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INTRODUCTION

Soil structure can be defined as the arrangement of
different constituents of soil (e.g. Laatsh 1954, Fiedler and
Reissing 1964; Mückenhausen 1975, Rz¹sa and
Owczarzak 2004). A soil with good structure has low
compaction or bulk density and a large amount of
pore space. These soils have high infiltration,
quick water movement through the profile, high
water retention, high water availability to roots, low
crusting on soil surface, high gas exchange, high
nutrient availability, easier root penetration, reduced
surface runoff and soil erosion (Kay 1998, Shukla
2014). Stability of soil structure is one of the most
important indicators of soil quality. Numerous
studies suggest that organic matter (OM), sesquioxides,
clay minerals, microbial activity and soil management
practices play an important role in the formation of
aggregates as the basic unit of soil structure (Tisdall
and Oades 1982; Bronick and Lal 2005; Gajewski et
al. 2016, Polláková et al. 2018, Kobierski et al. 2018).
In addition, the stability of aggregates determines soil
resistance to erosion (Barthés and Roose 2002).
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Slope position and management practices as factors
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Abstract: An interaction between the slope position and type of soil management practices could be one of the most important
factor affecting several soil properties including soil structure. Therefore, we evaluated selected soil properties including soil struc-
ture parameters in relation to slope gradient and soil management practices between Trakovice and Buèany villages (western Slova-
kia). The sampling sites were located in two adjacent, gently sloping fields with a NW-SE orientation. The sites also differ in soil
management type: Field No. 1 was used as arable land with intensive cultivation (IC) of crops, while a greening system (GS) had
been established on Field No. 2. Soil samples were taken from five geomorphological zones at each slope: summit, shoulder, back-
slope, toe slope and flat terrain under the slope. Results showed that soil pH, content of soil organic matter (SOM) and carbonates
depended on land use of the slopes. In GS, the water-stable macro-aggregates (WSAma) 0.5–3 mm (favourable size fraction) displayed
statistical significant quadratic polynomial trend along the slope gradient. In IC the values of mean weight diameter of dry sieved
aggregates (MWDd) decreased significantly along the slope gradient, while in GS the opposite trend was observed. In IC significant
correlations between carbonates content (r=-0.775, P<0.01), humic acids (HA) content (r=0.654, P<0.05), colour quotients of humic
substances (r=-0.706, P<0.05), colour quotients of HA (r=-0.723, P<0.05) and MWDd were determined. In GS higher content of
carbonates was followed by a decrease in content WSAma, MWDd, mean weight diameter of wet sieved aggregates (MWDw) and
stability index of aggregates. At the same time stabile and labile soil organic matter improved soil structure parameters in GS.
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In Slovakia, the most important degradation
processes include water and wind erosion, which have
a direct impact on soil structure (Šimanský et al.
2018). Water erosion presents a potential threat
to 46% of agricultural land (10 878.39 km2) and wind
erosion processes potentially threaten 9% of agricul-
tural land, which amounts to 2024.29 km2 (Šimanský
et al. 2018). Small particles as well as the micro- and
smaller macro-aggregates are being subjected to
erosion (Barthés and Roose 2002; Efthimiou 2018),
especially on soils that have an adverse soil structure
due to their intensive cultivation (Steinhoff-Knopp
and Burkhard 2018). Soil erosion have also signifi-
cant effect on changes in soil properties what results
in increased field heterogeneity. For example, the
increase in soil organic carbon content (SOC) incre-
ases aggregation as well as the water stability of
aggregates. Different SOC fractions also influence
different macro-aggregate-associated properties.
Topographic features such as slope can also influence
the SOC distribution in macro-aggregates, since con-
siderable amounts of light SOC fractions can be redi-
stributed and concentrated near the soil surface on
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the toe slope due to water erosion and transport from
shoulder or backslope positions (Gregorich et al.
1998). The redistribution of SOC can, in turn, affect
the formation, stability and hydrological properties
of aggregates (Shukla 2014). Slope gradient and chan-
ge in land use are known to influence soil quality,
and the assessment of soil quality is important in
determining sustainable land-use and soil-manage-
ment practices (Cambardella and Elliot 1992; Tisdall
1996, Chun-Chih et al. 2004, Nabiollahi et al. 2018).

Thus, we hypothesised that creating a greening
system on a slope is a factor that improves stability
of soil structure in comparison to an intensively
cultivated slope. Moreover, a more stable soil
structure should be present on the toe slope (or
within the accumulation zone of the slope). Therefore,
we evaluated soil structure parameters as one of the
most important soil quality parameters in relation to
slope gradient and soil management practices.

MATERIALS AND METHODS

The study sites were located in the north-western
part of the Danube lowland (Fig. 1) between Trako-
vice and Buèany villages (Trnava Region, western
Slovakia). The geological substrate of the studied area
is loess of several metres thick. The average monthly
temperature is 10°C (9–10°C), while precipitation is
525 mm (450–600 mm, Tarábek 1980).

The soil cover of the study area comprises of a
Regosols and Chernozems complex (Societas Pedo-
logica Slovaca 2014). Regosols occurred along both
of the studied slopes while buried Chernozems were
present at the flat terrain under the slopes. The
sampling sites were in two adjacent fields. Both were
gently sloping (8°) with a NW-SE orientation.
According to the slope forms and surface pathways,
Field 1 was located on a concave slope, and Field 2
on a convex-concave slope. The fields also differed
in soil management type. Field 1 was used as arable
land with intensive cultivation (IC) of crops by
standard conventional tillage system. Conventional
tillage consisted of mouldboard ploughing to the
0.22–0.25 m depth in autumn, followed by disking/
rolling/levelling and planting in dependence to culti-
vated crops. In the sampling year (2018) the field was
planted with maize and the tillage rows were
oriented along the slope direction, with spacing of
70 cm. On Field 2, a greening system (GS) had been
established in 2012. Plant cover has been cut being
and mulched there twice a year.

In 2018, both studied slopes (sampling fields) were
divided into five zones: summit (S), shoulder (SH),

backslope (BS), toe slope (TS) and flat terrain under
the slope (F). A total of 10 soils pits were prepared
(one per slope zone for both analysed slopes). Soil
samples were collected from the cultivated soil layer
(upper 20 cm). The following soil properties were
determined in the collected samples: pH of the soil-
to-solution ratio of 1:2.5 using H2O as the suspension
medium; content of soil organic carbon (SOC) by
sample oxidation in the mixture of K2Cr2O7 and
H2SO4 (Dziadowiec and Gonet 1999); and content of
carbonates by the volumetric method using a Jankov
calcimeter. Particle-size distribution was determined
by pipette method (Hrivòaková et al. 2011), texture
classes were described according to USDA (Soil
Survey Division Staff 1993). The labile carbon
content (CL) was determined using 0.005 mol dm–3

KMnO4 (Loginow et al. 1987) and hot water extracted
carbon (CHWE) was determined according to the me-
thod of Kõrschner et al. (1990). The group and
fraction composition of humic substances (HS) was
determined by the Belchikova and Kononova method

FIGURE 1. Location of the study area within the borders of
Slovakia and sampling plots within the analysed slopes
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(Dziadowiec and Gonet 1999). The light absorbance
of humic substances (HS) and humic acids (HA) was
measured at 465 and 650 nm using a Jenway 6400
Spectrophotometer to calculate the colour quotients
Q4/6

HS and Q4/6
HA. In undisturbed soil samples, indi-

vidual size fractions of aggregates were determined by
dry sieving of soil through sieves with mesh
diameters >7, 7–5, 5–3, 3–1, 1–0.5, 0.5–0.25 mm as
dry sieved macro-aggregates (DSAma) and <0.25 mm
as dry sieved micro-aggregates (DSAmi). These
fractions of air-dried aggregates were used to
determine water-stable macro- (WSAma) and micro-
aggregates (WSAmi) by the Baksheev method
(Vadjunina and Korchagina, 1986). Also, the mean
weight diameters (MWD: for both dry sieved aggre-
gates, MWDd; and for water-stable aggregates,
MWDw), vulnerability coefficient (Kv) by the
method of Valla et al. (2000), and the stability index
of water-stable aggregates (Sw) by the Henin method
(Zaujec and Šimanský, 2006) were calculated.

One-way analysis of variance (ANOVA) and the
least significant difference (LSD) method was used
to compare treatment means for the two types of
managements (IC and GS) at P < 0.05. The interrela-
tions between SOM and soil structure parameters were
determined through a correlation matrix. For the
expression of soil structure parameter dynamics along
the slope gradient, linear and quadratic polynomial
regression models were used. All the statistical

analyses were performed using Statgraphics Centu-
rion XV.I software (Statpoint Technologies, Inc.,
USA).

RESULTS AND DISCUSSION

Basic soil properties are presented in Table 1. In
both types of management, the soils were weakly
alkaline, and the pH ranged from 7.70–7.94. Similarly,
rather low and medium SOC content (from 11.5 to
14.4 g kg–1 on the IC and from 7.90 to 15.9 g kg–1 on
the GS) and high and relatively high content of hot
water extracted carbon (from 0.492 to 0.702 g kg–1

on the IC and from 0.378 to 0.767 g kg–1 on the GS)
were determined for both parts of the analysed slope.
The content of labile carbon ranged from 1.09 to
1.45 g kg–1 (8.9 to 10.1% of SOC) and from 0.674 to
1.54 g kg–1 (8.13 to 9.72 % of SOC) in the intensively
cultivated slope and in the greening system, respecti-
vely. Contents of carbonates depended on – land use
and slope form (Table 1). The highest content of
carbonates was determined for the soil sample in the
summit in IC (180 g kg–1) and the lowest for the flat
part of the GS (50 g kg–1). Soil texture was silt loam,
with the clay content ranging from 14 to 22%. In IC
and GS, the content of carbon in extracted humic
substances (CHS, Table 2.) ranged from 4.17 to 5.2
and from 2.82 to 6.37 g kg–1 which comprises 34–
37% and 35–40% of SOC, respectively. The average

esudnaL epolS
noitisop

HHp 2O COS CL C EWH OCaC 3 ]mm[noitcarffoerahsegatnecreP

gkg[ 1– ] 50.0–2 200.0–50.0 200.0<

CI S 37.7 2.21 680.1 186.0 081 23 45 51

HS 18.7 5.11 061.1 185.0 071 32 36 41

SB 57.7 3.41 744.1 536.0 021 62 75 71

ST 37.7 4.41 453.1 207.0 001 62 85 61

F 07.7 1.41 041.1 294.0 001 32 85 91

SG S 68.7 7.31 822.1 735.0 06 32 75 02

HS 49.7 09.7 476.0 873.0 021 91 16 02

SB 68.7 7.11 559.0 574.0 08 52 55 02

ST 87.7 5.51 023.1 885.0 04 82 55 71

F 58.7 9.51 345.1 767.0 05 03 15 91

stlusersesylanaDSLdnaAVONA

CI 40.0±47.7 a 03.1±3.31 a 51.0±732.1 a 80.0±806.0 a 2.53±331 b 82.3±9.52 a 30.3±0.85 a 97.1±1.61 a

SG 50.0±68.7 b 01.3±0.31 a 23.0±441.1 a 41.0±945.0 a 7.92±27 a 90.4±1.52 a 22.3±9.55 a 63.1±0.91 b

eulav-p 0000.0 1837.0 8904.0 0652.0 2320.0 3536.0 6931.0 6000.0

,epolskcab–SB,redluohs–HS,timmus–S:noitisopepolS;metsysgnineer–SG,noitavitlucevisnetni–CI:esudnaL
C,nobraccinagrolios–COS;talf–F,epolseot–S L C,nobracelibal– EWH OCaC,nobracdetcartxeretawtoh– 3 tnetnoc–

tsetDSLotgnidrocca50.0<Ptasepolsdeidutsneewtebsecnereffidtnacifingisetacidni)b,a(sretteltnereffiD;setanobracfo

TABLE 1. Basic soil properties with results of ANOVA and LSD analyses results showing the difference between studied slopes
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content of extracted humic acid carbon (CHA) was
lower in IC (2.65 g kg–1) than in GS (2.90 g kg–1).
The opposite was observed for the fulvic acids (FA),
as the average content of extracted fulvic acids
carbon (CFA) was slightly higher in IC (2.15 g kg–1)
than in GS (2.09 g kg–1). We evaluated the humus
quality with regard to the soil managements on
carbon of HA and FA ratio (CHA:CFA) as well as
with regard to the optical parameters of humic
substances (Q4/6

HS) and HA (Q4/6
HA). In GS, the

average values of the CHA:CFA ratio were wider than
in IC. The average values of Q4/6

HS and Q4/6
HA and

the degree of humification – DH (expressed as CHA
from SOC) were also more favourable in GS than in
IC (Table 2).

Intensive soil management practices, which are very
often incorrect, accelerate soil erosion, which was re-
flected in the differences between the soil profiles on
the two slopes. Loss of soil material from the surface
horizon at the summit position and its delivery to the
accumulation zone (toe slope and flat terrain under
the slope) was clearly visibly due to the human indu-
ced erosion. This phenomenon affected and changed
the original soil cover on the analysed slopes. Nowa-
days arable horizon material is mixed with the parent
material mainly on the intensively cultivated (IC)
slope, while this situation took place on the both ana-
lysed slopes (IC and GS) in the past due to its former
cultivation. Moreover, eroded material accumulating

on the toe slope and under the slope resulted in the
burial of the original mollic surface horizon, which is
present at the depth of more than 50 cm (Šimanský et
al. 2014). Therefore, the soil properties along the
slope gradient were affected. Slope gradient is consi-
dered to be one of the most important factors influen-
cing soil quality because of its effects on variations in
several soil properties, and thus on crop yield (Paz-
Kagan et al. 2016). The loss and degradation of soils
have negative impacts on nutrient cycling and carbon
stocks mainly in shoulder and backslope positions (Do-
minati et al. 2010).

The one-way ANOVA analysis showed significant
differences between both management types (IC vs
GS) for soil pH, CaCO3, CHS as % of the SOC
(expressed also as degree of humification) and CHA
as % of the SOC (Tables 1 and 2).

Types of managements had statistically significant
influence on soil structure parameters (Table 3) and
their values in greening system (GS) were better in
comparison to intensive cultivation (IC).

Content of DSAmi and DSAma ranged from 35 to
54% and from 16 to 42% in the IC and GS, respecti-
vely. Transfer (transport) of soil aggregates down
slope via erosion can increase content of DSAmi while
decrease the DSAma in lower parts of the slopes. This
arrangement was much more demonstrable in the IC
(Fig. 2A). Nevertheless, content of DSAmi and DSAma
did not significantly correlate with slope forms, as the

TABLE 2. Soil organic matter properties with results of ANOVA and LSD analyses results showing the difference between studied
slopes

dnaL
esu

epolS
noitisop

SHC AHC AFC SHC AHC AFC AFC:AHC Q 6/4

gkg[ 1– ] COSehtfo%sa SH AH

CI S 16.4 54.2 61.2 67.73 70.02 96.71 31.1 45.5 21.4

HS 71.4 54.2 27.1 92.63 23.12 79.41 24.1 74.6 44.4

SB 02.5 57.2 54.2 93.63 42,91 41.71 21.1 18.4 58.3

ST 61.5 68.2 03.2 68.53 78,91 89.51 42.1 13.4 16.3

F 28.4 27.2 01.2 82.43 53,91 49.41 03.1 07.4 28.3

SG S 02.5 98.2 13.2 01.83 71.12 39.61 52.1 65.4 77.3

HS 28.2 44.1 83.1 07.53 32.81 74.71 40.1 55.5 78.3

SB 85.4 27.2 68.1 10.93 71.32 48.51 64.1 85.4 67.3

ST 99.5 86.3 13.2 76.83 67.32 19.41 95.1 17.3 83.3

F 73.6 57.3 26.2 41.04 36.32 15.61 34.1 09.3 54.3

stlusersesylanaDSLdnaAVONA

CI 04.0±97.4 a 02.0±46.2 a 02.0±51.2 a 25.0±1.63 a 87.0±9.91 a 84.0±2.61 a 41.0±42.1 a 18.0±71.5 a 0.0±79.3 a

SG 03.1±99.4 a 09.0±09.2 a 05.0±90.2 a 82.1±3.83 b 12.2±0.22 b 82.0±3.61 a 32.0±63.1 a 86.0±64.4 a 02.0±46.3 a

eulav-P 4556.0 6783,0 3757.0 5700.0 4810.0 8008.0 5461.0 6491.0 0690.0

metsysgnineerg–SG,noitavitlucevisnetni–CI:esudnaL

talf–F,epolseot–ST,epolskcab–SB,redluohs–HS,timmus–S:noitisopepolS

Q,nobracsdicacivluf–AFC,nobracsdicacimuh–AHC,nobracsecnatsbuscimuh–SHC 6/4 mn056ot564tneitouqroloc–

sdicacimuh–AH,secnatsbuscimuh–SH

tsetDSLotgnidrocca50.0<Ptatnereffidyltnacifingiserasnaemtnemtaerttahtetacidnisenilneewteb)b,a(sretteltnereffiD
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dynamics of DSAmi and DSAma content revealed no trend in either
slope's gradient. Despite this fact, the quadratic polynomial trend expressed
changes in contents of DSAmi and DSAma along the slope in the best way
(Table 4). Soil structure can be modified by soil management practices
(Bronick and Lal 2005), while significant deterioration of soil structure
and increase in soil erosion is observed in intensive land use activity
(Steinhoff-Knopp and Burkhard 2018), which our findings confirmed.
Content of WSAmi and WSAma are very important indicators of soil
structure (stability, vulnerability or water resistance; Šimanský et al.
2018). Similarly the dry sieved aggregates, content of WSAmi decreased
and content of WSAma increased from the upper to the lower parts of the
slope (Fig. 2B). Since the contribution of macro-aggregates of size 0.5–3
mm is important from the agronomical point of view (Demo et al. 1995)
we evaluated the content of these aggregates additionally. The content of
favourable size fraction of WSAma 0.5–3 mm increased along the slope,
while the highest content of these aggregates was observed in flat terrain
under the slope for both management types (Fig. 2B). Although only in
the GS did the WSAma 0.5–3 mm show a statistically significant
quadratic polynomial trend along the slope gradient. There is a linear
increase in WSAma 0.5–3 mm content by 8% every 80–120 m along the
slope (upper to lower slope). In the IC, the values of MWDd decreased
significantly in the same direction (Fig. 3A), which was clearly explained
with the quadratic polynomial model (Table 3). Based on the linear
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model, the MWDd decreased by 0.15 mm
during every 80–120 m along the slope gradient. On
the other hand, the values of MWDd increased
significantly in GS along the slope (Fig. 3A) and the
quadratic polynomial trend was significant (Table 3).
The MWDw values were significantly lower on the
backslope as compared to the summit and the accu-
mulation zone of the slope (TS and F parts)
indicating more intense erosion (Fig. 3A). Probably
it was the reason why no statistically proven decre-
asing or increasing trends of MWDw were observed
both along the IC and GS parts of the slope. In the
case of soil structure vulnerability (Kv) and MWDw,
similar effects were observed (Fig. 3B). In GS, the
aggregate stability (Sw) increased down the slope
without any statistical significance. On the IC it was
not possible to determine any trend along the slope
(Fig. 3C). The arrangement of the soil structure
parameter values, as well as the statistical results
discussed above, is fully in line with our assumptions.
Soil erosion is the well-known result of incorrect soil

management practices (Zhang et al. 2008, Liang et al.
2010). This is especially true in the case of inappro-
priate crop cultivation, as on the intensively cultivated
part of the analysed slope. As mentioned before, maize
was cultivated with an inter-line spacing of 70 cm and
the direction of the lines was oriented along the slope,
which obviously accelerated soil erosion. Since this
process was more explicit on the intensively cultivated
slope, the soil structure was unable to stabilise, in
contrast to the greening system.

Under both type of soil management types, carbo-
nates content was relatively high, but on average in the
IC, their content was almost double (133 g kg–1) than
in the GS (72 g kg–1). Apart from the negative correla-
tion between carbonates content and MWDd, no signi-
ficant relations were determined in the IC (Table 5).
Intensive cultivation can be the main reason for the
negative effect of carbonates in decreasing MWDd and
can have an insufficient effect on other parameters of
soil structure, because IC favours the surface runoff
and impedes the formation of secondary carbonates.

esudnaL erutcurtslioS
retemarap

ledomraeniL R2 ledomlaimonylopcitardauQ R2

CI ASD im 66.81+x00.2=y 3923.0 72.92+x90.7-2x25.1=y 5395.0

ASD am 43.18+x00.2-=y 3923.0 37.07+x90.7+2x25.1-=y 5395.0

ASW im 73.55+x12.3-=y 6754.0 49.95+x31.7-2x56.0=y 1484.0

ASW am 46.44+x12.3=y 9754.0 70.04+x31.7+2x56.0-=y 3484.0

ASW am 3–5.0 43.61+x76.4=y 8544.0 24.5+x30.41+2x65.1-=y 6515.0

dDWM 18.2+x51.0-=y 7729.0 87.2+x21.0-2x10.0-=y 1929.0

wDWM 63.0+x10.0=y 7710.0 15.0+x21.0-2x20.0=y 1433.0

vK 81.8+x94.0-=y 8231.0 52.4+x78.2+2x65.0-=y 4573.0

wS 06.0+x30.0=y 3813.0 75.0+x60.0+2x10.0-=y 4523.0

SG ASD im 78.71+x25.0=y 7890.0 35.11+x59.5+2x19.0-=y 9025.0

ASD am 31.28+x25.0-=y 7890.0 74.88+x59.5-2x19.0=y 9025.0

ASW im 46.84+x89.5-=y 2185.0 28.33+x27.6+2x21.2-=y 3386.0

ASW am 73.15+x79.5=y 9085.0 91.66+x37.6-2x21.2=y 1386.0

ASW am 3–5.0 56.71+x98.7=y 4608.0 71.52+x54.1+2x70.1=y 3728.0

dDWM 17.1+x70.0=y 8391.0 45.2+x46.0-2x21.0=y 4149.0

wDWM 07.0+x50.0=y 2580.0 02.1+x83.0-2x70.0=y 6273.0

vK 95.2+x40.0-=y 0910.0 37.1+x96.0+2x21.0-=y 4622.0

wS 95.0+x01.0=y 8836.0 38.0+x01.0-2x30.0=y 0637.0

kcab–SB,redluohs–HS,timmus–S:noitisopepolS;metsysgnineerg–SG,noitavitlucevisnetni–CI:esudnaL
ASD,setagergga-orcimdeveisyrd–imASD:sretemaraperutcurtslioS;talf–F,epolseot–ST,epols am yrd–

ASW,setagergga-orcamdeveis im ASW,setagergga-orcimelbats-retaw– am ,setagergga-orcamelbats-retaw–
ASW am deveisyrdrofsretemaidthgiewnaem–dDWM,mm0.3ot5.0morfsetagergga-orcamelbats-retaw–3–5.0

,tneiciffeocytilibarenluv–vK,setagerggaelbats-retawrofsretemaidthgiewnaem–wDWM,setgergga
setagerggaelbats-retawfoxedniytilibats–wS

TABLE 4. Trends of soil structure parameters along the slope gradient
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FIGURE 3. Values of mean weight diameter of dry sieved (MDWd) and water-stable aggregates (MDWw; A), vulnerability coefficients
(Kv; B) and of stability index of water-stable aggregates (Sw; C) along the slope gradient

ASD im ASD am ASD am
3–5.0

ASW im ASW am ASW am
3–5.0

DWM d wDWM vK wS

NOITAVITLUCEVISNETNI

OCaC 3 .s.n .s.n .s.n .s.n .s.n .s.n **577.0- .s.n .s.n .s.n

COS .s.n .s.n .s.n .s.n .s.n .s.n .s.n .s.n .s.n .s.n

CL .s.n .s.n **477.0 .s.n .s.n .s.n .s.n .s.n .s.n .s.n

C EWH .s.n .s.n .s.n .s.n .s.n .s.n .s.n .s.n .s.n .s.n

SHC .s.n .s.n .s.n .s.n .s.n .s.n .s.n .s.n .s.n .s.n

AHC .s.n .s.n .s.n .s.n .s.n .s.n *456.0 .s.n .s.n .s.n

AFC .s.n .s.n .s.n .s.n .s.n .s.n .s.n .s.n .s.n .s.n

HD .s.n .s.n .s.n .s.n .s.n .s.n .s.n .s.n .s.n s.n

AFC:AHC .s.n .s.n .s.n .s.n .s.n .s.n .s.n .s.n .s.n .s.n

Q 6/4
SH .s.n .s.n .s.n .s.n .s.n .s.n *607.0- .s.n .s.n .s.n

Q 6/4
AH .s.n .s.n .s.n .s.n .s.n .s.n *327.0- .s.n .s.n .s.n

METSYSGNINEERG

OCaC 3 .s.n .s.n **708.0 *637.0 *637.0- .s.n *107.0- *517.0- .s.n **587.0-

COS .s.n .s.n **018.0- **208.0- **208.0 .s.n **628.0 *257.0 .s.n **548.0

CL .s.n .s.n **787.0- **597.0- **597.0 *236.0 ***129.0 *227.0 .s.n **438.0

C EWH .s.n .s.n *857.0- **997.0- **997.0 *017.0 ***998.0 .s.n .s.n **638.0

SHC .s.n .s.n **948.0- **687.0- **687.0 *836.0 **228.0 *907.0 .s.n **838.0

AHC .s.n .s.n **838.0- **208.0- **208.0 *376.0 *457.0 *986.0 .s.n **658.0

AFC .s.n .s.n **418.0- *607.0- *607.0 .s.n ***698.0 *107.0 .s.n *057.0

HD .s.n .s.n ***778.0- *246.0- *246.0 .s.n .s.n .s.n .s.n *917.0

AFC:AHC .s.n .s.n .s.n .s.n .s.n .s.n .s.n .s.n .s.n *836.0

Q 6/4
SH .s.n .s.n **197.0 **338.0 **338.0- *027.0- *786.0- *996.0- .s.n **288.0-

Q 6/4
AH .s.n .s.n 816.0 ***439.0 ***439.0- ***788.0- *856.0- *876.0- .s.n ***369.0-

C,nobraccinagrolios–COS L C,nobracelibal– EWH OCaC,nobracdetcartxeretawtoh– 3 cimuh–SHC,setanobracfotnetnoc–
Q,nobracsdicacivluf–AFC,nobracsdicacimuh–AHC,nobracsecnatsbus 6/4 ASD,mn056ot564tneitouqruoloc– im deveisyrd–

ASD,setagergga-orcim am ASD,setagergga-orcamdeveisyrd– am ASW,mm0.3ot5.0morfsetagergga-orcamdeveisyrd–3–5.0 im –
ASW,setagergga-orcimelbats-retaw am ASW,setagergga-orcamelbats-retaw– am ot5.0morfsetagergga-orcamelbats-retaw–3–5.0

,setagerggadeveistewrofsretemaidthgiewnaem–wDWM,setagerggadeveisyrdrofsretemaidthgiewnaem–dDWM,mm0.3
wS,tneiciffeocytilibarenluv–vK setagerggaelbats-retawfoxedniytilibats–

100.0<P***,10.0<P**,50.0<P*,tnacifingis-non–.s.n

TABLE 5. Correlation coefficients between soil parameters on the analysed slopes
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Many studies (Kassam et al. 2015, Blanco-Canqui and
Ruis 2018; Zhang et al. 2018) reported negative tillage
effects on soil structure. Tillage could result in the
reduction of SOM stock, cation exchange capacity
(CEC), nutrients content, and microbial and faunal
activity, all of which contribute to soil aggregation
(Plante and McGill 2002). However, carbonates were
reported as a factor in decreasing the stability of mi-
cro-aggregates (Boix-Fayos et al. 2001), which is in
opposition to our results obtained in the GS. Higher
content of carbonates came together with a decrease in
WSAma, MWDd, MWDw and Sw. The effect of
carbonates content on soil structure could be
moderated by SOC (Chan and Heenan 1999) as an
increase in Sw in limed soils suggests the formation
of strong bonding, involving Ca2+ bridges between
primary soil particles and SOM (Kobierski et al. 2018)
and it promotes the formation of coarse aggregate
fractions (Wang et al. 2013). Higher SOC content
could be followed by an increase in dissolution and
re-precipitation of carbonates in soil. At low SOC
concentration, macro – aggregate stability is enhan-
ced by carbonates (Boix-Fayos et al. 2001) which may
explain the positive correlation between content of
agronomically favourable size fraction of aggregates
(0.5–3.0 mm) and carbonates content in the GS
(Table 4). The results presented by Šimanský et al.
(2014) showed that a more intense aggregation
process in loamy soils (Buèany and Trakovice district)
is related to high content of basic exchangeable
cations, and high value of CEC and the stabile organic
matter content in water-stable aggregates. Generally,
the SOM has been linked to improved Sw (Nouwakpo
et al. 2018) because the SOM is one of the most im-
portant binding agents (Bronick and Lal 2005; Rabbi
et al. 2014). In the IC, a higher content of HA resulted
in higher values of MWDd, and a higher
stability of HS and HA (Q4/6

HS and Q4/6
HA) resulted in

higher values of MWDd. In the GS, a higher SOC
resulted in increased content of WSAma, MWDd,
MWDw and Sw, but, by contrast, we observe a de-
crease in content of agronomically favourable size
fractions of dry sieved aggregates and content of
WSAmi. Labile fractions of SOM can be a factor in
transforming micro-aggregates into macro-aggregates
(Six et al. 2004), which is confirmed by our results in
the GS. Higher contents of CL and CHWE result in a
decrease in WSAmi content, most probably due to the
aggregation of smaller aggregates into bigger aggre-
gates  with labile carbon fraction. A positive link
between size of aggregates and labile SOM has also

been described by other researchers (Six et al. 2004,
Polláková et al. 2018, Kobierski et al. 2018), indicating
a greater role of CL in the formation of macro-aggre-
gates than of micro-aggregates. In GS, statistically
significant positive correlations were observed
between CL and WSAma, WSAma 0.5–3 mm, MWDd,
MWDw and Sw. The aggregate binding effect of CL
is rapid but transient (Kay 1998) while decomposing
SOC fractions with lower decomposing rates have
milder effects on aggregation, but its effects may last
longer (Martens 2000). Higher contents of HS, HA
and FA was followed by an increase of content
WSAma and WSAma 0.5–3 mm, MWDd, MWDw and
Sw in GS. A higher degree of humification of SOM
also had a positive effect in increasing WSAma (r=0.642,
P<0.05) and Sw (r=0.719, P<0.05). Based on the
negative correlation of Q4/6

HS and Q4/6
HA with

WSAma, WSAma 0.5–3 mm, MWDd, MWDw and
Sw values, we can conclude that more condensed
(humified) fractions of humus dominated in the
formation of favourable soil structure. Optimal soil
structure as reported by Kimura et al. (2017) and
Polláková et al. (2018) is formed through more humi-
fied humus fractions.

CONCLUSIONS

Even though parameters of soil structure parame-
ters differed according to the morphological parts of
analysed slopes (S, SH, BS, TS, F) and between both
types of soil management (IC vs. GS), not all of them
changed significantly along the slope. Only in
greening system did the favourable size fraction of
water-stable macro-aggregates show a statistically
significant quadratic polynomial trend along the
slope. In the intensively cultivated slope the values
of mean weight diameter of aggregates decreased in
a statistically significant way down the slope, while
in the greening system the mean weight diameter of
aggregates increased, and this trend was expressed
with the quadratic polynomial model. Between inor-
ganic carbon (CaCO3) and organic C forms and soil
structure parameters significantly more relationships
were found in the greening system. We can conclude
that more labile SOM fractions and more humified
fractions of humus together dominated the formation
of favourable soil structure in the greening system.
The results indicate that soil management practices
can significantly affect the relationship between SOM
quality and soil structure development.
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Wp³yw pozycji na stoku i sposobu u¿ytkowania na wybrane w³aœciwoœci

w przypowierzchniowej warstwie gleby

Streszczenie: Celem badañ by³a ocena wybranych parametrów (w tym jakoœci struktury agregatowej) w przypowierzchniowej
warstwie gleby w odniesieniu do nachylenia stoku (pozycji na zboczu) i sposobu u¿ytkowania gleby w Trakovicach (kraj trnawski,
S³owacja). Obszar badañ obejmowa³ dwa  s¹siaduj¹ce ze sob¹ pola po³o¿one na stoku o orientacji NW-SE, nachylonym pod k¹tem
oko³o 8°. Pole nr 1 by³o intensywnie u¿ytkowane jako grunt orny, podczas gdy na polu nr 2 znajdowa³ siê tzw. zielony ugór (przez
okres 6 lat poprzedzaj¹cych pobór próbek). Próbki gleby pobierano z  poziomów próchnicznych w piêciu wyznaczonych strefach
geomorfologicznych (szczyt, górna czêœæ stoku, œrodkowa czêœæ stoku, dolna czêœæ stoku i podnó¿e stoku) na ka¿dym zboczu.
Wyniki jednoczynnikowej analizy wariancji (ANOVA) wykaza³y istotny statystycznie wp³yw sposobu u¿ytkowania stoku na pH
gleby, zawartoœæ CaCO3, zawartoœæ wêgla w substancjach humusowych i wêgla kwasów huminowych (wyra¿onych jako udzia³
wy¿ej wymienionych w ogóle wêgla glebowej materii organicznej) oraz badane parametry struktury gleb. Udzia³ procentowy
WSAma 0,5–3 mm (water stable macro-aggregates) na ugorowanej czêœci stoku wykazywa³ istotny statystycznie trend (wielomian
kwadratowy) wzd³u¿ nachylenia zbocza. Wartoœci œredniej wa¿onej œrednicy agregatów przesiewanych na sucho (MWDd) na
intensywnie u¿ytkowanym stoku zmniejszy³y siê istotnie wzd³u¿ gradientu nachylenia, podczas gdy na stoku ugorowanym zaobser-
wowano przeciwn¹ tendencjê. Jednoczeœnie stwierdzono istotn¹ statystycznie korelacjê pomiêdzy wartoœciami tego parametru a
zawartoœci¹ wêglanów (r = -0,775, p <0,01), zawartoœci¹ kwasów huminowych (r = 0,654, p <0,05), indeksem Q4/6 okreœlonym dla
substancji humusowych (Q4/6

HS; r = -0,706, p <0,05) oraz dla kwasówhuminowe (Q4/6
HA; r = -0,723, p <0,05). Na stoku ugorowa-

nym wraz z wy¿sz¹ zawartoœci¹ wêglanów obni¿a³ siê udzia³ makro agregatów stabilnych w wodzie, oraz œredniawa¿ona œrednica
agregatów przesiewanych na sucho i na mokro oraz wartoœci indeksu stabilnoœci agregatów (Sw). Jednoczeœnie wy¿sze zawartoœci
materii organicznej (zarówno form stabilnych i labilnych) wp³ywa³y na poprawienie struktury powierzchniowych poziomów glebo-
wych.

S³owa kluczowe (for Polish authors only): struktura gleby, glebowa materia organiczna, intensywne u¿ytkowanie, ugór, stok


