, the mapping

x(y) = arg minx

{
1

2t
‖y − x‖2`2 + h(x)

}
is called the proximal mapping or prox for short, and denoted by x = proxth(y).

The prox of the `1 norm is given by entry-wise soft-thresholding [37, page 150] so that a proximal
gradient method to solve the lasso would take the following form: starting with b0 ∈ Rp, inductively
define

bk+1 = ηλtk(bk − tkX ′(Xbk − y); tkλ),

10



where ηλ(y) = sign(y) · (|y|−λ)+ and {tk} is a sequence of step sizes. Hence, we can solve the lasso
by iterative soft thresholding.

It turns out that one can compute the prox to the sorted `1 norm in nearly the same amount
of time as it takes to apply soft thesholding. In particular, assuming that the entries are sorted,
we shall demonstrate a linear-time algorithm. Hence, we may consider a proximal gradient method
for SLOPE as in Algorithm 1.

Algorithm 1 Proximal gradient algorithm for SLOPE (1.10)

Require: b0 ∈ Rp
1: for k = 0, 1, . . . do
2: bk+1 = proxtk Jλ(bk − tkX ′(Xbk − y))
3: end for

It is well known that the algorithm converges (in the sense that f(bk), where f is the objective
functional, converges to the optimal value) under some conditions on the sequence of step sizes
{tk}. Valid choices include step sizes obeying tk < 2/‖X‖2 and step sizes obtained by backtracking
line search, see [7, 6]. Further, one can use duality theory to derive concrete stopping criteria, see
Appendix B for details.

Many variants are of course possible and one may entertain accelerated proximal gradient
methods in the spirit of FISTA, see [6] and [35, 36]. The scheme below is adapted from [6].

Algorithm 2 Accelerated proximal gradient algorithm for SLOPE (1.10)

Require: b0 ∈ Rp, and set a0 = b0 and θ0 = 1
1: for k = 0, 1, . . . do
2: bk+1 = proxtk Jλ(ak − tkX ′(Xak − y))

3: θ−1k+1 = 1
2(1 +

√
1 + 4/θ2k)

4: ak+1 = bk+1 + θk+1(θ
−1
k − 1)(bk+1 − bk)

5: end for

The code in our numerical experiments uses a straightforward implementation of the standard
FISTA algorithm, along with problem-specific stopping criteria. Standalone Matlab and R imple-
mentations of the algorithm are available at http://www-stat.stanford.edu/~candes/SortedL1.
In addition, the TFOCS package available at http://cvxr.com [7] implements Algorithms 1 and
2 as well as many variants; for instance, the Matlab code below prepares the prox and then solves
the SLOPE problem,

prox = prox_Sl1(lambda);

beta = tfocs( smooth_quad, { X, -y }, prox, beta0, opts );

Here beta0 is an initial guess (which can be omitted) and opts are options specifying the methods
and parameters one would want to use, please see [7] for details. There is also a one-liner with
default options which goes like this:

beta = solver_SLOPE( X, y, lambda);
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2.2 Fast prox algorithm

Given y ∈ Rn and λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0, the prox to the sorted `1 norm is the unique solution to

prox(y;λ) := argminx∈Rn
1
2‖y − x‖

2
`2 +

n∑
i=1

λi|x|(i). (2.2)

Without loss of generality we can make the following assumption:

Assumption 2.1. The vector y obeys y1 ≥ y2 ≥ · · · ≥ yn ≥ 0.

At the solution to (2.2), the sign of each xi 6= 0 will match that of yi. It therefore suffices to
solve the problem for |y| and restore the signs in a post-processing step, if needed. Likewise, note
that applying any permutation P to y results in a solution Px. We can thus choose a permutation
that sorts the entries in y and apply its inverse to obtain the desired solution.

Proposition 2.2. Under Assumption 2.1, the solution x to (2.2) satisfies x1 ≥ x2 ≥ · · · ≥ xn ≥ 0.

Proof Suppose that xi < xj for i < j (and yi > yj), and form a copy x′ of x with entries i and j
exchanged. Letting f be the objective functional in (2.2), we have

f(x)− f(x′) = 1
2(yi − xi)2 + 1

2(yj − xj)2 − 1
2(yi − xj)2 − 1

2(yj − xi)2.

This follows from the fact that the sorted `1 norm takes on the same value at x and x′ and that all
the quadratic terms cancel but those for i and j. This gives

f(x)− f(x′) = xjyi − xiyi + xiyj − xjyj = (xj − xi)(yi − yj) > 0,

which shows that the objective x′ is strictly smaller, thereby contradicting optimality of x.

Under Assumption 2.1 we can reformulate (2.2) as

minimize 1
2‖y − x‖

2
`2

+
∑n

i=1 λixi
subject to x1 ≥ x2 ≥ · · · ≥ xn ≥ 0.

(2.3)

In other words, the prox is the solution to a quadratic program (QP). However, we do not suggest
performing the prox calculation by calling a standard QP solver, rather we introduce the Fast-
ProxSL1 algorithm for computing the prox: for ease of exposition, we introduce Algorithm 3 in its
simplest form before presenting a stack implementation (Algorithm 4) running in O(n) flops.
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Algorithm 3 FastProxSL1

input: Nonnegative and nonincreasing sequences y and λ.
while y − λ is not nonincreasing do

Identify strictly increasing subsequences, i.e. segments i : j such that

yi − λi < yi+1 − λi+1 < . . . < yj − λj . (2.4)

Replace the values of y and λ over such segments by their average value: for k ∈ {i, i+1, . . . , j}

yk ←
1

j − i+ 1

∑
i≤k≤j

yk, λk ←
1

j − i+ 1

∑
i≤k≤j

λk.

end while
output: x = (y − λ)+.

Algorithm 3, which terminates in at most n steps, is simple to understand: we simply keep on
averaging until the monotonicity property holds, at which point the solution is known in closed
form. The key point establishing the correctness of the algorithm is that the update does not
change the value of the prox. This is formalized below.

Lemma 2.3. The solution does not change after each update; formally, letting (y+, λ+) be the
updated value of (y, λ) after one pass in Algorithm 3,

prox(y;λ) = prox(y+;λ+).

Next, if (y − λ)+ is nonincreasing, then it is the solution to (2.2), i.e. prox(y;λ) = (y − λ)+.

This lemma, whose proof is in the Appendix, guarantees that the FastProxSL1 algorithm finds
the solution to (2.2) in a finite number of steps.

As stated earlier, it is possible to obtain a careful O(n) implementation of FastProxSL1. Below
we present a stack-based approach. We use tuple notation (a, b)i = (c, d) to denote ai = c, bi = d.
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p = 105 p = 106 p = 107

Total prox time (sec.) 9.82e-03 1.11e-01 1.20e+00
Prox time after normalization (sec.) 6.57e-05 4.96e-05 5.21e-05

Table 1: Average runtimes of the stack-based prox implementation with normalization steps
(sorting and sign changes) included, respectively excluded.

Algorithm 4 Stack-based algorithm for FastProxSL1.

1: input: Nonnegative and nonincreasing sequences y and λ.
2: # Find optimal group levels
3: t← 0
4: for k = 1 to n do
5: t← t+ 1
6: (i, j, s, w)t = (k, k, yi − λi, (yi − λi)+)
7: while (t > 1) and (wt−1 ≤ wt) do
8: (i, j, s, w)t−1 ← (it−1, jt, st−1 + st, (

jt−1−it−1+1
jt−it−1+1 · st−1 + jt−it+1

jt−ii−1+1 · st)+)

9: Delete (i, j, s, w)t, t← t− 1
10: end while
11: end for
12: # Set entries in x for each block
13: for ` = 1 to t do
14: for k = i` to j` do
15: xk ← w`
16: end for
17: end for

For the complexity of the algorithm note that we create a total of n new tuples. Each of these
tuple is merged into a previous tuple at most once. Since the merge takes a constant amount of
time the algorithm has the desired O(n) complexity.

With this paper, we are making available a C, a Matlab, and an R implementation of the stack-
based algorithm at http://www-stat.stanford.edu/~candes/SortedL1. The algorithm is also
included in the current version of the TFOCS package. To give an idea of the speed, we applied
the code to a series of vectors with fixed length and varying sparsity levels. The average runtimes
measured on a MacBook Pro equipped with a 2.66 GHz Intel Core i7 are reported in Table 1.

2.3 Connection with isotonic regression

Brad Efron informed us about the connection between the FastProxSL1 algorithm for SLOPE and
a simple iterative algorithm for solving istonic problems called the pool adjacent violators algorithm
(PAVA) [30, 4]. A simple instance of an isotonic regression problem involves fitting data in a least
squares sense in such a way that the fitted values are monotone:

minimize 1
2‖y − x‖

2
`2

subject to x1 ≥ x2 ≥ · · · ≥ xn
(2.5)
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here, y is a vector of observations and x is the vector of fitted values, which are here constrained to
be nonincreasing. We have chosen this formulation to emphasize the connection with (2.3). Indeed,
our QP (2.3) is equivalent to

minimize 1
2

∑n
i=1(yi − λi − xi)2

subject to x1 ≥ x2 ≥ · · · ≥ xn ≥ 0

so that we see are really solving an isotonic regression problem with data yi − λi. Algorithm 3 is
then a version of PAVA as described in [4], see [13, 27] for related work and connections with active
set methods.

In closing, we would also like to note that De Leeuw, Hornik and Mair [32] have contributed a
nice R package called isotone available at http://cran.r-project.org/web/packages/isotone/
index.html, which can also be used to compute the prox to the sorted `1 norm, and thus to help
fit SLOPE models.

3 Results

We now turn to illustrate the performance of our SLOPE proposal in three different ways. First,
we describe a multiple-testing situation where reducing the problem to a model selection setting
and applying SLOPE assures FDR control, and results in a testing procedure with appreciable
properties. Secondly, we discuss guiding principles to choose the sequence of λi’s in general settings,
and illustrate the efficacy of the proposals with simulations. Thirdly, we apply SLOPE to a data
set collected in genetics investigations.

3.1 An application to multiple testing

In this section we show how SLOPE can be used as an effective multiple comparison controlling pro-
cedure in a testing problem with a specific correlation structure. Consider the following situation.
Scientists perform p = 1, 000 experiments in each of 5 randomly selected laboratories, resulting in
observations that can be modeled as

yi,j = µi + τj + zi,j , 1 ≤ i ≤ 1000, 1 ≤ j ≤ 5,

where the laboratory effects τj are i.i.d. N (0, σ2τ ) random variables and the errors zi,j are i.i.d.
N (0, σ2z), with the τ and z sequences independent of each other. It is of interest to test whether
Hj : µj = 0 versus a two-sided alternative. Averaging the scores over all five labs, results in

ȳi = µi + τ̄ + z̄i, 1 ≤ i ≤ 1000,

with ȳ ∼ N (0,Σ) and Σi,i = 1
5(σ2τ + σ2z) = σ2 and Σi,j = 1

5σ
2
τ = ρ for i 6= j.

The problem has then been reduced to testing if the means of a multivariate Gaussian vector
with equicorrelated entries do not vanish. One possible approach is to use each ȳi as a marginal
test, and rely on the Benjamini-Hochberg procedure to control FDR. That is, we order |ȳ|(1) ≥
|ȳ|(2) ≥ . . . ≥ |ȳ|(p) and apply the step-up procedure with critical values equal to σ ·Φ−1(1− iq/2p).
While BH has not been proven to control FDR for families of two-sided tests, according to our
simulations it seems to do so when the data are multivariate normal. Therefore, in our simulations
we use the original BH rather than the theoretically justified but more conservative adjustment
from [10, Theorem 1.3], which would substantially reduce the performance.
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Another possible approach is to ‘whiten the noise’ and express our multiple testing problem in
the form of a regression equation

ỹ = Σ−1/2ȳ = Σ−1/2µ+ ε, (3.1)

where ε ∼ N (0, Ip). Treating Σ−1/2 as the regression design matrix, our problem is equivalent to
classical model selection: identify the non-zero components of the vector µ of regression coefficients.5

Note that while the matrix Σ is far from being diagonal, Σ−1/2 is diagonally dominant. For example

when σ2 = 1 and ρ = 0.5 then Σ
−1/2
i,i = 1.4128 and Σ

−1/2
i,j = −0.0014 for i 6= j. Thus, every low-

dimensional sub-model obtained by selecting few columns of the design matrix Σ−1/2 will be very
close to orthogonal. In summary, the transformation (3.1) reduces the multiple-testing problem with
strongly positively correlated test statistics to a problem of model selection under approximately
orthogonal design, which is well suited for the application of SLOPE with the λBH values.

To compare the performances of these two approaches, we simulate a sequence of sparse multiple
testing problems, with σ2 = 1, ρ = 0.5 and the number k of nonzero µi’s varying between 0 and
80. To use SLOPE, we center the vector ỹ by subtracting its mean, and center and standardize
columns of Σ−1/2 so that they have zero mean and unit norm. With this normalization, all the
nonzero means are set to

√
2 log p ≈ 3.7, so as to obtain moderate power. Figure 3 reports the

results of these simulations, averaged over 500 independent replicates.
In our setting, SLOPE keeps FDR at the nominal level as long as k ≤ 40. Then its FDR slowly

increases, but for k ≤ 80 it is still very close to the nominal level. On the other hand, the BH
procedure on the marginal tests is too conservative: the FDR is below the nominal level (Figure
3a and 3b), resulting in a loss of power with respect to SLOPE (Figure 3c). Moreover, the False
Discovery Proportion (FDP) in the marginal tests with BH correction appears more variable across
replicates than that of SLOPE (Figure 3a, 3b and 3d). Figure 4 presents the results in greater
detail for q = 0.1 and k = 50: in approximately 75% of the cases the observed FDP for BH is equal
to 0, while in the remaining 25%, it takes values which are distributed over the whole interval (0,1).
This behavior is undesirable. On the one hand, FDP = 0 typically equates with little discoveries
(and hence power loss). On the other hand, if many FDP = 0 contribute to the average in the
FDR, this quantity is kept below the desired level q even if, when there are discoveries, a large
number of them are false. Indeed, in approximately 35% of all cases BH on the marginal tests did
not make any rejections (i.e., R = 0); and conditional on R > 0, the mean of FDP is equal to
0.22 with a standard deviation of 0.28, which clearly shows that the observed FDP is typically far
away from the nominal value of q = 0.1. In other words, while BH controls FDR on average, the
scientists would either make no discoveries or have very little confidence on those actually made. In
contrast, SLOPE results in a more predictable FDP and substantially larger and more predictable
True Positive Proportion (TPP, fraction of correctly identified true signals), see Figure 4.

3.2 Choosing λ in general settings.

In the previous sections we observed that under the orthogonal designs lasso with λBonf = σ ·
Φ−1 (1− α/2p) controls FWER at the level α, while SLOPE with the sequence λ = λBH controls
FDR at the level q. We are interested, however, in applying these procedures in more general
settings, specifically when p > n and there is some correlation among the explanatory variables,
and when the value of σ2 is not known. We start tackling the first situation. Correlation among

5To be explicit, (3.1) is the basic regression model with X = Σ−1/2 and β = µ.
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Figure 3: Simulation results for testing multiple means from correlated statistics. (a)-(b)
Mean FDP ± 2 SE for SLOPE and marginal tests as a function of k. (c) Power plot. (d)
Variability of the false discovery proportions for both methods.

regressors notoriously introduces a series of complications in the statistical analysis of linear models,
ranging from the increased computational costs that motivated the early popularity of orthogonal
designs, to the conceptual difficulties of distinguishing causal variables among correlated ones.
Indeed, recent results on the consistency of `1 penalization methods typically require some form
of partial orthogonality. SLOPE and lasso aim at finite sample properties, but it would not be
surprising if departures from orthogonality were to have a serious effect. To explore this, we study
the performance of lasso and SLOPE in the case where the entries of the design matrix are generated
independently from the N (0, 1/n) distribution. Specifically, we consider two Gaussian designs with
n = 5000: one with p = 2n =10,000 and one with p = n/2 = 2500. We set the value of non-zero
coefficients to 5

√
2 log p and consider situations where the number of important variables ranges

between 0 and 100. Figure 5 reports the results of 500 independent simulations.
While the columns of the design matrix are realizations of independent random variables, their

inner products are not equal to zero due to randomness. Our simulations show that even such a
small departure from orthogonality can have a substantial impact on the properties of the model
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Figure 4: Testing example with q = 0.1 and k = 50. Top row refers to marginal tests, and
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selection procedures. In Figure 5 it can be observed that when k = 0 (data is pure noise), then
both lasso-λBonf and SLOPE both control their targeted error rates (FWER and FDR) at the
nominal level. However, this control is lost as the number k of nonzero coefficients increases, with
a departure that is more severe when the ratio between p/n is larger.

3.2.1 The effect of shrinkage

What is behind this fairly strong effect and is it possible to choose a λ sequence to compensate it?
Some useful insights come from studying the solution of the lasso. Assume that the columns of X
have unit norm and that z ∼ N (0, 1). Then the optimality conditions for the lasso give

β̂ = ηλ(β̂ −X ′(Xβ̂ − y)) = ηλ(β̂ −X ′(Xβ̂ −Xβ − z))
= ηλ(β̂ −X ′X(β̂ − β) +X ′z), (3.2)

where ηλ is the soft-thresholding operator, ηλ(t) = sgn(t)(|t|−λ)+, applied componentwise. Defining
vi = 〈Xi,

∑
j 6=iXj(βj − β̂j)〉, we can write

β̂i = ηλ(βi +X ′iz + vi), (3.3)
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Figure 5: Observed FWER for lasso with λBonf and FDR for SLOPE with λBH under Gaussian
design and n = 5, 000.

which expresses the relation between the estimated value of β̂i and its true value βi. If the variables
are orthogonal, the vi’s are identically equal to 0, leading to β̂i = ηλ(βi+X ′iz). Conditionally on X,
X ′iz ∼ N (0, 1) and by using Bonferroni’s method, one can choose λ such that P(maxi |X ′iz| > λ) ≤
α. When X is not orthogonal, however, vi 6= 0, and its size increases with the estimation error for
βj with j 6= i. While there is an error associated with the selection of irrelevant variables, suppose
that this has been eliminated and that the correct set of variables has been included in the model.
A procedure such as the lasso or SLOPE will still make an error due to the shrinkage of regression
coefficients: even in a perfect situation, where all the k relevant variables, and those alone, have
been selected, and when all columns of the design matrix are realizations of independent random
variables, vi will not be zero. Rather its squared magnitude will be on the order of λ2 ·k/n. In other
words, the variance that would determine the correct Bonferroni threshold should be on the order
1 + λ2 · k/n, where k is the correct number of variables in the model. In reality, the true k is not
known a priori, and the selected k depends on the value of the smoothing parameter λ, so that it is
not trivial to implement this correction in the lasso. SLOPE, however, uses a decreasing sequence λ,
analogous to a step-down procedure, and this extra noise due to the shrinkage of relevant variables
can be incorporated by progressively modifying the λ sequence. In evocative, if not exact terms, λ1
is used to select the first variable to enter the model: at this stage we are not aware of any variable
whose shrunk coefficient is ‘effectively increasing’ the noise level, and we can keep λ1 = λBH(1).
The value of λ2 determines the second variable to enter the model and, hence, we know that there
is already one important variable whose coefficient has been shrunk by roughly λBH(1): we can use
this information to re-define λ2. Similarly, when using λ3 to identify the third variable, we know
of two relevant regressors whose coefficients have been shrunk by amounts determined by λ1 and
λ2, and so on. What follows is an attempt to make this intuition more precise, accounting for the
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fact that the sequence λ needs to be determined a priori, and we need to make a prediction on the
values of the cross products X ′iXj appearing in the definition of vi. Before we turn to this, we want
to underscore how the explanation offered in this section for the loss of FDR control is consistent
with patterns evident from Figure 5: the problem is more serious as k increases (and hence the
effect of shrinkage is felt on a larger number of variables), and as the ratio p/n increases (which
for Gaussian designs results in larger empirical correlation |X ′iXj |). Our loose analysis suggests
that when k is really small, SLOPE with λBH yields an FDR that is close to the nominal level, as
empirically observed.

3.2.2 Adjusting the regularizing sequence for SLOPE

In light of (3.3) we would like an expression for X ′iXS(βS − β̂S), where with S, XS and βS we
indicate the support of β, the subset of variables associated to βi 6= 0, and the value of their
coefficients, respectively.

Again, to obtain a very rough evaluation of the SLOPE solution, we can start from the lasso.
Let us assume that the size of βS and the value of λ are such that the support and the signs
of the regression coefficients are correctly recovered in the solution. That is, we assume that
sign(βj) = sign(β̂j) for all j, with the convention that sign(0) = 0. Without loss of generality, we
further assume that βj ≥ 0. Now, the Karush–Kuhn-Tucker (KKT) optimality conditions for lasso
yield

X ′S(y −Xβ̂S) = λ · 1S , (3.4)

implying
β̂S = (X ′SXS)−1(X ′Sy − λ · 1S).

In the case of SLOPE, rather than one λ, we have a sequence λ1, . . . , λp. Assuming again that this
is chosen so that we recover exactly the support S, the estimates of the nonzero components are
very roughly equal to

β̂S = (X ′SXS)−1(X ′Sy − λS),

where λS = (λ1, . . . , λk)
′. This leads to

EXS(βS − β̂S) ≈ XS(X ′SXS)−1λS ,

an expression that, plugged into vi (3.3) tells us the typical size of X ′iXS(X ′SXS)−1λS .
For the case of Gaussian designs as in Figure 5, where the entries of X are i.i.d. N (0, 1/n), for

i /∈ S,

E(X ′iXS(X ′SXS)−1λS)2 =
1

n
λ′S E(X ′SXS)−1λS = w(|S|) · ‖λS‖2`2 , w(k) =

1

n− k − 1
. (3.5)

This uses the fact that the expected value of an inverse k × k Wishart with n degrees of freedom
is equal to Ik/(n− k − 1).

This suggests the sequence of λ’s described below denoted by λG since it is motivated by
Gaussian designs. We start with λG(1) = λBH(1). At the next stage, however, we need to account
for the slight increase in variance so that we do not want to use λBH(2) but rather

λG(2) = λBH(2)
√

1 + w(1)λG(1)2.
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Continuing, this gives

λG(i) = λBH(i)

√
1 + w(i− 1)

∑
j<i

λG(j)2. (3.6)

Figure 6 plots the adjusted values given by (3.6). As is clear, these new values yield a procedure
that is more conservative than that based on λBH. It can be observed that the corrected sequence
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Figure 6: Graphical representation of sequences {λi} for n = 5000 and q = 0.1. The solid
line is λBH, the dashed (resp. dotted) line is λG given by (3.6) for n = p/2 (resp. n = 2p).

λG(i) may no longer be decreasing (as in the case where n = p/2 in the figure). It would not
make sense to use such a sequence—note that SLOPE would no longer be convex—and letting
k? = k(n, p, q) be the location of the global minimum, we shall work with

λG?(i) =

{
λG(i), i ≤ k?,
λk? , i > k?,

with λG(i) as in (3.6). (3.7)

The value k?, starting from which we need to modify λG might play a role on the overall performance
of the method.

An immediate validation—if the intuition that we have stretched this far has any bearing in
reality—is the performance of λG? in the setup of Figure 5. In Figure 7 we illustrate the performance
of SLOPE for large signals βi = 5

√
2 log p as in Figure 5, as well as for rather weak signals with

βi =
√

2 log p. The correction works very well, rectifying the loss of FDR control documented in
Figure 5. For p = 2n = 10, 000, the values of the critical point k? are 51 for q = 0.05 and 68 for
q = 0.1. For p = n/2 = 2, 500, they become 95 and 147 respectively. It can be observed that
for large signals, SLOPE keeps FDR below the nominal level even after passing the critical point.
Interestingly, the control of FDR is more difficult when the coefficients have small amplitudes.
We believe that some increase of FDR for weak signals is related to the loss of power, which our
correction does not account for. However, even for weak signals the observed FDR of SLOPE with
λG? is very close to the nominal level when k ≤ k?.
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(a) p = 2n = 10, 000.
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(b) p = n/2 = 2, 500.

Figure 7: Mean FDP ± 2SE for SLOPE with λG? . Strong signals have nonzero regression
coefficients set to 5

√
2 log p while this value is set to

√
2 log p for weak signals.

In situations where one cannot assume that the design is Gaussian or that columns are indepen-
dent, we suggest replacing w(i−1)

∑
j<i λ

2
j in the formula (3.6) with a Monte Carlo estimate of the

correction. Let X denote the standardized version of the design matrix, so that each column has a
mean equal to zero and unit variance. Suppose we have computed λ1, . . . , λi−1 and wish to compute
λi. Let XS indicate a matrix formed by selecting those columns with indices in some set S of car-
dinality i− 1 and let j /∈ S. After randomly selecting S and j, the correction can be approximated
by the average of (X ′jXS(X ′SXS)−1λ1:i−1)

2 across realizations, where λ1:i−1 = (λ1, . . . , λi−1)
′. We

will apply this strategy in the real-data example from genetics in the following section.

3.2.3 Unknown σ

According to formulas (1.5) and (1.10) the penalty in SLOPE depends on the standard deviation
σ of the error term. In many applications σ is not known and needs to be estimated. When n
is larger than p, this can easily be done by means of classical unbiased estimators. When p ≥ n,
some solutions for simultaneous estimation of σ and regression coefficients using `1 optimization
schemes were proposed, see e.g. [40] and [41]. Specifically, [41] introduced a simple iterative version
of the lasso called the scaled lasso. The idea of this algorithm can be applied to SLOPE, with some
modifications. For one, our simulation results show that, under very sparse scenarios, it is better
to de-bias the estimates of regression parameters by using classical least squares estimates within
the selected model to obtain an estimate of σ2.

We present our algorithm below. There, λS is the sequence of SLOPE parameters designed to
work with σ = 1, obtained using the methods from Section 3.2.2.
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Algorithm 5 Iterative SLOPE fitting when σ is unknown

1: input: y, X and initial sequence λS (computed for σ = 1)
2: initialize: S+ = ∅
3: repeat
4: S = S+
5: compute the RSS obtained by regressing y onto variables in S
6: set σ̂2 = RSS/(n− |S| − 1)
7: compute the solution β̂ to SLOPE with parameter sequence σ̂ · λS
8: set S+ = supp(β̂)
9: until S+ = S

The procedure starts by using a conservative estimate of the standard deviation of the error term
σ̂(0) = Std(y) and a related conservative version of SLOPE with λ(0) = σ̂(0)·λS . Then, in consecutive
runs σ̂(k) is computed using residuals from the regression model, which includes variables identified
by SLOPE with sequence σ(k−1) · λS . The procedure is repeated until convergence, i.e. until the
next iteration results in exactly the same model as the current one.

To verify the performance of this algorithm we conducted a series of experiments under sparse
regression models. Specifically, Figure 8 compares the performance of the ‘scaled SLOPE’ with the
case of known σ. The 5, 000 × 5, 000 design matrix has i.i.d. N (0, 1/n) entries, the noise level is
set to σ = 1 and the size of the nonzero regression coefficients is equal to

√
2 log p ≈ 4.13 (‘weak’

signal) and 5
√

2 log p = 20.64. (‘strong’ signal). We work with λS = λG? given by the formula (3.7)
for q = 0.1.

In our simulations, the proposed algorithm converges very quickly. The conservative initial
estimate of σ leads to a relatively small model with few false discoveries since σ(0) · λS controls
the FDR in sparse scenarios. Typically, iterations to convergence see the estimated value of σ
decrease and the number of selected variable increase. When the signals are weak, σ remains
slightly overestimated as the residual error is inflated by some undetected signals. This translates
into controlling the FDR at a level slightly below the nominal one (Figure 8a) with, however,
only a minor decrease in power (Figure 8c). For strong signals, which are always detected in our
experiments, σ is slightly underestimated due to the selection of a small number of false regressors.
Figure 8b shows that for larger k the FDR of the scaled version very slightly exceeds that of the
version operating with a known σ, remaining below the nominal level for all k in the considered
range.

3.3 An example from genetics

In this section we illustrate the application of SLOPE to a current problem in genetics. In [39], the
authors investigate the role of genetic variants in 17 regions in the genome, selected on the basis
of previously reported association with traits related to cardiovascular health. Polymorphisms
are identified via exome re-sequencing in approximately 6,000 individuals of Finnish descent: this
provides a comprehensive survey of the genetic diversity in the coding portions of these regions
and affords the opportunity to investigate which of these variants have an effect on the traits of
interest. While the original study has a broader scope, we here tackle the problem of identifying
which genetic variants in these regions impact the fasting blood HDL levels. Previous literature
reported associations between 9 of the 17 regions and HDL, but the resolution of these earlier
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Figure 8: FDR and power of two versions of SLOPE with q = 0.1 under a 5, 000 × 5, 000
Gaussian design matrix. The noise level σ is equal to 1. In each replicate, the signals are
randomly placed over the columns of the design matrix, and the plotted data points are averages
over 500 replicates. The power is reported only for weak signals (βi ≈ 4.13) since for strong
signals (βi ≈ 20.64) it is always equal to 1.

studies was unable to pinpoint to specific variants in these regions or to distinguish if only one or
multiple variants within the regions impact HDL. The resequencing study was designed to address
this problem.

The analysis in [39] relies substantially on “marginal” tests: the effect of each variant on HDL is
examined via a linear regression that has cholesterol level as outcome and the genotype of the variant
as explanatory variable, together with covariates that capture possible population stratification.
Such marginal tests are common in genetics and represent the standard approach in genome-wide
association studies (GWAS). Among their advantages it is worth mentioning that they allow to
use all available observations for each variant without requiring imputation of missing data; their
computational cost is minimal; and they result in a p-value for each variant that can be used
to clearly communicate to the scientific community the strength of the evidence in favor of its
impact on a particular trait. Marginal tests, however, cannot distinguish if the association between
a variant and a phenotype is “direct” or due to correlation between the variant in question and
another, truly linked to the phenotype. Since most of the correlation between genetic variants is
due to their location along the genome (with near-by variants often correlated), this confounding
is often considered not too serious a limitation in GWAS: multiple polymorphisms associated to a
phenotype in one locus simply indicate that there is at least one genetic variant (most likely not
measured in the study) with impact on the phenotype in the locus. The situation is quite different in
the re-sequencing study we want to analyze, where establishing if one or more variants in the same
region influence HDL is one of the goals. To address this, the authors of [39] resort to regressions
that include two variables at the time: one of these being the variant with previously documented
strongest marginal signal in the region, the other variants that passed an FDR controlling threshold
in the single variant analysis. Model selection strategies were only cursory explored with a step-
wise search routine that targets BIC. Such limited foray into model selection is motivated by the
fact that one major concern in genetics is to control some global measure of type one error and
currently available model selection strategies do not offer finite sample guarantees with this regard.
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This goal is in line with that of SLOPE and so it is interesting for us to apply this new procedure
to this problem.

The dataset in [39] comprises 1,878 variants, on 6,121 subjects. Before analyzing it with SLOPE,
or other model selection tools, we performed the following filtering. We eliminated from considera-
tions variants observed only once (a total of 486), since it would not be possible to make inference
on their effect without strong assumptions. We examined correlation between variants and selected
for analysis a set of variants with pair-wise correlation smaller than 0.3: larger values would make
it quite challenging to interpret the outcomes; they render difficult the comparison of results across
procedures since these might select different variables from a group of correlated ones; and large
correlations are likely to adversely impact the efficacy of any model selection procedure. This re-
duction was carried out in an iterative fashion, selecting representative from groups of correlated
variables, starting from stronger levels of correlation and moving onto lower ones. Among corre-
lated variables, we selected those that had stronger univariate association with HDL, larger minor
allele frequency (diversity), and, among very rare variants we privileged those whose annotation
was more indicative of possible functional effects. Once variables were identified, we eliminated
subjects that were missing values for more than 10 variants, and for HDL. The remaining missing
values were imputed using the average allele count per variant. This resulted in a design with 5,375
subjects and 777 variants. The minor allele frequency of the variants included ranges from 2×10−4

to 0.5, with a median of 0.001 and a mean of 0.028: the data set still includes a number of rare
variants.

In [39], association between HDL and polymorphisms was analyzed only for variants in regions
previously identified as having an influence on HDL: ABCA1, APOA1, CEPT, FADS1, GALNT2,
LIPC, LPL, MADD, and MVK (regions are identified with the name of one of the genes they
contain). Moreover, only variants with minor allele frequencies larger than 0.01 were individually
investigated, while non synonimous rare variants were analyzed with “burden tests.” These restric-
tions were motivated, at least in part, by the desire to reduce tests to the most well powered ones,
so that controlling for multiple comparisons would not translate in an excessive decrease of power.
Our analysis is based on all variants that survive the described filtering in all regions, including
those not directly sequenced in the experiment in [39], but included in the study as landmarks of
previously documented associations (array SNPs in the terminology of the paper). We compare the
following approaches: the (1) marginal tests described above in conjunction with BH and q = 0.05;
(2) BH and q = 0.05 applied to the p-values from the full model regression; (3) lasso with λBonf and
α = 0.05; (4) lasso with λCV (in these last two cases we use the routines implemented in glmnet

in R); (5) the R routine Step.AIC in forward direction and BIC as optimality criteria; (6) the R
routine Step.AIC in backwards direction and BIC as optimality criteria; (7) SLOPE with λG? and
q = 0.05; (8) SLOPE with λ obtained via Monte Carlo starting from our design matrix. Defining
the λ for lasso–λBonf and SLOPE requires a knowledge of the noise level σ2: we estimated this from
the residuals of the full model. When estimating λ via the Monte Carlo approach, for each i we
used 5,000 independent random draws of XS and Xj . Figure 9a illustrates how the Monte Carlo
sequence λMC is larger than λG? : this difference increases with the index i, and become substantial
for ranges of i that are unlikely to be relevant in the scientific problem at hand.

Tables 1 and 2 in [39] describe a total of 14 variants as having an effect on HDL: two of these
are for regions FADS1 and MVK and the strength of the evidence in this specific dataset is quite
weak (a marginal p-value of the order of 10−3). Multiple effects are identified in regions ABCA1,
CEPT, LPL, and LIPL. The results of the various “model selection” strategies we explored are
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in Figure 10, which reports the estimated values of the coefficients. The effect of the shrinkage
induced by lasso and SLOPE are evident: to properly compare effect sizes across methods it would
be useful to resort to the two-step procedure that we used for the simulation described in Figure
2. Since our interest here is purely model selection, we report the coefficients directly as estimated
by the `1 penalized procedures: this has the welcome side effect of increasing the spread of points
in Figure 10, improving visibility.

Of the 14 variants described in [39], 8 are selected by all methods. The remaining 6 are all
selected by at least some of the 8 methods we compared. There are additional 5 variants that
are selected by all methods but are not in the main list of findings in the original paper: four of
these are rare variants, and one is an array SNP for a trait other than HDL. While none of these,
therefore, was singularly analyzed for association in [39], they are in highlighted regions: one is in
MADD, and the others in ABCA1 and CETP, where the paper documents a plurality of signals.

Besides this core of common selections that correspond well to the original findings, there are
notable differences among the 8 approaches we considered. The total number of selected variables
ranges from 15—with BH on the p-values of the full model—to 119 with the cross-validated lasso.
It is not surprising that these methods would result in the extreme solutions: on the one hand,
the p-values from the full model reflect the contribution of one variable given all the others, which
are, however, not necessarily included in the models selected by other approaches; on the other
hand, we have seen how the cross-validated lasso tends to select a much larger number of variables
and offers no control of FDR. In our case, the cross-validated lasso estimates nonzero coefficients
for 90 variables that are not selected by any other methods. Note that the number of variables
selected by the cross-validated lasso changes in different runs of the procedure, as implemented in
glmnet with default parameters. It is quite reasonable to assume that a large number of these
are false positives: regions G6PC2, PANK1, CRY2, MTNR1B, where the lasso-λCV selects some
variants, have no documented association with lipid levels, and regions CELSR2, GCKR, ABCG8,
and NCAN have been associated previously to total cholesterol and LDL, but not HDL. The other
procedures that select some variants in any of these regions are the forward and backward greedy
searches trying to optimize BIC, which have hits in CELSR2 and ABCG8, and the BH on univariate
p-value, which has one hit in ABCG8. SLOPE does not select any variant in regions not known to
be associated with HDL. This is true also of the lasso-λBonf and BH on the p-values from the full
model, but these miss respectively 2 and 6 of the variants described in the original paper, while
SLOPE λG? misses only one of them.

Figure 11 focuses on the set of variants where there is some disagreement between the 8 proce-
dures we considered, after eliminating the 90 variants selected only by the lasso-λCV. In addition
to recovering all except one of the variants identified in [39], and to the core of variants selected by
all methods, SLOPE-λG? selects 3 rare variants and 3 common variants. While the rare variants
were not singularly analyzed in the original study, they are in the two regions where aggregate tests
highlighted the role of this type of variation. One is in ABCA1 and the other two are in CETP,
and they are both non-synonimous. Two of the three additional common variants are in CETP and
one is in MADD: in addition to SLOPE, these are selected by lasso–λCV and the marginal tests.
One of the common variants and one rare variant in CETP are mentioned as a result of the limited
foray in model selection in [39]. SLOPE-λMC selects two less of these variants.

In order to get a handle on the effective FDR control of SLOPE in this setting, we resorted to
simulations. We consider a number k of relevant variants ranging from 0 to 100, while concentrating
on lower values. At each level, k columns of the design matrix were selected at random and assigned

26



an effect of
√

2 log p against a noise level σ set to 1. While analyzing the data with λMC and λG? ,
we estimated σ from the full model in each run. Figure 9(b-c) reports the average FDP across 500
replicates and their standard error: the FDR of both λMC and λG? are close to the nominal levels
for all k ≤ 100.
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Figure 9: (a) Graphical representation of sequences λMC and λG for the variants design
matrix. Mean FDP ± 2SE for SLOPE with (b) λG? and (c) λMC for the variants design
matrix and β1 = . . . = βk =

√
2 log p ≈ 3.65, σ = 1.

In conclusion, the analysis with SLOPE confirms the results in [39], does not appear to introduce
a large number of false positives, and hence it makes it easier to include in the final list of relevant
variants a number of polymorphisms that are either directly highlighted in the original paper or in
regions that were described as including a plurality of signals, but for which the original multi-step
analysis did not allow to make a precise statement.

4 Discussion

The ease with which data are presently acquired has effectively created a new scientific paradigm: in
addition to carefully designing experiments to test specific hypotheses, researchers often collect data
first, leaving question formulation to a later stage. In this context, linear regression has increasingly
been used to identify connections between one response and a large number p of possible explanatory
variables. When p� n, approaches based on convex optimization have been particularly effective:
an easily computable solution has the advantage of definitiveness and of reproducibility—another
researcher, working on the same dataset, would obtain the same answer. Reproducibility of a
scientific finding, or of the association between the outcome and the set of explanatory variables
selected among many, however, is harder to achieve. Traditional tools as p-values are often unhelpful
in this context because of the difficulties of accounting for the effect of selection. Indeed, the last
few years have witnessed a substantive push towards the developing of an inferential framework
after selection [11, 12, 34, 21, 29, 18, 31], with the exploration of quite different view-points. We
here chose as a useful paradigm that of controlling the expected proportion of irrelevant variables
among the selected ones. A similar goal of FDR control is pursued in [24, 28]. While [24] achieves
exact FDR control in finite sample irrespective of the structure of the design matrix, this method,
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at least in the current implementation, is really best tailored for cases where n > p. The work in
[28] relies on p-values evaluated as in [31], and its limited to the contexts where the assumptions
in [31] are met. SLOPE controls FDR under orthogonal designs, and simulation studies also show
that SLOPE can keep the FDR close to the nominal level when p > n and the true model is sparse,
while offering large power and accurate prediction. This is, of course, only a starting point and
many open problems remain.

Firstly, while our heuristics for the choice of the λ sequence allows to keep FDR under control
for Gaussian designs and other random design matrices (more examples are provided in [17]), it is
by no means a definite solution. Further theoretical research is needed to identify the sequences λ,
which would provably control FDR for these designs and other typical design matrices.

Second, just as in the BHq procedure where the test statistics are compared with fixed critical
values, we have only considered in this paper fixed values of the regularizing sequence {λi}. It
would be interesting to know whether it is possible to select such parameters in a data-driven
fashion as to achieve desirable statistical properties. For the simpler lasso problem for instance, an
important question is whether it is possible to select λ on the lasso path as to control the FDR. In
the case where n ≥ p a method to obtain this goal was recently proposed in [24]. It would be of
great interest to know if similar positive theoretical results can be obtained for SLOPE, in perhaps
restricted sparse settings.

In conclusion, we hope that the work presented so far would convince the reader that SLOPE
is an interesting convex program with promising applications in statistics and motivate further
research.
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Figure 10: Estimated effects on HDL for variants in 17 regions. Each panel corresponds to
a region and is identified by the name of a gene in the region, following the convention in [39].
Regions with (without) previously reported association to HDL are on green (red) background.
On the x-axis variants position in base-pairs along their respective chromosomes. On the y-
axis estimated effect according to different methodologies. With the exception of marginal
tests—which we use to convey information on the number of variables and indicated with
light gray squares—we report only the value of non zero coefficients. The rest of the plotting
symbols and color convention is as follows: dark gray bullet—BH on p-values from full model;
magenta cross—forward BIC; purple cross—backwards BIC; red triangle—lasso–λBonf; orange
triangle—lasso–λCV; cyan star—SLOPE–λG? ; black circle—SLOPE with λ defined with Monte
Carlo strategy.
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A FDR Control Under Orthogonal Designs

In this section, we prove FDR control in the orthogonal design, namely, Theorem 1.1. As we have
seen in Section 1, the SLOPE solution reduces to

min
b∈Rp

1
2‖ỹ − b‖

2
`2 +

p∑
i=1

λi|b|(i),

where ỹ = X ′y ∼ N (β, Ip). From this, it is clear that it suffices to consider the setting in which
y ∼ N (β, In), which we assume from now on.

We are thus testing the n hypotheses Hi : βi = 0, i = 1, . . . , n and set things up so that the
first n0 hypotheses are null, i.e. βi = 0 for i ≤ n0. The SLOPE solution is

β̂ = arg min 1
2‖y − b‖

2
`2 +

n∑
i=1

λi|b|(i) (A.1)

with λi = Φ−1(1− iq/2n). We reject Hi if and only if β̂i 6= 0. Letting V (resp. R) be the number of
false rejections (resp. the number of rejections) or, equivalently, the number of indices in {1, . . . , n0}
(resp. in {1, . . . , n}) for which β̂i 6= 0, we have

FDR = E
[

V

R ∨ 1

]
=

n∑
r=1

E
[
V

r
1{R=r}

]
=

n∑
r=1

1

r
E

[
n0∑
i=1

1{Hi is rejected}1{R=r}

]
. (A.2)

The proof of Theorem 1.1 now follows from the two key lemmas below.

Lemma A.1. Let Hi be a null hypothesis and let r ≥ 1. Then

{y: Hi is rejected and R = r} = {y: |yi| > λr and R = r}.

Lemma A.2. Consider applying the SLOPE procedure to ỹ = (y1, . . . , yi−1, yi+1, . . . , yn) with
weights λ̃ = (λ2, . . . , λn) and let R̃ be the number of rejections this procedure makes. Then with
r ≥ 1,

{y: |yi| > λr and R = r} ⊂ {y : |yi| > λr and R̃ = r − 1}.

To see why these intermediate results give Theorem 1.1, observe that

P(Hi rejected and R = r) ≤ P(|yi| ≥ λr and R̃ = r − 1)

= P(|yi| ≥ λr)P(R̃ = r − 1)

=
qr

n
P(R̃ = r − 1),

where the inequality is a consequence of the lemmas above and the first equality follows from the
independence between yi and ỹ. Plugging this inequality into (A.2) gives

FDR =
n∑
r=1

1

r

n0∑
i=1

P(Hi rejected and R = r) ≤
∑
r≥1

qn0
n

P(R̃ = r − 1) =
qn0
n
,

which finishes the proof.
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A.1 Proof of Lemma A.1

We begin with a lemma we shall use more than once.

Lemma A.3. Consider a pair of nonincreasing and nonnegative sequences y1 ≥ y2 ≥ . . . ≥ yn ≥ 0,
λ1 ≥ λ2 ≥ . . . ≥ λn ≥ 0, and let b̂ be the solution to

minimize f(b) = 1
2‖y − b‖

2
`2

+
∑n

i=1 λibi
subject to b1 ≥ b2 ≥ . . . ≥ bn ≥ 0.

If b̂r > 0 and b̂r+1 = 0, then for every j ≤ r, it holds that

r∑
i=j

(yi − λi) > 0 (A.3)

and for every j ≥ r + 1,
j∑

i=r+1

(yi − λi) ≤ 0. (A.4)

Proof To prove (A.3), consider a new feasible sequence b, which differs from b̂ only by subtracting
a small positive scalar h < b̂r from b̂j , . . . , b̂r. Now

f(b)− f(b̂) = h
r∑
i=j

(yi − λi − b̂i) + h2
r∑
i=j

1
2 .

Taking the limit as h goes to zero, the optimality of b̂ implies that
∑r

i=j(yi − λi − b̂i) ≥ 0, which
gives

r∑
i=j

(yi − λi) ≥
r∑
i=j

b̂i > 0.

For the second claim (A.4), consider a new sequence b, which differs from b̂ by replacing
b̂r+1, . . . , b̂j with a positive scalar 0 < h < b̂r. Now observe that

f(b)− f(b̂) = −h
j∑

i=r+1

(yi − λi) + h2
j∑

i=r+1

1
2 .

The claim follows from the optimality of b̂.

It is now straightforward so see how these simple relationships give Lemma A.1. Observe that
when R = r, we must have |y|(r) > λr and |y|(r+1) ≤ λr+1. Hence, if H1 is rejected, it must
hold that |y1| ≥ |y|(r) > λr. This shows that {H1 is rejected and R = r} ⊂ {|y1| > λr and R = r}.
Conversely, assume that |y1| > λr and R = r. Then H1 must be rejected since |y1| > |y|(r+1). This
shows that {H1 is rejected and R = r} ⊃ {|y1| > λr and R = r}.
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A.2 Proof of Lemma A.2

We assume without loss of generality that y ≥ 0 (the extension to arbitrary signs is trivial). By
assumption the solution to (A.1) with λi = Φ−1(1 − iq/2n) has exactly r strictly positive entries,
and we need to show that when y1 is rejected, the solution to

min J(b̃) :=
n−1∑
i=1

1
2(ỹi − b̃i)2 +

n−1∑
i=1

λ̃i|b̃|(i) (A.5)

in which λ̃i = λi+1 has exactly r − 1 nonzero entries. We prove this in two steps:

(i) The optimal solution b̂ to (A.5) has at least r − 1 nonzero entries.

(ii) The optimal solution b̂ to (A.5) has at most r − 1 nonzero entries.

A.2.1 Proof of (i)

Suppose by contradiction that b̂ has fewer than r − 1 entries; i.e., b̂ has j − 1 nonzero entries with
j < r. Letting I be those indices for which the rank of ỹi is between j and r− 1, consider a feasible
point b as in the proof of Lemma A.3 defined as

bi =

{
h i ∈ I,
b̂i otherwise;

here, the positive scalar h obeys 0 < h < b(j−1). By definition,

J(b)− J(b̂) = −h
r−1∑
i=j

(ỹ(i) − λ̃i) + h2
r−1∑
i=j

1
2 .

Now ∑
j≤i≤r−1

ỹ(i) − λ̃i =
∑

j+1≤i≤r
ỹ(i−1) − λi ≥

∑
j+1≤i≤r

y(i) − λi > 0.

The first equality follows from λ̃i = λi+1, the first inequality from y(i) ≤ ỹ(i−1) and the last from

(A.3). By selecting h small enough, this gives J(b) < J(b̂), which contradicts the optimality of b̂.

A.2.2 Proof of (ii)

The proof is similar to that of (i). Suppose by contradiction that b̂ has more than r − 1 entries;
i.e. b̂ has j nonzero entries with j ≥ r. Letting I be those indices for which the rank of ỹi is between
r and j, consider a feasible point b as in the proof of Lemma A.3 defined as

bi =

{
bi − h i ∈ I
b̂i otherwise;

here, the positive scalar h obeys 0 < h < b(j). By definition,

J(b)− J(b̂) = h

j∑
i=r

(ỹ(i) − λ̃i − b̂(i)) + h2
j∑
i=r

1
2 .
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Now ∑
r≤i≤j

(ỹ(i) − λ̃i) =
∑

r+1≤i≤j+1

(y(i) − λi) ≤ 0.

The equality follows from the definition and the inequality from (A.4). By selecting h small enough,
this gives J(b) < J(b̂), which contradicts the optimality of b̂.

B Algorithmic Issues

B.1 Duality-based stopping criteria

To derive the dual of (1.10) we first rewrite it as

minimize
b,r

1
2r
′r + Jλ(b) subject to Xb+ r = y.

The dual is then given by
maximize

w
L(b, r, w),

where

L(b, r, w) := inf
b,r
{12r

′r + Jλ(b)− w′(Xb+ r − y)}

= w′y − sup
r
{w′r − 1

2r
′r} − sup

b
{(X ′w)′b− Jλ(b)}.

The first supremum term evaluates to 1
2w
′w by choosing r = w. The second term is the conjugate

function J∗ of J evaluated at v = X ′w, which can be shown to reduce to

J∗λ(v) := sup
b
{v′b− Jλ(b)} =

{
0 v ∈ Cλ,
+∞ otherwise,

where the set Cλ is the unit ball of the dual norm to Jλ(·). In details,

w ∈ Cλ ⇐⇒
∑
j≤i
|w|(j) ≤

∑
j≤i

λj for all i = 1, . . . , p.

The dual problem is thus given by

maximize
w

w′y − 1
2w
′w subject to w ∈ Cλ.

The dual formulation can be used to derive appropriate stopping criteria. At the solution we have
w = r, which motivates estimating a dual point by setting ŵ = r =: y − Xb. At this point the
primal-dual gap at b is the difference between the primal and dual objective:

δ(b) = (Xb)′(Xb− y) + Jλ(b).

However, ŵ is not guaranteed to be feasible, i.e., we may not have ŵ ∈ Cλ. Therefore we also need
to compute a level of infeasibility of ŵ, for example

infeasi(ŵ) = max
{

0, max
i

∑
j≤i

(|ŵ|(j) − λj)
}
.

The algorithm used in the numerical experiments terminates whenever both the infeasibility and
primal-dual gap are sufficiently small. In addition, it imposes a limit on the total number of
iterations to ensure termination.
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B.2 Proof of Lemma 2.3

It is useful to think of the prox as the solution to the quadratic program (2.3) and we begin by
recording the Karush-Kuhn-Tucker (KKT) optimality conditions for this QP.

Primal feasibility: x1 ≥ x2 ≥ · · · ≥ xn ≥ 0.

Dual feasibility: µ = (µ1, . . . , µn) obeys µ ≥ 0.

Complementary slackness: µi(xi − xi+1) = 0 for all i = 1, . . . , n (with the convention xn+1 = 0).

Stationarity of the Lagrangian: with the convention that µ0 = 0,

xi − yi + λi − (µi − µi−1) = 0.

We now turn to the proof of the second claim of the lemma. Set x = (y − λ)+, which by
assumption is primal feasible, and let i0 be the last index such that yi − λi > 0. Set µ1 = µ2 =
. . . = µi0 = 0 and for j > i0, recursively define

µj = µj−1 − (yj − λj) ≥ 0.

Then it is straightforward to check that the pair (x, µ) obeys the KKT optimality conditions. Hence
x is solution.

Consider now the first claim. We first argue that the prox has to be constant over any monotone
segment of the form

yi − λi ≤ yi+1 − λi+1 ≤ . . . ≤ yj − λj .
To see why this is true, set x = prox(y;λ) and suppose the contrary: then over a segment as above,
there is k ∈ {i, i+ 1, . . . , j−1} such that xk > xk+1 (we cannot have a strict inequality in the other
direction since x has to be primal feasible). By complementary slackness, µk = 0. This gives

xk = yk − λk − µk−1
xk+1 = yk+1 − λk+1 + µk+1.

Since yk+1 − λk+1 ≥ yk − λk and µ ≥ 0, we have xk ≤ xk+1, which is a contradiction.
Now an update replaces an increasing segment as in (2.4) with a constant segment and we have

just seen that both proxes must be constant over such segments. Now consider the cost function
associated with the prox with parameter λ and input y over an increasing segment as in (2.4),∑

i≤k≤j

{
1
2(yk − xk)2 + λkxk

}
. (B.1)

Since all the variables xk must be equal to some value z over this block, this cost is equal to∑
i≤k≤j

{
1
2(yk − z)2 + λkz

}
=
∑
k

1
2(yk − ȳ)2 +

∑
i≤k≤j

{
1
2(ȳ − z)2 + λ̄z

}
=
∑
k

1
2(yk − ȳ)2 +

∑
i≤k≤j

{
1
2(y+k − z)

2 + λ̄+k z
}
,

where ȳ and λ̄ are block averages. The second term in the right-hand side is the cost function
associated with the prox with parameter λ+ and input y+ over the same segment since all the
variables over this segment must also take on the same value. Therefore, it follows that replacing
each appearance of block sums as in (B.1) in the cost function yields the same minimizer. This
proves the claim.
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