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Abstract

In this paper we derive a generalizing concept of G-norms, which
we call G-values, which is used to characterize minimizers of non-
differentiable regularization functionals. Moreover, the concept is
closely related to the definition of slopes as published in a recent book
by Ambrosio, Gigli, Savaré. A paradigm of regularization models fit-
ting in this framework is robust bounded variation regularization. Two
essential properties of this regularization technique are documented in
the literature and it is shown that these properties can also be achieved
with metric regularization techniques, which also have the advantage
that they attain a unique minimizers.

1 Introduction

In this work we are concerned with characterization of the minimizers of the
functional

F(u) :=

∫
|u − f | + α‖Du‖ , (1) eq:l1l1

where ‖Du‖ denotes the bounded variation semi-norm. Other functionals
can be considered with the techniques presented below.

Recent attempts in characterization properties of the minimizers of this
functional have been made by Chan & Esedoglu

ChaEse05
[2] and in

OshSch04
[5]. In the latter

work we characterized minimizers of (
eq:l1l1
1) using the G-norm introduced by
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Y. Meyer
Mey01
[4]. The results essentially apply if the zeros of uα − f are sparse.

This limits the applicability of the results. In this work we derive a general
characterization of the minimizing elements. For this purpose we develop
the concept of G-values, which is a generalization of Y. Meyer’s G-norm to
set valued functions. In general, for the functional (

eq:l1l1
1) the characterization

of minimizers is no longer possible by the G–norm as for instance for the
Rudin-Osher-Fatemi model

RudOshFat92
[6] (cf. Meyer

Mey01
[4]).

Moreover, we show a relation between G-value and slopes as introduced
recently in

AmbGigSav05
[1].

The results of this paper allow to characterize minimizers of F in a func-
tional analytical framework and as a byproduct we can generalize the results
of Chan & Esedoglu

ChaEse05
[2]. Moreover, some of the results can easily be gener-

alized to a wider class of metrical regularization techniques. This is shortly
discussed and some numerical examples are presented.

2 Basic Facts on Minimizers and Notation

It is relatively easy to show that there exists a minimizer of F in BV, the
space of functions of bounded variation (cf. Evans & Gariepy

EvaGar92
[3]) and ‖Du‖

denotes the bounded variation semi norm. A minimizer is denoted of F is
denoted by uα. Note that the minimizing elements does not have to be unique
since the functional is not strictly convex.

For v ∈ BV we denote by

ψv(x) =

{
sgn(v(x) − f(x)) if v(x) − f(x) �= 0

0 if v(x) − f(x) = 0
∈

Ψv = {ζ ∈ L∞ :

ζ = sgn(v(x) − f(x)) if v(x) �= f(x) ,∈ [−1, 1] else} .

(2) eq:psi

Moreover, let

η : R × BV× BV → R ∪ {+∞} .

(t, v, h) →
∫

(|v + th − f | − |v − f | − tψvh)
(3) eq:r

Lemma 2.1. Assume that v, h ∈ BV, then

lim
t→0

η(t, v, h)

|t| =

∫
v=f

|h| . (4) eq:nullset
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Proof. The definition of η implies that∣∣∣∣η(t, v, h)

|t| −
∫

v=f

|h|
∣∣∣∣ ≤ 2

∫
0<|v−f |≤|th|

|h| .

The family of functions g|t|(x) := |h(x)|χ0<|v−f |≤|t||h|(x) is monotonically de-
creasing in |t| and thus by the monotone convergence theorem

lim
|t|→0

∫
g|t|(x) =

∫
|h(x)| lim

|t|→0
χ0<|v−f |≤|th|(x)

=

∫
|h(x)|χM0(x)

= 0 ,

where M0 is a set of measure 0. This gives the assertion.

As a consequence of the above lemma we have that if {v = f} has
Lebesgue measure 0, then

|η(t, v, h)|
|t| → 0 . (5) eq:consequence

Using this observation, we can reinterpret the results in
OshSch04
[5], which read as

follows:

le42a Theorem 2.2. 1. Let {0 = f} have Lebesgue measure 0. Then ‖ψ0‖Gs ≤
α if and only if uα ≡ 0.

2. Let {uα = f} have Lebesgue measure 0. If ‖ψ0‖Gs > α, then

‖ψuα‖G = α and −
∫

ψuαuα = α‖Duα‖ .

In the following we generalize the result of Theorem
le42a
2.2 and neglect the

assumption that {uα = f} has Lebesgue measure zero. In this case we require
instead of the G-norms the concept of G-values. This is outlined below and
the relation to slopes is derived.

3 G-Values

Definition 3.1. Let Ψ : R
n → 2R be a set-valued function (here, as usual 2R

denotes the power set of R). Let

Ψ := {ψ : R
n → R is measurable and ψ(x) ∈ Ψ(x) almost everywhere} .
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Note, that notationally we do not distinguish between the set Ψ and the func-
tion Ψ.

We define G-values of Ψ as follows:

G(Ψ) := sup
{h∈C∞

0 :
R |∇h|=1}

inf
ψ∈Ψ

∫
ψh . (6) eq:g-values

Note, that if Ψ is single valued and measurable than G(Ψ) is the G-norm
of Ψ. Later on, we also use Gβ-values of Ψ defined by

Gβ(Ψ) := sup
{h∈C∞

0 :
R |∇h|+β

R |h|=1}
inf
ψ∈Ψ

∫
ψh . (7) eq:g-values-b

If Ψ is single valued, then this is the dual norm of the closure of C∞
0 with

respect to the norm
∫
|∇h| + β

∫
|h|. For β = 0 this reduces to the dual of

the closure of C∞
0 with respect to the norm

∫
|∇h|.

A typical example for a set-valued function is

∂ |g| :=

{
sgn(g) if g �= 0 ,

[−1, 1] if g = 0 .

The definition of G-values implies also that for every function h ∈ C∞
0

inf
ψ∈Ψ

−
∫

ψh ≤ G(ψ)‖D(−h)‖ = G(ψ)‖Dh‖ .

and consequently

− sup
ψ∈Ψ

∫
ψh ≤ G(ψ)‖Dh‖ and inf

ψ∈Ψ

∫
ψh ≤ G(ψ)‖Dh‖ . (8) eq:norms

In the sequel we concentrate on Ψ = ∂ |g|.

le:char Lemma 3.2. For g ∈ L1, G(∂ |g|) ≤ α if and only if

(∣∣∣∣
∫

g �=0

sgn(g)h

∣∣∣∣ −
∫

g=0

|h|
)+

≤ α

∫
|∇h| for all h ∈ C∞

0 . (9) eq:gvalue1

Moreover,

G(∂ |g|) = sup
{h∈BV:‖Dh‖=1}

inf
ψ∈Ψ

∫
ψh .
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Proof. Since h ∈ BV can be approximated by a sequence of functions hn ∈ C∞
0

satisfying hn → h in L1 and
∫
|∇hn| → ‖Dh‖ it follows that∣∣∣∣

∫
g �=0

sgn(g)hn

∣∣∣∣ −
∫

g=0

|hn| →
∣∣∣∣
∫

g �=0

sgn(g)h

∣∣∣∣ −
∫

g=0

|h| .

Therefore (
eq:gvalue1
9) holds for all h ∈ BV if it holds for all h ∈ C∞

0 .
For h ∈ C∞

0 let

ψh := −sgn(h)χg=0 + sgn(g)χg �=0 ∈ ∂ |g| .

Therefore,∫
ψhh =

∫
g �=0

sgn(g)h −
∫

g=0

|h| ≤
∫

g �=0

sgn(g)h −
∫

g=0

ψh

for all ψ ∈ ∂ |g|. Therefore

G(∂ |g|) = sup
{h∈C∞

0 :
R |∇h|=1}

(∫
g �=0

sgn(g)h −
∫

g=0

|h|
)+

= sup
{h∈C∞

0 :
R |∇h|=1}

max

(∫
g �=0

sgn(g)(±h) −
∫

g=0

|h|
)+

= sup
{h∈C∞

0 :
R |∇h|=1}

(∣∣∣∣
∫

g �=0

sgn(g)h

∣∣∣∣ −
∫

g=0

|h|
)+

.

In particular Lemma
le:char
3.2 shows that (

eq:norms
8) holds for all BV-functions.

4 Slopes

The main result of this section is to show that for functions v ∈ W 1,1
0 , the

concept of G-values is the same as the concept of a slope as defined in
AmbGigSav05
[1].

To see the relation we use the Banach space B = W 1,1
0 , the closure of C∞

0

with respect to the norm

u →
∫

|∇u| + β

∫
|u| .

The dual is denoted by W 1,1
0

∗, and the natural metric on B is

d(v, h) :=

∫
|∇v −∇h| + β

∫
|v − h| ; .
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The functional
φ : W 1,1

0 → [0,∞]

v → |v|
is convex and lower semi continuous.

According to
AmbGigSav05
[1] the slope is defined as

|∂φ| (v) = min
{
‖ζ‖W 1,1

0
∗ : ζ ∈ ∂φ(v)

}
,

where

∂φ(v) = {ζ ∈ W 1,1
0

∗ : φ(h) − φ(v) − 〈ζ, h − v〉 ≥ 0 for all h ∈ W 1,1
0 } ,

is the sub-gradient (here 〈·, ·〉 denotes the dual pairing). Note that slope
attains the minimum, since |v| is lower semi continuous. This requires that
β > 0. In the previous section we use in the definition of the G-value the
infimum and compensated for the fact that there |v| may not be lower semi
continuous.

Note, we do not notationally distinguish between sub-differential of func-
tions and operators. We also emphasize that a-priori we do not assume that
∂φ(v) �= ∅. We define

D(∂φ) := {v ∈ W 1,1
0 : ∂φ(v) �= ∅} .

Note that ζ ∈ ∂φ(v) requires ∇·
ζ = ζ ∈ W 1,1
0

∗, or in other words 
ζ ∈ L∞,
and

ζ :=

{
sgn(v) if v �= 0
[−1, 1] if v = 0 .

Therefore,

|∂φ| (v) := inf{‖ζ‖
W 1,1

0
∗ : ζ = sgn(v) if v �= 0 and ζ ∈ [−1, 1] if v = 0} .

This shows that

|∂φ| (v) = inf
ζ∈∂φ(v)

sup
{h∈C∞

0 :
R |∇h|+β

R |h|≤1}

∫
ζh .

From Proposition 1.4.4. in
AmbGigSav05
[1] it follows that

|∂φ| (v) = I|·|(v) := sup
v �=h∈W 1,1

0

(∫
|v| −

∫
|h|

)+∫
|∇(v − h)| + β

∫
|v − h| . (10) eq:ambrosio
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In the following, we show that I|·|(v) = G(∂ |v|). We have that

I|·|(v) = |∂φ| (v)

≥ inf
ζ∈∂φ(v)

sup
{h∈C∞

0 :
R |∇h|+β

R |h|=1}

∫
v �=0

sgn(v)h +

∫
v=0

ζh

≥ sup
{h∈C∞

0 :
R |∇h|+β

R |h|=1}

(∣∣∣∣
∫

v �=0

sgn(v)h

∣∣∣∣ −
∫

v=0

|h|
)+

= Gβ(∂ |v|) .

Let Gβ(∂ |v|) = α, then by definition for every h ∈ C∞
0∫

(|v| − |h|) =

∫
v �=0

|v| −
∫

v �=0

|h| −
∫

v=0

|v − h|

≤
∫

v �=0

|v| −
∫

v �=0

sgn(v)h −
∫

v=0

|v − h|

≤
(∫

v �=0

sgn(v)(v − h) −
∫

v=0

|v − h|
)+

≤α

[∫
|∇v −∇h| + β

∫
|v − h|

]
.

This shows that(∫
|v| −

∫
|h|

)+

≤ α

∫
|∇v −∇h| +

∫
|v − h| ,

and therefore,
I|·|(v) ≤ α = Gβ(∂ |v|) .

Important for our paper is that the results of
AmbGigSav05
[1] can also be applied to the

functional
φ̃ : L1 → [0,∞] ,

u → ‖Du‖
where ‖Du‖ is the bounded variation semi-norm of u if u ∈ BV and +∞ else.
We use the metric induced by the L1-norm. In this case we have∣∣∣∂φ̃

∣∣∣ (v) = min{‖ζ‖L∞ : ζ ∈ ∂φ̃(v)} .

ζ ∈ ∂φ̃(v) satisfies
φ̃(u) − φ̃(v) − 〈ζ, u − v〉 ≥ 0 ,
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where 〈·, ·〉 is the dual pairing between L∞ = L1∗ and L1. Formally, the
inequality reads as follows

φ̃(u) − φ̃(v) +

∫
∇·

(
∇v

|∇v|

)
(u − v) ≥ 0 .

Note, that the sub-gradient could be empty, if there does not exist ζ ∈ L∞ =

L1∗ which satisfies ζ = −∇·
(

∇v
|∇v|

)
.

Since the functional φ̃ is weakly lower semi-continuous (cf. Evans &
Gariepy

EvaGar92
[3]), according to Proposition 1.4.4. in

AmbGigSav05
[1]

Iφ̃(v) := sup
(‖Dv‖ − ‖Dh‖)+∫

|v − h| =
∣∣∣∂φ̃

∣∣∣ (v) . (11) eq:..

5 Properties of Minimizers

In the following we prove a similar result to (
eq:ambrosio
10).

le:chara Lemma 5.1. Assume that f ∈ L1 and let uα be a minimizer of F , then
G(∂ |uα − f |) ≤ α. In particular, if f ∈ BV, then∫

|uα − f | ≤ α‖D(uα − f)‖ . (12) eq:gration1

Proof. From the definition of η it follows that for all h ∈ BV∫
|uα + εh − f | =

∫
|uα − f | + ε

∫
ψuαh + η(ε, uα, h) . (13) eq:defeta

Since uα minimizes F it follows that for all h ∈ BV∫
|uα − f | + α‖Duα‖

≤
∫

|uα + εh − f | + α‖D(uα + εh)‖

≤
∫

|uα − f | + ε

∫
uα �=f

sgn(uα − f)h + η(ε, uα, h)

+ α‖Duα‖ + α |ε| ‖Dh‖ .

(14) eq:defetb

Therefore, we have

−ε

∫
uα �=f

sgn(uα − f)h ≤ η(ε, uα, h) + α |ε| ‖Dh‖ .
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Let ε > 0. Dividing the above inequality by ε and taking ε → 0+ together
with (

eq:nullset
4) shows that

−
∫

uα �=f

sgn(uα − f)h ≤
∫

uα=f

|h| + α‖Dh‖ . (15) eq:lower

Let ε < 0 and using the same argumentation, we get

−
∫

uα �=f

sgn(uα − f)h ≥ −
∫

uα=f

|h| − α‖Dh‖ . (16) eq:upper

The last two inequalities show that(∣∣∣∣
∫

uα �=f

sgn(uα − f)h

∣∣∣∣ −
∫

uα=f

|h|
)+

≤ α‖Dh‖ . (17) eq:general

From Lemma
le:char
3.2 the assertion follows.

(
eq:gration1
12) follows from (

eq:general
17) with h = uα − f .

We have shown that |∂φ| (uα−f) = G(∂ |uα − f |) if uα−f ∈ W 1,1
0 . Under

this assumption Lemma
le:chara
5.1 follows from (

eq:ambrosio
10).

le42 Theorem 5.2. uα ≡ 0 if and only if

G(∂|f |) ≤ α . (18) eq:gvalue

Proof. 1. From (
eq:general
17) and the fact that G(∂ |f |) = G(∂ |−f |) it follows the

first direction of the assertion if uα ≡ 0.

2. To prove the converse direction we use the convexity of |·|, which shows
that for all v, h ∈ BV

|v + h − f | − |v − f | − ψvh − |h|χv=f ≥ 0 point-wise . (19)

Note that in the last equality we use the sub-gradient property. There-
fore, from (

eq:gvalue
18) it follows that for all h ∈ BV

F(h) − F(0) =

∫
|h − f | − |−f | + α‖Dh‖

≥ −
∫

f �=0

sgn(f)h +

∫
f=0

|h| + α‖Dh‖

≥ −
∣∣∣∣
∫

f �=0

sgn(f)h

∣∣∣∣ +

∫
f=0

|h| + α‖Dh‖

≥0 .

Thus 0 is a global minimizer of F .
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co:chf Corollary 5.3. uα = f if and only if
∣∣∣∂φ̃

∣∣∣ (f) ≤ 1
α

.

Proof. 1. If uα = f , then for all h ∈ BV∫
|h − f | + α‖Dh‖ ≥ α‖Df‖ ,

which shows that ∣∣∣∂φ̃
∣∣∣ (f) = Iφ̃(f) ≤ 1

α
.

2. Using (
eq:..
11) again we find that

‖Df‖ − ‖D(f + h)‖ ≤ 1

α

∫
|h| ,

and therefore ∫
|f + h − f | + α‖D(f + h)‖ ≥ α‖Df‖ .

Since this holds for all h ∈ BV, we see that f is a minimizer.

th:meyerII Theorem 5.4. Assume that f ∈ L1 satisfies G(|∂f |) > α.
If u = uα minimizes F , then

1. u ∈ BV ,

2.

α‖Du‖ ∈
{
−

∫
ψu : ψ ∈ ∂ |u − f |

}
, (20) eq:ass1

3.
G(∂ |u − f |) ≤ α . (21) eq:ass2

Proof. From the assumption G(|∂f |) > α it follows that 0 �= uα ∈ BV.
From Lemma

le:chara
5.1 (

eq:ass2
21) follows.

From the definition of a minimizer uα of F it follows that for every 0 �=
|ε| < 1∫

|uα − f | + α‖Duα‖

≤
∫

|(1 + ε)uα − f | + α(1 + ε)‖Duα‖

≤
∫

|uα − f | + ε

∫
uα �=f

sgn(uα − f)uα + + |ε|
∫

uα=f

|uα| + α(1 + ε)‖Duα‖ .
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Taking ε → 0±, this shows that

−
∫

uα �=f

sgn(uα − f)uα −
∫

uα=f

|f | ≤ α‖Duα‖ ,

−
∫

uα �=f

sgn(uα − f)uα +

∫
uα=f

|f | ≥ α‖Duα‖ .

Now, we note that

−
∫

uα �=f

sgn(uα − f)uα −
∫

uα=f

|f | = inf
ψ∈∂|uα−f |

−
∫

ψf ,

−
∫

uα �=f

sgn(uα − f)uα +

∫
uα=f

|f | = sup
ψ∈∂|uα−f |

−
∫

ψf .

which shows (
eq:ass1
20).

6 Relation to the Literature

Chan & Esedoglu
ChaEse05
[2] characterized minimizers of the functional (

eq:l1l1
1) when

f = χΩ under the assumptions that

‖Df‖ =

∫
f∇·
φ for some 
φ ∈ C1

0 satisfying
∣∣∣
φ(x)

∣∣∣ ≤ 1 and
∣∣∣∇·
φ(x)

∣∣∣ ≤ C .

In this case we have for all u ∈ L1

‖Df‖ − ‖Du‖∫
|u − f | ≤

∫
∇(f − u)
φ∫
|u − f | ≤ C .

That is
∣∣∣∂φ̃

∣∣∣ (f) ≤ C, and consequently, if C ≤ 1
α
, then uα = f .

From Theorem
th:meyerII
5.4 we get even more, namely that uα = f ∈ BV is a global

minimizer, if and only if

α‖Df‖ ≤
∫

|f | (22) eq:more

Note that this is (
eq:ass1
20) and (

eq:ass2
21) is always satisfied, since uα = f . To convince

ourselves that this assertion is true we repeat the converse direction of the
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proof of Theorem
th:meyerII
5.4 and find∫
|h| + α‖D(u + h)‖

≥
∫

|u − f | − inf
ψ∈∂|u−f |

−
∫

ψh + α‖D(u + h)‖

≥
∫

|u − f | − α‖Dh‖ + α‖D(u + h)‖

≥
∫

|u − f | + α‖Du‖ .
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7 Metrical regularization

A minimizer uα = f can be guaranteed to be a minimizer of functionals of
the form

d(u, f) + αψ(u) ,

where d(·, ·) is a metric on a Banach space B and ψ(·) : B → (−∞,∞] is a
convex, lower semi continuous functional. From Proposition 1.4.4 in

AmbGigSav05
[1] we

know that for f ∈ B

|∂ψ| (f) = Tψ(f) := sup
(ψ(f) − ψ(u))+

d(f, u)
.

This shows that

co:chfa Corollary 7.1. uα = f if and only if |∂ψ| (f) ≤ 1
α

.

We have considered already the metric on L1 and the convex functional
φ̃(u) = ‖Du‖, which results in the functional F . Another example of a

metric is d(f, g) =
√∫

|f − g|2. The functional

˜̃
φ : L2 → [0,∞] ,

u → ‖Du‖

is convex and lower semi-continuous. Application of the Corollary
co:chfa
7.1 shows

that uα = f if and only if
∣∣∣∂ ˜̃

φ
∣∣∣ ≤ 1

α
. Note that in this case uα satisfies the

Euler equation
u − f√∫
(u − f)2

∈ α∇·
(

∇u

|∇u|

)
.

This is variant of the Rudin-Osher-Fatemi functional where the minimizer
satisfies similar analytical properties as the minimizers of the functional F .
Note however, that the functional is strictly convex and thus the minimizer
is unique. For the numerical solution a non-local PDE has to be solved.
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