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Abstract: Model selection is a general paradigm which includes many statistical
problems. One of the most fruitful and popular approaches to carry it out is the
minimization of a penalized criterion. Birgé and Massart (2006) have proposed a
promising data-driven method to calibrate such criteria whose penalties are known
up to a multiplicative factor: the “slope heuristics”. Theoretical works validate
this heuristic method in some situations and several papers report a promising
practical behavior in various frameworks. The purpose of this work is twofold.
First, an introduction to the slope heuristics and an overview of the theoretical
and practical results about it are presented. Second, we focus on the practical
difficulties occurring for applying the slope heuristics. A new practical approach
is carried out and compared to the standard dimension jump method. All the
practical solutions discussed in this paper in different frameworks are implemented
and brought together in a Matlab graphical user interface called capushe.
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L’heuristique de pente : vue d’ensemble et mise

en pratique

Résumé : La sélection de modèles est un paradigme général incluant de nombreux
problèmes statistiques. Une des approches les plus connues est fondée sur la
minimisation d’un critère pénalisé. Birgé et Massart (2006) ont proposé une
méthode pour calibrer de tels critères pour des pénalités connues à une constante
multiplicative près : l’heuristique de pente. Cette heuristique est validée par des
travaux théoriques dans quelques situations et son bon comportement en pratique
est validé dans une plus large variété de contextes. L’objectif de cet article est
double. Nous proposons tout d’abord une synthèse des travaux théoriques et
pratiques concernant cette méthode. Puis, nous nous intéressons aux difficultés
rencontrées lors de la mise en pratique de cette heuristique. Nous proposons
une nouvelle approche qui sera comparée à la méthode standard du “saut de
dimension”. Toutes les solutions pratiques discutées dans cet article dans différents
contextes sont disponibles dans capushe, une interface graphique développée sous
le logiciel Matlab.

Mots-clés : Heuristique de pente, estimation de pente, saut de dimension
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1 Introduction

The model selection paradigm relies on the choice of a risk function, depending
on the aim, to be minimized. Since its expected value is typically unknown (as
the sample distribution), it is estimated through its empirical version. This is a
generalization of popular estimation approaches such as maximum likelihood and
least squares. Now, if a model collection is considered, the model minimizing the
risk can be chosen based on the data. This model selection should not be based
only on the empirical risk minimum value in each model since an optimistic bias
for the evaluation of the expected risk would be introduced. Thus a feature of the
models, called statistical complexity, has to be considered in order to enable the
control of this bias. Typically the complexity corresponds to the model dimension
when the model is a linear vector space but in some situations, the complexity
choice is neither intuitive nor easy. The more complex the model, the larger the
bias for the estimation of the expected risk: a popular solution is then to select the
model minimizing the empirical risk minimum value penalized with an increasing
function of the complexity. Thus the aim is to provide a sensible penalty function.

In this paper, we focus on the so-called slope heuristics method proposed by
Birgé and Massart (2001, 2006). This procedure allows to calibrate penalty func-
tions known up to a multiplicative constant. The purpose of this paper is twofold:
providing an overview on the slope heuristics theoretical and practical available
works and providing practical solutions for its implementation.

From a theoretical point of view, the principle of the slope heuristics is intro-
duced and proved for the first time by Birgé and Massart (2006) in the context of
Gaussian homoscedastic least squares regression with fixed design. They show that
there exists a minimal penalty, namely such that the complexity and the risk of
models selected with lighter penalties explode. Moreover, they prove that consid-
ering a penalty equal to twice this minimal penalty allows to select a model close to
the oracle model in term of risk (see Section 2 for a reminder about the definition
of the oracle). This rule of thumb is the main statement of the slope heuristics.
Birgé and Massart (2006) then propose to estimate the minimal penalty in a data-
driven manner, which enables us to overcome the difficulty that some constants
needed to design the penalty are unknown and to deduce an optimal penalty from
this estimate. In the framework they consider, the penalty shape they derive is
proportional to the model dimension when the model family is not too large and
involves an additional logarithmic term when the model family is huge. Arlot and
Massart (2009) extend these results to the heteroscedastic regression with random
design framework without Gaussian assumption. They have to restrict the consid-
ered models to histograms but conjecture that this is only due to technical reasons
and that the heuristics remains valid in other least squares regression frameworks.
They consider the case of reasonably rich model families (namely the number of
models grows as a power of n) and derive penalties depending of the dimension. In
a density estimation framework, Lerasle (2009c) validates the slope heuristics and
proves oracle inequalities for both independent (Lerasle, 2009b) and mixing data
(Lerasle, 2009a). Some theoretical results by Verzelen (2009) partially validate the
slope heuristics in a Gaussian Markov random field framework.

Moreover the conjecture that the slope heuristics may be valid in a wider range
of model selection frameworks is supported by the results of several encouraging
applications: estimation of oil reserves (Lepez, 2002); change-point detection in
a Gaussian least squares framework (Lebarbier, 2005); selection of the number of

RR n➦ 7223



4 Baudry & Maugis & Michel

non-zero mean components in a Gaussian framework with application to genomics
(Villers, 2007); simultaneous variable selection and clustering in a Gaussian mix-
ture models setting with applications to the study of oil production through curve
clustering and to genomics (Maugis and Michel, 2010); selection of the suitable
neighborhood in a Gaussian Markov random field framework (Verzelen, 2009); es-
timation of the number of interior knots in a B-spline regression model (Denis
and Molinari, 2009); choice of a simplicial complex in the computational geometry
field (Caillerie and Michel, 2009) and simulations in both the frameworks of Gaus-
sian mixture models likelihood and model-based clustering (Baudry, 2009). This
enumeration illustrates that the slope heuristics brings solution to real needs and
the good results reported in those simulated and real data experiments contribute
to confirm its usefulness. This is enthusiastic evidence on how fruitful are these
efforts to fill the gap between the theory of non asymptotic model selection and
the practical applications.

In practice, the penalty is known up to a multiplicative constant (e.g. propor-
tional to the noise level) and the main issue is to estimate the minimal penalty. The
most studied and applied approach is the so-called dimension jump. This method
is based on a complexity jump and, in the first studied frameworks, the complexity
was actually the model dimension. It consists of considering the complexity of the
selected model as a function of the multiplicative constant in the penalty. Then
increasing the constant value from 0, a nonincreasing and piecewise function is ob-
tained. The minimal penalty is calibrated with the constant corresponding to the
greatest jump of complexity or to the first jump greater than a chosen threshold.
The choice of the threshold (or of the most complex models involved) is delicate
and may be decisive for the final model selection. Another approach is based on
the expectation that a linear relation exists between the penalty shape and the
contrast value for the most complex models. This method called data-driven slope
estimation in this paper consists of estimating the slope of this linear part for
calibrating the minimal penalty. A new strategy based on graphical methods to
apply this second approach is proposed in order to answer to practical difficulties.
It notably has the advantage to validate that the slope heuristics can be applied.
The dimension jump and the data-driven slope estimation approaches, presented
in this paper, are implemented in a Matlab graphical user interface called ca-

pushe (CAlibrated Penalty Using Slope HEuristics). Hopefully it will contribute
to a better understanding and a wider use of the slope heuristics.

In Section 2, principles for the contrast minimization and model selection
paradigm are reminded, and the theoretical basis of the slope heuristics are pre-
sented. The dimension jump approach is presented in Section 3. Section 4 is
devoted to the data-driven slope estimation approach and our strategy. Finally,
Section 5 illustrates the results obtained by those approaches through the package
capushe for various problems.

2 Contrast minimization and the slope heuristics

Before discussing the calibration issue of model selection via penalization, the
estimation method by contrast minimization is briefly recalled.

Let X = (X1, . . . , Xn), Xi ∈ R
d, be an i.i.d sample from an unknown probabil-

ity distribution. The quantity of interest, denoted as s, is related to the unknown
sample distribution and belongs to a set S. The method is based on the existence

INRIA



Slope Heuristics: Overview and Implementation 5

of a contrast function γ : S × R
d → R fulfilling the fundamental property that

s = argmin
t∈S

EX [γ(t,X)] ,

where the expectation is taken with respect to X distributed as the sample (the
minimum is expected to be uniquely reached). The associated loss function, which
enables us to evaluate each element of S, is defined by:

∀t ∈ S, l(s, t) = EX [γ(t,X)]− EX [γ(s,X)] .

The target s being a minimizer of the contrast over S, it is also a minimizer over
S of the expectation of the empirical contrast defined by

∀t ∈ S, γn(t) =
1

n

n
∑

i=1

γ(t,Xi).

A minimizer of the empirical contrast over a model S, a subspace of S, is then
considered and denoted as ŝ. Substituting the empirical contrast γn to its expec-
tation and minimizing γn over S, it is expected that ŝ is a sensible estimator of s.
The quality of such an estimator can be measured by its risk

R(ŝ) = EX [l(s, ŝ)] .

For instance, in the density estimation framework, the popular maximum likeli-
hood and least squares estimators are both minimum contrast estimators. Suppose
that the sample has a density s with respect to a measure µ. Then the contrast

γ(t, x) = − ln[t(x)]

where t denotes another density is the maximum likelihood contrast. The corre-
sponding loss function is the Kullback-Leibler divergence defined by

KL(s, t) =

∫

s ln
(s

t

)

dµ.

If s is supposed to be in L2(µ) then the contrast

γ(t, x) = ‖t‖2 − 2t(x)

where ‖ · ‖ denotes the norm in L2(µ) is the least squares contrast. The corre-
sponding loss function is then given by

l(s, t) = ‖s− t‖2.

Other examples of contrasts for regression, classification and Gaussian white noise
can be found in the book of Massart (2007).

2.1 Model selection via penalization

A countable collection of models (Sm)m∈M with the corresponding estimator col-
lection (ŝm)m∈M is now considered. An important question is how to choose the
“best” estimator among this collection? Let m̂ be the model selected by a given
model selection procedure. The selected estimator is then ŝm̂, where both ŝm

RR n➦ 7223



6 Baudry & Maugis & Michel

(for any m) and m̂ are built from the same sample X. Such a procedure may be
evaluated from either an asymptotic or a non asymptotic point of view.

The ideal model Sm∗ for a given n and a given dataset is such that

m∗ ∈ argmin
m∈M

l(s, ŝm). (1)

However the corresponding estimator ŝm∗ , called the oracle, depends on the un-
known sample distribution. Nevertheless, this oracle is a benchmark while building
a model selection procedure.

From a non asymptotic point of view, the model collection M may depend
on n, and the aim is to build a model selection procedure such that the selected
model m̂ is optimal. More precisely, it fulfills an oracle inequality:

l(s, ŝm̂) ≤ Cnl(s, ŝm∗) + ηn

with Cn as close to 1 as possible and ηn a remainder term negligible with respect
to l(s, ŝm). This inequality is expected to hold either with high probability or in
expected value, or even, when such results are too difficult to be achieved, under
a weaker form:

EX [l(s, ŝm̂)] ≤ Cn inf
m∈M

EX [l(s, ŝm)] + ηn.

Let us stress that even if there exists m0 such that s ∈ Sm0
, there is no reason

that m∗ = m0, since m∗ has to take the model complexity into account. The loss
can be decomposed into an approximation and an estimation parts

l(s, ŝm) = l(s, sm) + EX [γ(sm, X)− γ(ŝm, X)] ,

where sm, a minimizer of EX [γ(t,X)] over Sm, is one of the best approximation
of s in Sm. This illustrates that a bias/variance trade-off has to be reached.

The main approaches to design such model selection procedures are hold-out
and cross-validation procedures (see Arlot and Celisse, 2009), or penalized criteria.
Nevertheless, cross-validation procedures are time consuming and thus penaliza-
tion is preferable in many cases. Penalization consists of defining a proper penalty
function pen : M −→ R

+ and of selecting m̂ minimizing the associated penalized
criterion

∀m ∈ M, crit(m) = γn(ŝm) + pen(m). (2)

Choosing the penalty is tricky but obviously crucial. Some well-known penalized
criteria with fixed penalties such as AIC (Akaike, 1973) or BIC (Schwarz, 1978)
have been widely studied (Burnham and Anderson, 2002).The use of these penal-
ties is mainly motivated by asymptotic arguments that may be wrong in a non
asymptotic context. In the regression framework, other famous penalized criteria
are Mallow’s Cp(Mallows, 1973) and GCV (Craven and Wahba, 1978). Never-
theless, Mallow’s Cp depends on the noise level σ2 of the true regression model
which is unknown (if it does exist) and σ2 is thus difficult to estimate. Similarly,
GCV depends on a tuning parameter which best value is actually σ2. The solution
proposed by the GCV method is to choose this tuning parameter from the data
via cross-validation, and once again an unknown parameter has to be estimated.

More recent works based on concentration inequalities have led to optimal
penalties which are known up to a multiplicative constant κ. In this framework,

INRIA



Slope Heuristics: Overview and Implementation 7

the penalty shape is then denoted as penshape(·) and an unknown constant κopt

exists such that
penopt : m ∈ M 7→ κopt penshape(m) (3)

is an optimal penalty. Two different kinds of results usually lead to such a penalty
shape:

❼ Deterministic penalty shapes. Specific deterministic functions m 7→
penshape(m) can be used to define an optimal penalty (see Massart, 2007,
for some examples of such penalties). For instance, in a general maximum
likelihood framework, Theorem 7.11 in Massart (2007) provides a solution
to choose a penalty shape and insures the existence of a constant κopt such
that penopt(.) = κopt penshape(·) follows an oracle inequality. The value of
κopt which can be derived from the theory is much too pessimistic and a
reasonable value has to be guessed from the data.

❼ Resampling penalty shapes. In a regression framework, Arlot (2009) uses
resampling to design the penalty corresponding to each model and derives
non asymptotic results for the corresponding procedures. These penalties
actually have to be calibrated by a multiplicative constant. Lerasle (2009b)
provides analogous results in a density estimation framework.

Remark 1. Note that such a situation where an optimal penalty is known up
to a multiplicative constant also arises with usual asymptotic criteria. For ex-
ample, Mallows’ Cp, known to be asymptotically optimal in a fixed design and

homoscedastic regression framework, relies on the penalty 2σ2Dm

n , where Dm is
the dimension of the model Sm. The variance being typically unknown, a value
estimated from the data can be plugged in the penalty. Another possibility con-
sists of considering 2Dm

n as a penalty shape and of guessing a good multiplicative
constant from the data.

2.2 Slope Heuristics

Recently, some efforts have been paid to overcome the difficulty of penalty calibra-
tion. Birgé and Massart (2006) propose a practical method based on theoretical
and heuristic ideas for defining efficient penalty functions from the data. This so-
called slope heuristics is validated in the framework of Gaussian regression with
a homoscedastic fixed design (Birgé and Massart, 2006) and generalized in the
heteroscedastic random-design case (Arlot and Massart, 2009). It has also been
validated for least squares density estimation (Lerasle, 2009b) and has been par-
tially validated for the selection of a suitable neighborhood in a Gaussian Markov
random field framework (Verzelen, 2009). Furthermore, its practical validity has
been illustrated in many other different frameworks as cited in the introduction.

If the penalty is defined by the function m ∈ M 7→ l(s, ŝm) − γn(ŝm), then
according to (1) and (2), the oracle model is always selected. Such a penalty can
be decomposed into

l(s, ŝm)− γn(ŝm) = EX [γ(ŝm, X)]− EX [γ(sm, X)]

+EX [γ(sm, X)]− EX [γ(s,X)]

+γn(sm)− γn(ŝm)

+γn(s)− γn(sm)

−γn(s). (4)

RR n➦ 7223



8 Baudry & Maugis & Michel

Since −γn(s) does not depend on m, the ideal penalty can be defined as

pen∗(m) = vm + v̂m +∆n(sm)

where vm = EX [γ(ŝm, X)− γ(sm, X)] is a “variance” term, v̂m = γn(sm)−γn(ŝm)
is an empirical “variance” term and ∆n(sm) = {EX [γ(sm, X)]− EX [γ(s,X)]} +
{γn(s)− γn(sm)} is the difference between a “bias” term and the associated em-
pirical “bias” term. Now the main idea is to estimate this ideal penalty from the
data so as to build an optimal penalty function. For all m ∈ M,

l(s, ŝm) + γn(s) = γn(ŝm) + pen∗(m)

according to the expression of the ideal penalty (4). Moreover for any penalty
function pen(·),

∀m ∈ M, γn(ŝm̂) + pen(m̂) ≤ γn(ŝm) + pen(m)

according to the definition of m̂ and (2). This leads to

l(s, ŝm̂) + [pen(m̂)− pen∗(m̂)] ≤ inf
m∈M

{l(s, ŝm) + [pen(m)− pen∗(m)]} . (5)

Thus it is relevant to look for a penalty close to the ideal penalty for any m in
order to derive an oracle inequality. To this aim, the slope heuristics relies on the
two following points [SH1] and [SH2].

[SH1] Minimal penalty. If the chosen penalty function is pen(m) = v̂m, the
penalized criterion is

crit(m) = γn(ŝm) + v̂m

= γn(sm),

which concentrates around its expectation EX [γ(sm, X)] for large n. Hence, this
procedure selects a model minimizing the bias. The variance is not taken into
account: such a criterion has high probability of selecting a too complex model.
If the chosen penalty is pen(m) = κv̂m, the criterion can be written as

crit(m) = (1− κ)γn(ŝm) + κγn(sm).

Therefore two main cases occur:

❼ if κ < 1 then the criterion decreases as the complexity increases (the two
terms being decreasing): the selected model is for sure one of the most
complex ones,

❼ if κ > 1, for the most complex models, the criterion increases with the
complexity since these models have almost the same bias, and thus they are
ruled out.

This suggests that penmin(m) = v̂m is a minimal penalty, namely that lighter
penalties give rise to a selection of the most complex models, whereas higher
penalties should select models with “reasonable” complexity. This phenomenon
corresponds to the first point of the slope heuristics.

INRIA



Slope Heuristics: Overview and Implementation 9

[SH2] Ideal penalty: twice minimal penalty. The first point of the slope
heuristics is to assume that vm ≈ v̂m. One reason to believe in such an assumption
is that v̂m is the empirical counterpart of vm. Then, since it is expected that
the fluctuations of ∆n(sm) around its zero expectation can be controlled through
concentration results, the ideal penalty may be approximated as follows:

pen∗(m) ≈ vm + v̂m

≈ 2v̂m.

Hence the ideal penalty is about twice the minimal penalty, which is the second
point of the slope heuristics.

In practice, this heuristics is useful when an optimal penalty penopt(·) =
κopt penshape(·) is known up to a multiplicative factor. Note that the slope heuris-
tics is derived by considering the ideal penalty, whereas it is applied to a particular
penalty shape chosen by the user. Thus, it is not necessarily guaranteed that the
ideal penalty itself is of the shape κ∗ penshape(·). This is a further assumption that
a given optimal penalty fulfills the same properties as the ideal penalty, namely
that half this optimal penalty is a minimal penalty. This relies on the assumption
that the chosen penalty shape is fine enough so that the derived optimal penalty
is close to the ideal penalty. Thus the keystone of the slope heuristics is that
κopt

2 penshape(m) is a good estimate of v̂m and provides a minimal penalty.
For the two application methods of the slope heuristics presented in Sections

3 and 4, it is assumed that a complexity measure Cm of the models is given. This
complexity measure, depending on the framework, is typically the model dimension
or the number of free parameters in parametric frameworks. Mostly the penalty
shape can be written as a function of Cm. When its definition is no obvious a
priori, the complexity measure can be chosen as the penalty shape itself (as in
Caillerie and Michel, 2009). The penalty shape can also be guessed itself from the
data, for example with resampling penalties. Table 1 gives complexities Cm and
penshape for a large list of model selection works.

For the two application methods of the slope heuristics presented in Sections
3 and 4, it is assumed that:

(C1) The empirical contrast γn(ŝm) decreases with the complexity Cm.

(C2) The penalty shape penshape(·) increases with the complexity Cm.

The two methods differ by the way the minimal penalty involved in point [SH1]
is estimated. The first one is the so-called dimension jump method introduced
in Birgé and Massart (2006). The second one consists of directly estimating the
“slope” κopt in a data-driven fashion.

Remark 2. Besides numerical issues while computing ŝm, condition (C1) is satisfied
for instance with nested models along which the complexity increases.

3 Dimension jump

3.1 Principle

The so-called dimension jump is a method for penalty calibration which takes
advantage of [SH1] and [SH2] to efficiently determine the unknown penalty con-
stant κopt in (3). Let m(κ) be the model selected by the penalized criterion

RR n➦ 7223



10 Baudry & Maugis & Michel

Framework References
Model complexity:

Cm =
penshape(m) =

Gaussian linear models:

• few models
• Birgé and Massart
(2001)

• Dm : model dimension • Dm

• complete variable selection
• Birgé and Massart
(2001)

• Dm : number of vari-
ables

• Dm

{

1 +
√

2[1 + ln(2N/Dm)]
}2

where N is the total number of
variables

• change-point detection • Lebarbier (2005) • Dm : partition size • Dm {1 + c ln(n/Dm)}

Histogram density estimation:

• regular histograms Castellan (2000) or
Massart (2007, chap
7.3)

Dm : number of bins
minus one

• Dm

• complete family of irregular
histograms

• Dm [1 + c ln(N/Dm)] where N
is the maximum number of bins

Gaussian mixture models
Maugis and Michel
(2009), Baudry (2009)

Dm : number of param-
eters of the mixture

Dm

Regressogram selection Arlot (2009) Dm or penshape(m) by resampling

Least squares density estimation Lerasle (2009b) penshape(m) by resampling

Neighborhood selection of Gaus-
sian field

Verzelen (2009)
dm : size of the support
neigborhood

dm/(p1p2) where p1 × p2 is the
size of the rectangular lattice.

Spline regression
Denis and Molinari
(2009)

Dm = k+d+1 where k is
the number of knots and
d is the spline degree

Dm

Graph selection
Caillerie and Michel
(2009)

penshape(m) logarithm of the graph length

Table 1: Model complexities Cm and penalty shape functions penshape(·) for a non
exhaustive list of model selection works.
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m 7→ γn(ŝm)+κ penshape(m). Under (C1) and (C2), κ 7→ Cm(κ) is a nonincreasing
and piecewise constant function. According to the minimal penalty definition, it is
expected that the selected modelm(κ) has a large complexity when κ penshape(·) <
penmin(·) and a reasonably large complexity if κ penshape(·) > penmin(·). Thus,
κ 7→ Cm(κ) should present an abrupt jump around a value κ̂ (see Figure 1). The
penalty κ̂ penshape(·) is then expected to be close to the minimal penalty and ac-
cording to [SH2], the penalty 2κ̂ penshape(·) is expected to be an optimal penalty
(κopt ≈ 2κ̂).

As a matter of course, the choice of complexity measure is crucial for this
method (see Section 5.3). If several complexity measures seem relevant for the
user, they can all be tested to find the one that shows the clearest jump.

Figure 1: Representation of the nonincreasing and piecewise constant function
κ 7→ Cm(κ).

3.2 The dimension jump method in practice

In order to apply the dimension jump method, the following steps have to be
proceeded:

1. Compute

∀κ > 0, m(κ) ∈ argmin
m∈M

{

γn(ŝm) + κ penshape(m)
}

;

2. Find κ̂ such that Cm(κ) is large if κ < κ̂ and has a “reasonable” order
otherwise.

3. Select m̂ = m(2κ̂).
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12 Baudry & Maugis & Michel

For the first step, the algorithm proposed by Arlot and Massart (2009) is
implemented in our graphical interface capushe. This algorithm makes this first
step computationally tractable since it only requires at most card(M) − 1 steps,
and actually probably much less. This provides the location of jumps, namely
an increasing sequence (κi)0≤i≤imax

with κ0 = 0, κimax
= +∞, the number of

jumps imax ∈ {1, . . . , card(M) − 1}, and the associated selected model sequence
(mi)0≤i≤imax

where mi = m(κi) for all κ in [κi, κi+1) and for all i < imax.
For the second step, two different strategies are available in capushe:

❼ Maximal dimension jump
This first method is the most popular. It consists of choosing the constant,
denoted as κ̂dj, corresponding to the greatest jump of complexity:

κ̂dj = κidj

where idj ∈ argmax
0≤i≤imax−1

{

Cmi+1
− Cmi

}

. If several values of κ reach the max-

imum value, Lebarbier (2005) suggests to choose the largest κ in order to
select the less complex model.

❼ Threshold complexity
The second method, proposed by Arlot and Massart (2009), consists of choos-
ing a threshold complexity Cthresh such that complexities smaller than Cthresh

are reasonable but larger ones are not. Then the chosen constant denoted as
κ̂thresh is the smallest value of κ for which the corresponding penalty selects
a complexity smaller than Cthresh:

κ̂thresh = inf{κ > 0 : Cm(κ) ≤ Cthresh}.

In the regression framework, these authors suggest to choose Cthresh of order
n

logn or n
(logn)2 .

Those alternative methods are not equivalent. Arlot and Massart (2009) expect
that they should yield the same selection as the dimension jump is clear or as there
are several dimension jumps close to each other, but might not otherwise. They
report simulations according to which it could happen quite seldom. When the
selected models differ, they recommend that the user looks at the graphic himself.

4 Data-driven slope estimation method

4.1 Principle

This alternative method consists of directly estimating the constant κopt by the
“slope” of the expected linear relation of −γn(ŝm) with respect to the penalty
shape values penshape(m). Currently, this second method is less employed than
the dimension jump procedure. This might be due to some difficulties related to
its implementation: Lebarbier (2005) partly presents this method and discusses it,
but chooses the dimension jump approach notably because of the lack of stability
she encountered when trying to estimate the slope. It is also presented and studied
in Baudry et al. (2008) and Maugis and Michel (2010). In this section, we propose
some solutions so as to make possible and reliable the application of the slope
heuristics thanks to a stability study of the selected model.
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We recall that the optimal penalty penopt(m) = κopt penshape(m) is expected
to be close to

2v̂m = 2[γn(sm)− γn(ŝm)]

= 2[γn(sm)− γn(s)] + 2[γn(s)− γn(ŝm)].

The empirical bias term γn(sm)−γn(s) gets stable for the most complex models
for which the approximation of the target s cannot be appreciably improved. Hence
the behavior of κopt penshape(m) is known through −2γn(ŝm) for models of large
complexities, and thus of large penalty shape values according to (C2). Thus
−γn(ŝm) is expected to behave linearly with respect to penshape(m) with a slope
around

κopt

2 , as shown in the left graph of Figure 2. Finally, if κ̂ denotes an
estimation of the slope of the linear regression of −γn(ŝm) on penshape(m), the
optimal penalty is estimated by 2κ̂ penshape(·).

Figure 2: An example of the results given by capushe. The left graph represents
−γn(ŝm) with respect to penshape(m) allowing to check the linear behavior as-
sumption. The top-right graph gives the successive estimated slope as a function
of the number of couples (penshape(m),−γn(ŝm)) used for the linear regression
coefficient estimation. The bottom-right graph represents the selected models as
a function of the number of points used for the linear regression coefficient esti-
mation. The last plateau for which the length Nı̂ is greater than pct

∑I
l=1 Nl is

then detected and the corresponding model m̂(pı̂) is selected. The “Corresponding
slope interval” given on bottom right is the interval [pı̂, pı̂+1) leading to select this
model.
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14 Baudry & Maugis & Michel

4.2 Practice of the data-driven slope estimation method

The main issue about this method is how to choose a subset of points (penshape(m),−γn(ŝm))
corresponding to large values of penshape(m) where the slope can be estimated.
In practice, it is usually chosen at sight. The method proposed in this paper to
answer this problem is based on the model selection stabilization. More precisely,
the slope is sequentially estimated from the couples (penshape(m),−γn(ŝm)) where
the couple with the smallest penalty shape value is removed at each step. An area
where the slope estimation is stable has to be observed according to Section 4.1.
The slope estimation in this area corresponds to an estimation of κopt/2 and thus
the same model is selected. Denoting P = {penshape(m), m ∈ M}, the corre-
sponding algorithm is decomposed as follows:

Step 1 If several models in the collection have the same penalty shape value,
only the model having the smallest contrast value γn(ŝm) is kept according
to (2). To make easier the reading of this algorithm, the model indexation
is not modified.

Step 2 For p ∈ P, the slope κ̂(p) of the linear regression on the couples
of points

{

(penshape(m),−γn(ŝm)); penshape(m) ≥ p
}

is computed using a
robust regression method.

Step 3 For p ∈ P, the model fulfilling the following condition is selected:

m̂(p) = argmin
m∈M

{γn(ŝm) + 2κ̂(p) penshape(m)}.

We obtain an increasing sequence of change-points (pi)1≤i≤I+1 such that

– ∀1 ≤ i ≤ I − 1, m̂(pi) 6= m̂(pi+1) ;

– ∀1 ≤ i ≤ I, ∀p ∈ [pi, pi+1), m̂(p) = m̂(pi) ;

– m̂(pI+1) = m̂(pI).

We observe a “plateau” sequence and compute the plateau sizes (Ni)1≤i≤I

defined by

– ∀1 ≤ i ≤ I − 1, Ni = card{[pi, pi+1 ) ∩ P} ;

– NI = card{[pI , pI+1] ∩ P}.

Step 4 For a given value of pct (see hereafter) the model m̂(pı̂) such that

ı̂ = max

{

i ∈ {1, . . . , I}; Ni ≥ pct
I

∑

l=1

Nl

}

is selected. We also return the interval of slope values [pı̂, pı̂+1) and the

proportionNı̂/
∑I

l=1 Nl. Graphically, this corresponds to selecting the “most
to the right” plateau whose length is greater than the threshold (see the
bottom-right graph in Figure 2).

This algorithm requires a tuning parameter pct in Step 4 in order to determine
which plateau corresponds to a stabilization of the model selection. By default,
this threshold pct is fixed to 15% in capushe. This is rather an arbitrary choice,
which should be reconsidered with respect to the application at hand. Remark
that whatever the choice at this step, the reported actual proportion Nı̂/

∑I−1
l=1 Nl

measures the stability of the method.
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Remark 3. For the successive slope estimations in Step 2, a robust regression
(Huber, 1981) is advised in order to attenuate the influence of possible estimation
errors of the sequel (ŝm)m∈M. As shown on Figure 3, with the robust regression,
the successive estimation of the slopes are more stable and the length of the selected
plateau is larger than with classical regression.

Figure 3: Comparison of the model selection method using the robust regression
and the classical linear regression with capushe. See the description of the right
graphs of Figure 2 for more details.

This method is based on a linear relation between −γn(ŝm) and penshape(m)
for the largest values of the penalty shape. Non evidence of such linear relation
should warn the user that the slope heuristics should probably not be applied. It
should then be verified that enough complex models have been involved in the
study and the penalty shape should be questioned. To help the user to validate
the linear behavior assumption, some graphical tools are proposed in capushe.
In particular, the use of the “Validation Step” option is illustrated in an example
in Section 5.1.2.

5 Applications

The aim of this section is to illustrate how the slope heuristics can be proceeded
using the Matlab interface capushe. The practical difficulties encountered and
the differences between the dimension jump and our data-driven slope estimation
method are highlighted on simulated and real datasets.
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5.1 Number of Gaussian mixture components

In the model-based clustering framework, assessing the number of components
of Gaussian mixtures is a crucial question. In this framework, Sm is the set of
Gaussian mixtures with m components:

Sm =

{

m
∑

k=1

pkΦ(·|µk,Σk);
(p1, . . . , pm) ∈ [0, 1]m,

∑m
k=1 pk = 1

µk ∈ R
d,Σk ∈ D+

}

where Φ(·|µ,Σ) corresponds to the density of the d-dimensional Gaussian distri-
bution with mean vector µ ∈ R

d and covariance matrix Σ belonging to a subset
D+ of d×d positive definite matrices. The maximum likelihood estimators ŝm are
computed with the EM algorithm using mixmod software (Biernacki et al., 2006)
or mclust (Fraley and Raftery, 2003) for instance. Following Maugis and Michel
(2009), we consider a penalized loglikelihood criterion with a penalty proportional
to penshape(m) = Dm, the number of free parameters for a mixture with m com-
ponents. Note that this last quantity Dm is a natural complexity measure of Sm.
In practice, the maximum number of components Mmax of the mixture models has
to be chosen first. The model collection is then restricted to (Sm)1≤m≤Mmax

.

5.1.1 Bubbles experiment

This simulated dataset, plotted in Figure 4, is composed of n = 1000 observations
in R

3. It consists of an equiprobable mixture of three large “bubble” groups
centered at ν1 = (0, 0, 0), ν2 = (6, 0, 0) and ν3 = (0, 6, 0) respectively. Each bubble
group j is simulated from a mixture of seven components according to the following
density distribution:

x ∈ R
3 7→ 0.4Φ(x|µ1 + νj , I3) +

7
∑

k=2

0.1Φ(x|µk + νj , 0.1I3)

with µ1 = (0, 0, 0), µ2 = (0, 0, 1.5), µ3 = (0, 1.5, 0), µ4 = (1.5, 0, 0), µ5 =
(0, 0,−1.5), µ6 = (0,−1.5, 0) and µ7 = (−1.5, 0, 0). Thus the distribution of
this dataset is actually a 21-component Gaussian mixture. The reader is referred
to Baudry (2009, Chapter 5) for more details. A model collection (Sm)1≤m≤Mmax

of spherical Gaussian mixtures is considered with covariance matrices Σk = λkI3
with λk ∈ R

⋆
+.

The outputs of capushe are explained with this simulated example. Figure 5
gives the graphical outputs obtained by the data-driven slope estimation method
for the model collection with Mmax = 50. In this example, the linear behavior
for the most complex models is clearly observed. Using the robust regression, the
true Gaussian mixture distribution with 21 components is selected in 89.6% of
the successive slope estimations. The choice of a multiplicative constant 2κ in the
penalized criterion with κ ∈ [1.1783.10−3; 2.611.10−3] leads to select m̂ = 21. In
the same way, there is no ambiguity for the result with the dimension jump since
the maximal complexity jump is really clear (see Figure 6).

In order to compare the two slope heuristics methods with the classical criteria
BIC and AIC, an experiment is conducted with 100 simulations of the bubbles
dataset. Model collections with Mmax = 40 and Mmax = 50 are successively con-
sidered. For the data-driven slope estimation method, the default parameter value
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Figure 4: Representation of a bubbles dataset composed of 1000 observations.

Selected number Mmax 3 4 15–18 19 20 21 22 23 24 25 ≥ 35 Risk
of components m̂ ratio
Oracle 40, 50 1 76 15 3 3 2 1
AIC 40, 50 100 2.59
BIC 40, 50 3 6 23 57 9 1 1 1.17
DDSE 50 3 7 59 20 6 3 2 1.06
DDSE 40 1 3 7 61 18 4 4 2 1.09
DJ 50 4 2 3 7 59 18 2 3 2 1.49
DJ 40 28 2 2 4 51 10 2 1 3.27

Table 2: Number of times a model m is selected among the 100 simulations by
AIC, BIC, the data-driven slope estimation method (DDSE) and the dimension
jump method (DJ). The last column is the ratio between the risk of the selected
estimator by each method and the oracle risk.
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18 Baudry & Maugis & Michel

Figure 5: Graphical output obtained by the data-driven slope estimation method
for the bubbles experiment with Mmax = 50.

Figure 6: Graphical output obtained by the dimension jump method for the bub-
bles experiment with Mmax = 50.
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Figure 7: Graphical output obtained by the dimension jump method for the bub-
bles experiment with Mmax = 40.

pct = 15% is used. Table 2 gives the number of times a model is selected by each
criterion over the 100 simulations. It also provides the ratio between the risk of the
selected estimator by each method and the oracle risk. For each simulation, the or-
acle model is defined as the model which estimator minimizes the Kullback-Leibler
divergence to the true density distribution.

Mostly, the oracle is close to the true distribution. As usual in a mixture
framework, AIC obviously underpenalizes the model complexity. BIC mostly re-
covers the true number of components which is not surprising according to Keribin
(2000): in this experiment the true distribution belongs to the model collection
and n is quite large. For the model collection with Mmax = 50, the dimension jump
approach yields the same selection as the data-driven slope estimation approach,
but in 6% of the datasets. As compared to the oracle risk, the slope heuristics
applied with the data-driven slope estimation approach gives the best risk results
(ratio close to 1), closely followed by BIC. The dimension jump method has a
larger risk because it selects sometimes small models.

When Mmax = 40, the results illustrate a difficulty which can be encountered
while applying the dimension jump. This approach selects 28 times the model
m̂ = 3 in the simulation study, which is a poor result. The reason of this difficulty
is illustrated in Figure 7: there seemingly occurs a dimension jump for the most
complex models, but it occurs in several steps. Therefore the largest of those
“sub-jumps” is still smaller than the jump leading to select m̂ = 3, which is quite
large because of the data structure. This shows the sensibility of the dimension
jump approach to the choice of the most complex models involved in the study.
The data-driven slope estimation results are only worsened a little if Mmax = 40
instead of Mmax = 50.
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5.1.2 Transcriptome dataset

The following transcriptome dataset was studied by Maugis et al. (2009). It con-
sists of 1020 genes of Arabidopsis thaliana described in 20 experiments. We con-
sider a collection of Gaussian mixtures where the covariance matrices are assumed
to be equal: ∀k ∈ {1, . . . ,m},Σk = Σ. In practice, the choice of Mmax is crucial
since the linear behavior of the contrast can be observed for the most complex
models. If we consider Mmax = 20 in this example, the linear part is not observed
and the selection with the data-driven slope estimation method is not satisfying
because there is no long and clear plateau (see the top of Figure 8). In order
to find a trade-off between the global estimation time and the observation of the
linear area, the option “Validation Step” is proposed. This option allows us to
graphically test whereas the considered model collection is large enough for apply-
ing the data-driven slope estimation method. The slope, estimated on the subset
of couples {(penshape(m),−γn(ŝm)); m ∈ {1, . . . ,Mmax}}, is plotted and the user
can graphically test whereas other such couples for larger complex models are in
this linear regression line or not. For our transcriptome data example, the points
corresponding to mixtures with 40, 50 and 60 components are tested in the bottom
of Figure 8. This three points are below and away from the estimated linear line,
showing that the choice Mmax = 20 is not large enough. For Mmax = 60, the linear
area is then clearly observed and the data-driven slope estimation method can be
correctly applied according to the graphical outputs given in Figure 2.

5.2 Change-point detection

Change-point detection is studied in Lebarbier (2005) with a model selection point
of view. This section gets back on a simulation given in Lebarbier (2005) to
illustrate the slope heuristics with capushe in this context.

Let us consider the fixed design regression model

yi = s(ui) + εi (6)

where the yi’s are observed at regular points ui =
i
n , i = 1, . . . , n. The errors εi

are assumed to be i.i.d. centered random variables with variance σ2. Let M be
the set of all the partitions of the grid {u1, . . . , un}. The model Sm corresponding
to the partition m = {Ik}1≤k≤|m| is defined by

Sm =







|m|
∑

k=1

βk1Ik ; (βk)1≤k≤|m| ∈ R
|m|







.

A natural measure of the model complexity is the dimension Dm = |m|, namely
the partition size. For each model, a least squares estimator of s can be defined by
minimizing the contrast: γ(t, (y, u)) = (y−t(u))2 over Sm. The aim is to determine
the best estimator for the ℓ2 risk. Lebarbier (2005) shows that a convenient penalty
shape for this problem is

penshape(m) =
Dm

n

(

2.5 + ln
n

Dm

)

.

Case (b) of the simulations proposed in Lebarbier (2005) is considered (see Sec-
tion 4.1.2 in Lebarbier, 2005, for more details). A sample of 300 observations is
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Figure 8: Selection with the data-driven slope estimation method when Mmax = 20
for the transcriptome dataset study (top). On the bottom plot, the Validation
option is used with three points corresponding to m ∈ {40, 50, 60} in order to
graphically test whether the linear area is reached or not.
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simulated according to (6), s being a piecewise constant function with six pieces
and σ = 1. Figure 9 shows the results for the two methods on this sample. A long
plateau corresponding to |m| = 6 can be observed on the top graph. The greatest
jump also leads to the selection of this model on the bottom graph. Note that on
this example, one could think that for the dimension jump method, the greatest
jump is actually between |m| = 12 and |m| = 22. By aggregating the sequence of
small and close jumps in this interval, this would yield a different model selection.
As for the Bubbles experiment, the data-driven slope estimation method gives a
clearer answer to the model selection problem.

5.3 Graph selection

In practice, choosing a convenient penalty can be a real issue if no theoretical
results are available for the considered problem. In particular, the user may need to
choose between several possible penalties. This section illustrates on a geometrical
example how bad penalties can be detected thanks to capushe.

In Caillerie and Michel (2009), a penalized least squares criterion is proposed
for fitting simplicial complexes on a cloud of points. A simplicial complex is a
collection of simplices such that any two simplices of the collection intersect along
a common face if at all, and all the faces of a simplex of the collection belongs
to the complex too. Simplicial complexes allow dimension estimation procedures
and topological inference methods, see the cited paper for references. For one
dimensional complexes, namely for graphs, it is shown in Caillerie and Michel
(2009) that the penalty has to be chosen proportional to the logarithm of the
graph length. Without knowing these theoretical results, it is not obvious which
penalty can be chosen to select a convenient graph in a given collection.

We take up the example of the Lissajous curve simulation proposed in Section
5.1 of Caillerie and Michel (2009). Let X1, . . . , Xn be some points in R

2 sampled
in the neighborhood of a Lissajous curve (Figure 10). A nested collection of graphs
(Sm)m∈M is defined on a set of fixed landmark points belonging to the Lissajous
curve. For each m, the following Gaussian model is considered

∀i = 1, . . . , n Xi = x̄i + εi

where the unknown x̄i’s belong to Sm and the εi’s are i.i.d centered Gaussian
variables with level noise σ. The example consists of n = 5000 observed points
and σ = 0.005. For each i and each m, the least squares estimator x̂i,m of x̄i is the
closest point to Xi belonging to the graph Sm. This leads to consider the following
penalized criterion to be minimized

crit(m) = SS(m) + pen(m)

where SS(m) :=
∑n

i=1 ‖x̂i,m −Xi‖
2. Let l(m) be the length of Sm. Two different

kinds of penalties are considered: pen
(1)
shape(m) = l(m) and pen

(2)
shape(m) = ln l(m)

(as in Caillerie and Michel, 2009).

In Figure 11, a large jump can be observed for pen
(2)
shape(·) whereas it is not the

case for pen
(1)
shape(·). As shown in Figure 12, the second penalty leads to a better

linear behavior of SS(·) than with the first one and there is no clear stability of

the selected model with pen
(1)
shape(·). Using the Validation Step option with the

last eight points, we can also check that only the regression with pen
(2)
shape(·) gives
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Figure 9: Data-driven slope estimation method (top) and dimension jump (bot-
tom) for the change-point detection problem. The two methods select the same
model |m̂| = 6.
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satisfying results (see Figure 13). These last remarks show that in this context
the second penalty should be preferred to select a convenient graph.

Figure 10: Lissajous curve simulation. Red points are landmarks and black one
are observed points.

6 Discussion

The slope heuristics is a promising approach for calibrating penalized criteria in
model selection contexts. The available theoretical and practical justifications for
its use in various frameworks increasing, this paper aims at providing an overview
of those theoretical and experimental results.

Although efforts have been paid to fill the gap between the theoretical results on
the slope heuristics and its application, the dimension jump method and the data-
driven slope estimation method are not totally justified. Regarding the dimension
jump, the theory does not say if the dimension jump occurs in one single jump or
several successive jumps. Thus, aggregating successive jumps could be an option
for future works. Concerning the data-driven slope estimation, note that the linear
relation between −γn(ŝm) and penshape(m) for the largest values of the penalty
shape is actually only valid in expectation.

The encountered practical difficulties for applying this heuristics are high-
lighted and different solutions are compared. We also propose a new method
based on data-driven slope estimation which is implemented in the Matlab graph-
ical interface capushe. Thanks to this graphical tool, it is possible to check that
the slope heuristics is valid for a given penalty shape. Moreover it allows the user
to compare this method with the more popular dimension jump method. The
data-driven slope estimation is easier to calibrate: if both methods involve tuning
parameters (choice of the method and parameter to define a “plateau” for the
data-driven slope estimation; choice of the most complex involved model or of the
complexity threshold for the dimension jump), the choice can be made on a more
universal ground in the case of the data-driven slope estimation (for example as
a percentage of the total number of involved models). The “Bubbles” experiment
moreover illustrates that the data-driven slope estimation may behave better than
the dimension jump, notably as the estimation in complex models is expensive.
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Figure 11: Dimension jump method for pen
(1)
shape(·) (top) and for pen

(2)
shape(·) (bot-

tom). Many jumps can be observed with the first penalty shape whereas there is
only one large single jump for the second penalty shape.
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Figure 12: Data-driven slope estimation method for pen
(1)
shape (top) and for pen

(2)
shape

(bottom). The second penalty shape leads to a better linear behavior than with

the first one and there is no clear stability of the selected model with pen
(1)
shape.
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Figure 13: Validation for pen
(1)
shape(·) (top) and for pen

(2)
shape(·) (bottom): only the

second penalty shape gives satisfying results.
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But this comparison study has to be continued and deepened, both theoretically
and practically.

The capushe interface makes the slope heuristics easy to apply for any statis-
tician who would like to try it without having to care much about the practical
difficulties it involves. Hopefully it shall contribute to a more widespread use of
the slope heuristics. As it shall be more used, there will be an increasing quan-
tity of available material to pursue the study and understanding of this approach.
Moreover the package is a convenient tool to directly study some questions raised
by the slope heuristics study. It may be useful for example in order to compare the
two available strategies for the application of the dimension jump: the maximal
dimension jump versus the threshold complexity.

The slope heuristics are being studied in new situations, which may uncover
new difficulties and solutions. For example Arlot and Bach (2009) propose an
oracle procedure to select among linear estimators, where the minimal penalty
shape is different from the optimal penalty shape. By the way, this is an instance
of a situation where the minimal penalty shape is not proportional to the model
dimension. Selecting the estimator based on twice the minimal penalty leads to
overpenalizing in this case. This suggests that future versions of the package may
have to involve new functionalities: the current one does not enable to handle such
a situation.
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