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Abstract

In this paper we derive a generalizing concept of G-norms, which
we call G-values, which is used to characterize minimizers of non-
differentiable regularization functionals. Moreover, the concept is
closely related to the definition of slopes as published in a recent book
by Ambrosio, Gigli, Savaré. A paradigm of regularization models fit-
ting in this framework is robust bounded variation regularization. Two
essential properties of this regularization technique are documented in
the literature and it is shown that these properties can also be achieved
with metric regularization techniques, which also have the advantage
that they attain a unique minimizers.

1 Introduction

In this work we are concerned with characterization of the minimizers of the
functional

_ / ju— f] + al| Dul]. 1)

where ||Du|| denotes the bounded variation semi-norm. Other functionals
can be considered with the techniques presented below.

Recent attempts in characterization propertuﬁé OE tlrb% mbnh@]ﬁ(éﬁs of this
functional have been made by Chan & Esedqglu [2]"and n [5]. In the latter
work we characterized minimizers of }'I'();Wg the G-norm introduced by
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Y. Meyer % . The results essentially apply if the zeros of u, — f are sparse.
This limits the applicability of the results. In this work we derive a general
characterization of the minimizing elements. For this purpose we develop
the concept of Cf—values, which is a generalizat.ion of eY.: ll\fllelyer’s G—nf)rm' to
set valued functions. In general, for the functional (II “the characterization
of minimizers is no.longer Rﬁéﬁlsl% aLbQIQ th&e(%o—florm as for instance for the
Rudin-Osher-Fatemi model [6] (cf. Meyer [4]].

Moreov we gho&z) a relation between G-value and slopes as introduced

. bGigSav

recently in i i

The results of this paper allow to characterize minimizers of F in a func-
tional analytical fra vxé%ke @g1d as a byproduct we can generalize the results
of Chan & Esedoglu % . Moreover, some of the results can easily be gener-
alized to a wider class of metrical regularization techniques. This is shortly
discussed and some numerical examples are presented.

2 Basic Facts on Minimizers and Notation

It is relatively easy to show that there exists a minimizer o g—" Giar% B, the
space of functions of bounded variation (cf. Evans & Gariepy and || Dul|
denotes the bounded variation semi norm. A minimizer is denoted of F is
denoted by u,. Note that the minimizing elements does not have to be unique
since the functional is not strictly convex.

For v € BV we denote by

o) = sgn(v(z) — f(z)) if v(z) — f(z) #0 )
v 0if v(z) — f(z) =0 |
2

U, ={CeL>”:
¢ =sgn(v(z) — f(x)) if v(z) # f(z), € [-1,1] else} .

Moreover, let

n:R X BV xBV—RU{+oo}.

3) [eq:r
(t,v,h)—>/(!v+th—f]—\v_f‘_wvh) (3) [ea

Lemma 2.1. Assume that v, h € BV, then

t,v, h
i " = [l o



Proof. The definition of n implies that

n(t, v, h)
et [ <2 -
v=f 0<|v—f|<|th

The family of functions g (x) := |h(x)| Xo<|o—f|<|¢||n| () is monotonically de-
creasing in |t| and thus by the monotone convergence theorem

lim [ gu(z) = [ 1n(@)] lim xacto-pim 2)

‘t|—>0 |t‘~>0

— [ 1@l xan ()
—0

where M, is a set of measure 0. This gives the assertion. O

As a consequence of the above lemma we have that if {v = f} has
Lebesgue measure 0, then

n(t, v, h)]

7 —0. (5)

_ ' ' , , hSch04
Using this observation, we can reinterpret the results in ]5 , which read as
follows:

Theorem 2.2. 1. Let {0 = f} have Lebesgue measure 0. Then ||1o|
a if and only if u, = 0.

GSS

2. Let {u, = f} have Lebesque measure 0. If ||¢y|

Gs > @, then

lully = @ and —/wuaua — o||Du]| .

le42a
In the following we generalize the result of Theorem bfﬁnd neglect the
assumption that {u, = f} has Lebesgue measure zero. In this case we require
instead of the G-norms the concept of G-values. This is outlined below and
the relation to slopes is derived.

3 (G-Values

Definition 3.1. Let U : R" — 2% be a set-valued function (here, as usual 2%
denotes the power set of R). Let

U= {¢) : R" — R is measurable and (x) € ¥(z) almost everywhere} .

3

|eq:consequence




Note, that notationally we do not distinguish between the set W and the func-
tion V.
We define G-values of ¥ as follows:

G- s it [uh. (6)

{heCge: [|Vh|=1} VEY

Note, that if ¥ is single valued and measurable than G(V) is the G-norm
of U. Later on, we also use Gg-values of ¥ defined by

Gp(¥) = sup inf /wh. (7) |eq:g-values-b

{heCg: [|Vh|+8 [|h|=1} YEY

If ¥ is single valued, then this is the dual norm of the closure of Cg° with
respect to the norm [ [Vh|+ 3 [|h]. For = 0 this reduces to the dual of
the closure of C§° with respect to the norm [ |[Vh]|.

A typical example for a set-valued function is

D1yl = sgu(g) if g #0,
T 110 g=0.

The definition of G-values implies also that for every function h € C§°

it — [ vh < GW)IDH)] = Gw) | D]

Ypew

and consequently

~sup [ < GOk and it [vh<G@IDH.(®)

Ppew

In the sequel we concentrate on ¥ = 9 |g|.

Lemma 3.2. For g € L', G(0lg|) < a if and only if

+
(/ sgn(g)h’ —/ \h\) < &/\Vh] for all h € C§° . (9) |eq:gvaluel
970 g=0

Moreover,

G(]g]) = sup inf /wh.

{heBv:||Dh||=1} ¥EV



Proof. Since h € BV can be approximated by a sequence of functions h,, € C§°

satisfying h, — h in L' and [ |Vh,| — ||Dh| it follows that

/ sgn(g)hy, —/ \hn| — Sgn(g)h’ —/ |h| .
g#0 g=0 g#0 g=0

1
Therefore (55 1S Tor all & € BV if it holds for all & € C5°.
For h € C§° let

Uy, := —sgn(h)xg—0 + sgn(g)Xg-0 € 09| .

Therefore,

/@bhh:/#osgn(g)h—/g:olhl S/g;ﬁosgn(g)h—/g:o@/)h

for all ¥ € 0g|. Therefore

Jr
GOl =  sup (/ sen(g)h — / |h|)
{heC§°: [|Vh|=1} g#0

= sup max (/ sgn(g / |h|)
{heC§°: [|Vh|=1} g#0 g=0

— ( en(g) \ rh\)
{heC§°: [|Vh|=1} g#0

le:char eq:norms
In particular Lemma B.2shows that (8) holds for all BV-functions.

4 Slopes

The main result of this section is to show that for functions v € Wy
concept of G-values is the same as the concept of a slope as defined in

FﬁgblgSavOS

To see the relation we use the Banach space B = VVO1 1 the closure of (O

with respect to the norm

Uﬁ/|vu|+ﬁ/|u|.

The dual is denoted by Wy''*, and the natural metric on B is

d(v, h) ::/\Vv—Vh\+ﬂ/]v—h];.

5



The functional "
¢: Wy — [0, 00

v — vl
is convex a'nd lo rbaelngia%gti'nuous.
According to € slope is defined as
961 (v) = min {[Clly 0. : ¢ € 96(v) } |
where

dp(v) = {C e Wy : p(h) — p(v) — (¢, h—v) >0 for all h e W'},

is the sub-gradient (here (-,-) denotes the dual pairing). Note that slope
attains the minimum, since |v| is lower semi continuous. This requires that
G > 0. In the previous section we use in the definition of the G-value the
infimum and compensated for the fact that there |v| may not be lower semi
continuous.

Note, we do not notationally distinguish between sub-differential of func-
tions and operators. We also emphasize that a-priori we do not assume that

dp(v) # 0. We define
D(9¢) = {v e Wy'' : 9¢(v) # 0} .
Note that ( € d¢(v) requires V-E =( € Wol’l*, or in other words 5 € L™,

and
[ osgn(v) i v#0
C'—{[—u] it v=0.

Therefore,
|06 (v) := inf{||§||W01,1* :¢=sgn(v)ifv#0and (€ [-1,1]if v=0}.

This shows that

|0¢| (v) = inf sup /Ch

C€99(v) fhecge: [|Vh|+B [|h|<1}

bGigSav05b
From Proposition 1.4.4. in 11t Totlows that

ol — 1A
ool ) =3u0) = s I

vEREW, !



In the following, we show that Z,|(v) = G(0|v|). We have that
I(v) = [0¢] (v)

> inf sup / sgn(v)h—i—/ Ch
C€99(v) fhecge: [|Vh|+8 [Ih|=1} Jv#£0 v=0

+
/ sgn(v)h’ - / \h])
v#£0 v=0
Let Gg(0|v|) = a, then by definition for every h € C§°

Jui=im= [ el [ = [ o
S/#O rv\—/#osgnw)h—/vo o — i
([ smww-m-[ jo-u)

#0 v=
Sa{ \VU—Vh|+ﬁ/|U—h|] :

S
{heCg: [IVRI+B [|h|=1}
= Gp(dv]) -

This shows that

(fr1- ) <afrve-vars [l-n.

and therefore,
Tj(v) < o= Ga(@]o]) .

bGigSav05
Important for our paper is that the results of [ can also be applied to the

functional B
¢: L — 0, 0],

u— || Dull

where ||Dul| is the bounded variation semi-norm of u if u € BV and +oo else.
We use the metric induced by the L'-norm. In this case we have

96| (v) = min ]l : € € DO(v)}

¢ € dp(v) satisfies

¢(u) = ¢(v) = ((u—v) =0,



where (-,-) is the dual pairing between L> = L' and L'. Formally, the
inequality reads as follows

cz;(U)—cz?(v)Jr/V- (%) (u—1v)>0.

Note, that the sub-gradient could be empty, if there does not exist ( € L>® =

L'* which satisfies ( = —V- <%>.

Since ;crhgalfggcti.cmal o is Wee.Lk.ly lower se '—%8?'6%1&111‘}8%18 (cf. Evans &
Gariepy 3 ;, according to Proposition 1.4.4. in
(I[Dv]] — [ DA[)*

T
J v =l

5(v) == sup

- )a&) (v) . (11)

5 Properties of Minimizers

eq : ambrosio
In the following we prove a similar result to (lﬂi.

Lemma 5.1. Assume that f € L' and let u, be a minimizer of F, then
G(0|ua — f|) < . In particular, if f € BV, then

/ﬁw—ﬂSawx%—fw. (12)

Proof. From the definition of 7 it follows that for all h € BV

/\ua+5h—f| :/\ua—f|+5/@/}uah+n(€,ua,h). (13)

Since u, minimizes F it follows that for all A € BV

[ 1ua = f1+ allDua

g/\ua—l—eh—ﬂ+oz||D(ua+5h)|| "

< / o — | + ¢ / sen(ite — F)h + (e, wa, h)
UaFf
T allDuall +a lel | DA

Therefore, we have
— [ senua— Db < 1 uas k) +a o |1DA]
ua#f

8
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Let 5(§e :OﬁuBiSveitding the above inequality by € and taking ¢ — 0+ together

with shows that
[ smwa-pns [ l+alon). (15)
UaFf ua=f
Let ¢ < 0 and using the same argumentation, we get
[ sawa—phz— [ -l . (16)
uaFtf Ua=f
The last two inequalities show that

( /u(,# sen(te — f)h’ - /%f W)+ < a||Dh|| . (17)

le:char .
F ror% Lemma £3.2 the %ssertlogaﬁollows.

g:grationl g:gene

(ITZ) follows from (II7] With i = u, — f. O
We have shown that |§¢| (1o — f) = G(Q lug — [Lif ua—f € Wy'. Under
this assumption Lemma B5.1 follows from V.

Theorem 5.2. u, =0 if and only if
GOlf) <a. (18)
Proof. 1. From (el ) Sha-the fact that G(O|f]) = G(9]|—f]) it follows the

first direction of the assertion if u, = 0.

2. To prove the converse direction we use the convexity of |-|, which shows
that for all v, h € BV

v+ h— f|—|v—f] = ¥uh —|h| xo= > 0 point-wise . (19)

Note that i ethevg%teequality we use the sub-gradient property. There-
fore, from (;%j it follows that for all h € BV

F(l) = FO0) = [ 1= 11~ 1-51+allDh|
> — h + h| + af|Dh
R R

[ sainn + [ jnlalon
f#0 f=0

Thus 0 is a global minimizer of F.

>
>0 .

eq:lower

eq:upper

eq:general

S


Wotao Yin
Note
I would add an example showing that G(partial |u_alpha-f|) could be strictly less than alpha even if G(f) > alpha. This shows that TV/L1 does not have an analogous results as of TV/L2.


Corollary 5.3. u, = f if and only if laé’ (<3
Proof. 1. If u, = f, then for all h € BV
[ 1n= g1+ allDH) 2 a1
which shows that 1
96| () =T5(n <~

2. Using (el i:j ‘again we find that

1
DA = ID( 4wl <5 [ bl
and therefore
[154n=f1+alDis+ ) = alpf]

Since this holds for all A € BV, we see that f is a minimizer.

Theorem 5.4. Assume that f € L' satisfies G(|0f]) > .

If u = uy minimizes F, then

1. we BV,
allpul € {~ [vusveol- 1}, (20

GOlu—-f])<a. (21)
Proof. From the zses‘uc%gté%%QGﬂaﬂ) > o it follows that 0 # u, € BV.

From Lemma b ollows.
From the definition of a minimizer u, of F it follows that for every 0 #
le] <1

[ 1ua =11+ all D
< [10+0pua =11 + a(t+2)|Du
< flua=tl e[ sonten—fu + el [ Jual + al+)|Dual]
ua#f ua=f

10


Wotao Yin
Note
What is this a corollary?


Taking ¢ — 0%, this shows that

- / sen (it — fltg — / ] < allDual| .
UaFf ua=f

- / sen(tta — e + / £ > allDual] -
UaFAf

Ua=f

Now, we note that

_/M#sgn(ua—f)ua—/uaf‘f,:wegﬁgf_/wf’
_/la#sgn(ua—f)uaJr/uaf\f’ :%slli({)_f—/wf,

: 1
which shows (26“ oo

6 Relation to the Literature

aEse05 eg:1111
Chan & Esedoglu 2I characterized minimizers of the functional (H when
f = xq under the assumptions that

|Df]| = /fV-q;for some ¢ € C} satisfying ’q;(:z:)’ <1 and ’Vg(aj)’ <C.

In this case we have for all u € L'

IDSI = Dull _ [V -0 _
Tla—f = Jlu-7 =

That is ’0&5’ (f) < O, and consequently, if C' < L then u, = f.
th:meyerII @ )
From Theorem %.ZI we get even more, namely that u, = f € BV is a global
minimizer, if and only if

alpfl < [ 11 (22

.. Jeg:assl leq:ass2 . . .
Note that this is (20) and (21) 1S always satisfied, since u, = f. To convince
ourselves that this assertion is true we repeat the converse direction of the

11



h: II
proof of Theorem 5t.4mzfnaerﬁnd
[+ @D+ w]
> [ |lu—f| — inf -— h+ «|D(u+h
> [lu=fl = ot = [uns oD@ )

> / u—f| — ol DAl + ol D(u+ h)|

> [Ju=fl + alDul

12



7 Metrical regularization

A minimizer u, = f can be guaranteed to be a minimizer of functionals of
the form

d(u, f) + a(u),

where d(-,-) is a metric on a Banach space B and 9(+) : B — (—oo, 00l s a . o
convex, lower semi continuous functional. From Proposition 1.4.4 in we

know that for f € B

0Y| (f) = Ty(f) := sup
This shows that

Corollary 7.1. u, = f if and only if |0¢| (f) < L.

_ We have considered already the metric on L' and the convex functional
¢(u) = ||Dul|, which results in the functional F. Another example of a

metric is d(f,g) =/ [ |f — g|?. The functional
gz:5 : L? — [0, 00],
u— || Dul

. . . . . o:chfa
is convex and lower semi-continuous. Application of the Corollary [7.T shows

that u, = f if and only if 8%’ < é Note that in this case u, satisfies the

Euler equation

This is variant of the Rudin-Osher-Fatemi functional where the minimizer
satisfies similar analytical properties as the minimizers of the functional F.
Note however, that the functional is strictly convex and thus the minimizer
is unique. For the numerical solution a non-local PDE has to be solved.
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